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Abstract

We show that there exist translations between polymorphic A-calculus
and a subsystem of minimal logic with existential types, which form a
Galois connection and moreover a Galois embedding. From a program-
ming point of view, this result means that polymorphic functions can be
represented by abstract data types.

1 Introduction

We show that polymorphic types can be interpreted by the use of second order
existential types. For this, we prove that there exist translations between poly-
morphic A-calculus A2 and subsystem of minimal logic with existential types,
which form a Galois connection and moreover a Galois embedding. From a pro-
gramming point of view, this result means that polymorphic functions can be
represented by abstract data types and vice versa.

Peter Selinger [Seli01] has introduced control categories and established an
isomorphism between call-by-name and call-by-value Ap-calculi. The isomor-
phism reveals duality not only on logical connectives (A,V) like de Morgan
but also on reduction strategies (call-by-name and call-by-value), input-output
relations (demand- and data-driven) and inference rules (introduction and elim-
ination).

Philip Wadler [Wad03] introduced the dual calculus in the style of Gentzen’s
sequent calculus LK, such that the duality explicitly appears on antecedent and
succedent in the sequent of the propositional calculus.

Our main interest is a neat connection and proof duality between polymor-
phic types and existential types. It is logically quite natural like de Morgan’s
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duality, and computationally still interesting, since dual of polymorphic func-
tions with universal type can be regarded as abstract data types with existential
type [MP85]. Instead of classical systems like [Pari92], even intuitionistic sys-
tems can enjoy that polymorphic types can be interpreted by existential types
and vice versa. This interpretation also contains proof duality, such that the
universal introduction rule is interpreted by the use of the existential elimination
rule, and the universal elimination by the existential introduction. Moreover,
we established not only a Galois connection but also a Galois embedding from
polymorphic A-calculus (Girard-Reynolds) into a calculus with existential types.

2 Polymorphic A-calculus A2

We give the definition of polymorphic A-calculus @ la Church as second order
intuitionistic logic, denoted by A2. This calculus is also known as the system F.
The syntax of types is defined from type variables denoted by X, using = or V
over type variables. The syntax of A2-terms is defined from individual variables
denoted by z, using term-applications, type-applications or A-abstractions over
individual variables or type variables.

Definition 1 (Types)
A = X|A=A|VXA

Definition 2 (Pseudo-terms)

A25 M u=x | Az AM | MM | AX.M | MA
Definition 3 (Reduction rules) (8) (Az:A.M)M, — Mz = M)
(8:) (AX.M)A — M[X = A]
(n) eMz—> M feg FV(M)
() AXMX = M if X ¢ FV (M)

A set of free variables in M is denoted by FV(M). The one step reduction
relation is denoted by —y3. We write —>§'2 or =3, to dencte the transitive
closure or the reflexive and transitive closure of —,5, respectively. We employ
the notation =), for the symmetric, reflexive and transitive closure of the one
step reduction — 5 defined above. We write = for a syntactical identity modulo
renaming of bound variables. Let R be 3, 8, n or 1. Then we often write —vg
to denote the corresponding subset of —y5.

The typing judgement of A2 takes the form of I' - M : A, where T is a set
of declarations in the form of z : A with distinct variables as subjects.

Definition 4 (Type assighment rules)

z:Ael
'Fz: A



DPz:Ai b M: A ( 'My: A=Ay THMy: A
Ff“/\ﬂ?IAl.MIAliAQ F*“MlMgiAz (

'bM:A * 'cM:vVX.A
F'EAX.M VXA (v1) I'FMA; : A[X = Ay] (VE)

where (VI)* denotes the eigenvariable condition X ¢ FV(T')

= I) = E)

3 Minimal logic with second order sum

Next, we introduce the counter calculus A as minimal logic consisting of nega-
tions, conjunctions and second order sums. Such a calculus seems to be logically
weak and has never been considered as far as we know. However, A3 turns out
strong enough to interpret A2 and interesting to investigate polymorphism.

Definition 5 (Types)
A= L] X |-A]|ANA]3IX.A
Definition 6 (Pseudo-terms)

Ao M = z| e AM|MM
| (M, M) |let {(z,2)=M in M
| (A, M)ax 4 |1let (X,2)=M in M

Definition 7 (Reduction rules) (3) (Az:A.M)M; — Mz := M]
() Ao AMz— M ife ¢ FV(M)
(letn) let (zy,22) = (My,Ms) in M — Mz, := My, 2y = Ms]
(letn,) let (zy,20) = M) in M[z:= (zy,22)] = Mz = M]

if 21,20 ¢ FV(M)
(lets) let (X,z) = (A1, Ma)axa in M — M[X = Ay, z = M]
(letz ) let (X,z)=M; in M[z:=(X,z)] = Mz := M;]

if X,z ¢ FV(M)

A simultaneous substitution for free variables z1, x5 or X, z is denoted by [z; :=
My, 25 = M;] or [X = A,z := M], respectively. We also write =3 for the
reflexive, symmetric and transitive closure of the one step reduction — = defined
above. We may sometimes omit type annotations from terms.

Definition 8 (Type assignment rules)

z:AeT
I'Fz: A
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Fz:A-M: L TFM:=A T'HEMy: A (—E)
I'-Xz:AM:—-A ' MM, : L

Ff—MliAl F}_‘MEIAZ

Tf"(MlyM?)IAl/\Ag

M, : A ANAy T,z:A),29: A0 M A

['Flet {(zy,22)=M; in M : A
' M:A[X = A @n 't M, :3X.A, T,x:AiEFM: A (3E)*
Ff“(Al,M>3X‘A :dX.A I'F let <X):L‘>:M1 in M: A

where (3E)* denotes the eigenvariable condition X ¢ FV (I, A)

=1

(A1)

(NE)

4 CPS-translation and soundness

For a CPS-translation from A2-calclus into A3-calculus, we define an embedding
of types (types for denotations of proof terms), denoted by AR and types for
continuations, denoted by A*, which also work for denotation of A2-types.

Definition 9 (Embedding of types)
AF = - A*

Definition 10 (Types for continuations and denotation of types)
(1) X* = X |

(2) (A1 = Ag)* = AT AN A3

(3) (VX.A)* =3X.A"

The definition above inherits the propositional case from Hofmann-Streicher
[HS97] and Selinger [Seli01]. The operator x exactly takes logical duality when
one reads A; = Ay as —Aq V Ay, It is remarked that in terms of classical logic,
we have (A; = A3)* ¢ (A3 = A}), which means that a function is interpreted
as an inverse function over continuations.

Lemma 1 We have A*[X := Af] = (A[X := A1])* and
(A[X = A)* = AF[X = A%].

Proof. By induction on the structure of A. O

The definition of denotation of proof terms, denoted by [M], is given by induc-
tion on the typing derivation of M.

Definition 11 (Denotation of A2-terms)
) [zl=2 #Traz:A

(i) [Az:A1.M] = Mk:(A; = Ag)*.(let {z,c¢) =k in [M]c)
LAz AL M Ay = Ay
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(111) B:Mle]] = )\CLA;[IMﬂKI[MQ:ﬂ,CL)
sz‘ F M11Mr2 3A2

(iv) [\X.M] = Mk: (VX.A)*.(let (X,c)=Fk in [M]c)
T AX.M VXA

(v) [MA] = Ak (A[X = A ])* [IMAT, k)ax. a
if T MA; : A[X = A4q]

The definition above interprets each proof term with type A as a functional
element with type A* (space of denotations of type A), which takes, as an
argument, a continuation with type A*. The cases of application say that con-
tinuations are in the form of a pair {[M], a) or (4%, a) consisting of a denotation
and a continuation in this order. The cases of A-abstraction mean that after
the interpretation, A-abstraction is waiting for a first component of a continua-
tion (i.e., a denotation of its argument), and the second component becomes a
rest continuation to the result. It should be remarked that (VI) and (VE) are
respectively interpreted by dual (3) and (31), i.e., we call proof duality.

We may simply write (Ry, Ra, ..., Rn, M) for (R, (Rs, ..., Rn, M)), where
we let (M) = M, and R; is either M or A.

Example 1 Let M -+ My, be with type Apmy1 and A be A1 = - = Apmar:

[Aey: Ay Az ApaMy - My]
—)2? Mk A®. let (z1,ky) = k1 in
let (@9, ks) = ko in

let (T, kmy1) = km in z([Mi],... [M,], kra1)
where k; 1 AF A (Aip1 = - = Amgr)”

Lemma 2 We have [M[z := N]] = [M][z := [NV]] and
[M[X := A]] = [M][X := A*].

Proposition 1 (Soundness)
(i) If we have T byp M : A, then T* 5= [M] : AR
(ii) For well-typed M1, Mz € A2, if we have My —rxs Mo then [M1] =15 [Ma].

Proof. If we have I' = M : A, then T* = [M] : A* by induction on the derivation
together with Definition 11. We show two cases of (1) AX.M and (2) MA.
(1) Suppose the following figure of A2, where X is never free in the context T'.

M:A *
AXM VXA (v1)
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Then we have the proof figure of \?, where the eigenvariable condition of (IE)
can be guaranteed by that of (V).
[M] : A% [c: A*]
[k :3X.A%] [M]c: L
let (X,c¢) =k in [M]e: L
Ak:(3X.A%).(1et (X,c) =k in [M]ec) : (VX.A)*

(FE)*

(2) Suppose that

MA; : A[X = Aq]
Then we have the following proof figure:
o (AIX = Ar)* = A'[X = A7]
[M]: (VX .A)* (A, a)ax a» 1 XA
[M](AT, a)ax.a- : L
Aa:(A[X = A ) [M](AT, a)ax.ar : (A[X = A])*
The other cases for (= I) and (= E) are the same as above.
Next, we can prove that if we have My —,5 My then [M;] ——> . [Ms] by

inductlen on the derivation of well-typed terms. We show the cases of (3) (Be)
where AX.M :VX.A and (4) (n).

30

= Aa:(A[X = A1) . ( Ak (3X . A%).(Tet (X,¢) = k in [M]e)){AT, a)
—5  Aa:(A[X = A1])*. (et (X, c) = (A}, a) in [M]c)

ety A (A[X = A [M]X = Afla
= Aa:{A[X = A [M[X := A;]]Je from Lemma 1

(4) P X .MX]
= Ak (VX.A)" . (let (X,¢) =k in (Aa:(A[X = X])*.[M](X,a))c)
=g Ak:(VX.A)".(let (X,c) =k in [M|(X,c))
—tets, Ak:(VX.A)"[M]k
=y [M]

5 Inverse translation and Galois embedding

We introduce a generation rule of R ¢ la [SF93], which describes the image of
the CPS-translation closed under the reduction rules. We write R € R, R* for
both Re R and R€R*, and Ry,...,R, € Rfor R; € R (1 <i< n).
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Definition 12 (Inductive Generation of R)

ze€R,R" A*eR”

RER Ry,....Rn€R* agFV(RR ...R,) n>0
Na.R(R1,..., Rn,a) ER,R*

Aa.W,Ri € R Ry,...,R, eR* bg FV(R,...R, W) n>0
Mb.(let (z,a) = (Ri,...,Rn,b) in W) € R,R*

MW ER AL Ry,... Rn€R* b@FV(Ry...RaW) n>0
Ab.(let (X, a) = (AT Ry, ..., Ry,b) in W) € R, R*

From the inductive definition above, R € R is in the form of either z or Aa.W
for some W. It is important that terms with the pattern of Aa.W € R have the
form such that the continuation variable a appears exactly once in W (linear
continuation), since our source calculus is intuitionistic.

Lemma 3 (Subject reduction property w.r.t. R) The category R is closed
under the reduction rules of \3.

Proof. Substitutions associated to the reduction rules are closed with respect to

R. O

Typing rules for R € R are defined in terms of those for A7 as follows,
denoted by I—k%. Here, we write R or Aa.W for denotations with type A*and
C, for continuations with type A*, where C, contains exactly one occurrence
of the continuation variable a at the tail position:

Co n=a [ (R,Ca) | (A", Ca)ax.ar
R =z |Xa.RC,; | Aa.let {x,a) = Cy in W | dalet (X,a) =C, in W
where we write W for R = Aa.W.
Definition 13 (Typing rules for R)

x:A* e T*
5 b g AF Tk a:A*Fa: A*

I*FR:AF T* a:AtFHC,: B* (A1) % a: A} &+ C, : A¥[X = B¥] an
T% a: A7 F (R, Ca) < (A= B)* % a: AT F (B*,Codaxar - (VX.A)*

T FR: A% Tk a:ATFC,: A
T* - Xa: AT .RC, : A%

(-&T)
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% z:AF FXb:B* W : B¥ I* a:A}+C,: (A= B)*

NE
I* F da:A* et (z,b) = Cy in W : A} (nE)

I Xb:B*W : B* T*a:A} - C,: (VX.B)*

JEY*
T* F Aa:A¥.let (X, b) = C, in W : A} S

where (3E)* denotes the eigenvariable condition X ¢ FV(L).

Lemma 4 (Subject reduction property w.r.t. types) If we have R : A¥
and Cy : B*, respectively, together with Ry —3a Ra and C1 =33 Cs, then we
also have Ry 1 A*® and Cy : B*.

Proof. The calculus A* has the subject reduction property. 0O

Following the patterns of Aa.W € R, we now give the definition of the inverse
translation f as (Aa. W)l = W,

Definition 14 (Inverse translation { for R) (i) z! = z; (A=A
(ii) (R(Ry,..., R, )} = RIR} .. R}
(iii) o (let (z,c) = (Ry,...,Rp,a) in W)l = Qe WHRE .. R
o (let (X,c)=(Ri,...,Ry,a) in W}l = OX.WHR! . . RL
Proposition 2 (Completeness1) (1) If we have I'* E-A% R: A% thenT ko
RV A
(2) If we have %, a: A* i—)\% C, : B*, then T, z: B g (Aa.zCy)t : A.

Proof. By simultaneous induction on the derivations. O

Let (n7) be an 7-expansion: R — Aa:A*.Ra where a ¢ FV(R) and R € R.
Then the set of well-typed R becomes the image of the CPS-translation closed
under the reduction rules, called Univ. '

Definition 15 (Universe of the CPS-translation)
Univ & {PeA?|[M] -—>j‘\an~ P for some well-typed M € A2}
Lemma 5 Univ is generated by R, i.e., UnivC R.

Proof. For well typed M € A2, we have [M] € R, and moreover R is closed
under () and the reduction rules by Lemma 3. 0

Lemma 6 For any P € Univ, we have some T’ and A such that T* 2 P : A*.

Proof. From the definition of Univ, Proposition 1 and Lemma 4. O
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Proposition 3 (1) Let M € A2 be a well-typed term. Then we have that
M = M.
(2) Let P € R be well-typed. Then we have that [P _);n’ pP.

(3) If P € R is a normal form of A3, then PV is a normal form of A2.
Proof.

(1) By induction on the structure of well-typed M € A2.

(2) By case analysis on P € Univ, following the definition of .

(3) Following the cases of (i), (ii) and (iii} of the definition of f.

o Case of (ii):
Let P be Aa:A*.R(R1,..., R,,a). Since P is a normal form of A,
we have R = z and R; is also in normal with n > 1, to say, R?f.
Then we have normal P! = ;IZ(R?f)ﬂ (RO

e Case of (iv) with n = 0:
Let P be Aa:A*.(let {(z,c) =a in W). Since P is in normal, so is
W without (1ets, ) nor (letg, ) redexes, to say, W/ . Then we have
normal P} = Xz (Wn/)h,

O

Proposition 4 We have Univ =R with respect to well-typed terms.

Proof. We have Univ C R from Lemma 5. Let P € R be well-typed. Then P} €
A2 is well-typed from Proposition 2. Proposition 3 implies that [PY] ->;??_ P,
and hence P € Univ. Therefore we have R C Univ. ’

Lemma 7 (Wla:= ((Ry,..., R, 0)))} = WIRL, ..., RL provided a € FV(W).

Proof. Following the case analysis on the definition §. We show one case of
W = (let (z,¢) = Cy in W'), where C; = (S1,...,Sn,a). Let 8 be [a =
(Ry,..., Ry, b)]. Wehave W6 = (1let (g,¢) =(S1,-..,Sn, Ry, .-, By, b) in W,
and then we have (W6)E = Q. (W/)St.. . SERE . RY, = (W)'RL .. RE. O

Proposition 5 (Completeness2) Let P,(J € Univ.
(1) If P —p Q then P! = Q.
(2) If P —,; Q then Pt = QL.

)

)

(3) If P =11, @ then P! =5 Q.

4) If P —100s Q then Pt —p, Q.
)

(
(5) If P —net,, @ then Pt —, Q.
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(6) If P —16ta, @ then P, QY.

Proof. By induction on the structure of P, following the case analysis on the
definition §. The cases (1,2) are straightforward. We show some of the cases;

(4):
Let P be Xa.let (X,c)=(A* Ri,...,Rp,a) in W.
P = (AXWHAR!..  RE
—s, WHX := AR, R}
= (WX :=A)'R . Rl = (W[X = Allc:= (Ry,..., Rn, )]}

(6): Let Pbe Aa.let (X,¢) =a in R{Ri,...,Rp, X, c) where X,c & FV(RR; ...

P' = MXRR'.. . RX -, RR Rl

Let @ be da.let (X,c)=a in let (Y,b) =(Ry,...,R,, X,c) in W where
X,cd FV(R,...R.W).

Q' = AX.QvWHR! .. RLX -, AWY.WNHR! . R

Theorem 1 (i) T'Fxo M : A if and only if T% 53 [M] : AF,
(i) P € Univ if and only if T by Pt : A for some T, A.
(i1} Let My, My be well-typed A2-terms.
My =xy My if and only if [M] =52 [M-].
In particular, My —y9 M, if and only if [M,] —g—1et—>y [ M2].
(iv) Let Pi, Py € Univ. Py =ya Py if and only if P! =5, P}.
Proof. (i,ii) From Propositions 1 and 2. (iii, iv) From Propositions 1 and 5. O
Theorem 2 The inverse translation § : Univ — A2 is bijective, in the following
sense:
(1) If we have P} =x3 P! then P, =55 Py for Py, P, € Univ.
(2) For any well-typed M € A2, we have some P € Univ such that P! = M.

Proof. Let M be a well-typed term of A2. Then we can take P as [a1], so
that we have P! = M. O

Definition 16 (Galois connection) Let —% and —% be pre-orders on S and
T" respectively, and f : S = T and g : T — S be maps. Two maps f and g
form a Galois connection between S to T whenever f(M) —% P if and only if
M —% g(P), see also [SW97].

It is known that the definition above is equivalent to the following clauses:

Ry).



() M =5 g(f(M))

(i) flg(P)) =7 P
(iil) My —% My implies f(M:) =3 f(Ms)
(iv) Pi —% Py implies g(P1) =% g(Py)

Definition 17 (Galois embedding) Two maps f and g form a Galois em-
bedding into T if they form a Galois connection and g(f(M)) = M.

Theorem 3 The translations [ | and § form a Galois connection between A2
and Univ, and moreover, they establish a Galois embedding into Univ.

Proof. From Propositions 1, 3, and 5. O

It is remarked that a (Galois embedding is the dual notion of a reflection: f

and g form a reflection in S if they form a Galois connection and f(g(P)) = P.
In fact, let M —~ N (expansion) be N — M (reduction). Then —7" is a

pre-order, and {(§,[ ], =33, =5, ) forms a reflection.
Let $Univ be {P! | P € Univ}. Let [§Univ] be {[M] | M € §Univ}.

Corollary 1 (Kernel of A2) For any P € [§Univ], we have P = [P'].

Proof. Let A2 be a set of well-typed A2-terms. From the theorem above, we
have §Univ = A2 and [#Univ] = [A2]. Hence, any P € [A2] is in the form
P = [M] for some M € A2, such that [P!] = [[M]'] = [M] = P. O

Corollary 2 (Normalization of A2) The weak normalization of A2 1s inher-
ited from that of A3 (A3,). Moreover, the strong normalization of A2 is implied

by that of A% (A3).

Proof. The weak normalization of A2 is implied by Theorem 3 ([ ] and § form
a Galois connection) together with Proposition 3. The strong normalization of
A2 is implied by Proposition 1 (soundness). ]

Corollary 3 (Church-Rosser of A2) The Church-Rosser property of A2 1s
inherited from that of R.

Proof. The Church-Rosser property of A2 is implied by Theorem 3. a

We remark that the system A7 can be regarded logically as a subsystem of F,
in the sense that the connectives A and 3 together with the reduction rules can
be coded by universal types of F [GTL89]. Our result, in turn, means that
universal types can be interpreted by the use of existential types. Moreover,
proof duality appears in the proof such that (V1) < (3E) and (VE) <+ (31).

107
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6 Proof duality between polymorphic functions
and abstract data types

We discuss the proof duality in detail. If we have T'-x2 A In A2, then classical
logic has A* + T'*, turning assumptions into conclusions and vice versa. In
terms of intuitionistic logic, we can expect that —=I'*, A* + L. In fact, we have
—I*, a:A* Fya M : Lif T kg M : A, under the following definition.

Definition 18 (Modified CPS-translation)
(i)

(i

=

&
2

A AL M =1let (z,a)=a in M

(i) MiMy = Myfa = (Aa: A} My, a)] for My : A;

)
)
(iv) A XM =1et (X,a)=a in M
(v)

Lemma 8 Let M € A2 be a well—typed term.

(1} We have [M]a -—%EW_ M and [M] ﬁ;n; Aa. M.
(2) IMTP= ()} =M

(3) If M is a normal form of X2, then M is a normal form of A3 without (n,).

The form of normal M without (1,) is described by N F as follows:

NF = =za
| let (x,a) =k in let (x,a) =k in ...
let (x,a)=%k in 2(Nf,...,Nf,a)

where N f w= A* | Aa.NF, and we write x for either x or X.

Proof. By induction on the structure of M, and Proposition 3. a

The notion of path is defined as in Prawitz [Pra65], together with inference
rules.

Definition 19 (Path) A sequence consisting of formulae and inference rules
Aj(R1)Az(R) ... Ap—1(Rp-1) Ay is defined as a path in the deduction IT of A2

or A3, as follows:

(i) A; is a top-formula in II;
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(ii) A; (i < n) is not the minor premiss of an application of (= E) or (=E),
and either
1) A; is not a major premiss of (AE) or (3E), and A, is the formula
occurrence immediately below A; by an application of {R;), or
2) A; is the major premiss of an application of (AE) or (3F), and A;i41 1s
the assumption discharged in Il by (AE) or (3E), to say, (R;);

(iii) Ay is either a minor premiss of (= E) or (=FE), or the end-formula of IL

We write (1) for either (=) or (VI), and () for either (= E) or (VE). We also
define inference rule correspondence as follows: (= 1)* = (AE), (= E)* = (A),
(VI)* = (3E), (VE)* = (3]).

Theorem 4 (Proof duality) Let II be a normal deduction of T Fxg M : A,
and let 7 be a path Ai(E1)As(Es) ... Aj(B)Aigi1(Lliyr) - An_1(In-1)An in the
normal deduction. Then, in the deduction of ~I'*,a: A% lya M : 1, there exists

a path m*, as follows:
m = A (Ino1) Ay (Tip) Al (B)AT . (Bo)7 A3 (EL)T AT

Proof. By induction on the normal derivation of I' bz M : A. We show here

some of the cases:
(0) Case of n = 1:
For z : A, we have the following deduction:

z:—A* a: A*
za: L (—‘E)

which means that the corresponding path ends with the minor premiss of (= £),
just before L.

(1) A, (n =i+ 1) is derived by an elimination rule.

Case of (= E):

From a normal deduction II, (B => A,) cannot be derived by an introduction

rule:

I I,
M,:B= A, My:B
MlMg :An

Then we have a path 7% from (B = A,)*, corresponding to the path m; to
(B=A4,):

(= E)

G(B_—'}An)* a:B*
21 22
Ml Myl
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The figure below says that we have a path 7¢ = (4,)* (= E)*(B = A,)*r{,
corresponding to the path 7 = m (B = A,) (= E)(4,) :

[a : B¥]

3y
Myl

e (= ]
Aa. Moy : = B* (=D a: Al
I
{(Aa.My,a): =B* A A}, (A])

21
Mifa = (Aa.My,a)]: L

Case of (3E):
From a normal deduction of II, VX.A,, cannot be derived from an introduc-
tion rule:
1T,
M ¥X.A,

MB: A,[X := B]
Then we have a path 7¢ from (VX.Ay)*, corresponding to the path m; to VX. Ay,
as follows:
a: (VX.Ap)"
PH

(VE)

1
g:_l.

The following figure shows that we have a path 7¢ = (A4,[X = B))*(VE)* (VX .4 )* 74,
corresponding to the path = = 7 (VX .A,)(VE)(A4,[X := B]):

a: (Ap[X := B])*
(B*,a): 3X A}
2
Mla :=(B*,a)]: L

(31)

(2) A, (n=1+2) is derived by an introduction rule.
Case of (= I):

M An—l (E)
AM:B= A,_; (

Then we have the path 7¢ from A}_,, corresponding to the path 71 to Ap_1:

= I)

z:—B* a:Al_,
X
M:L

Now we have the foﬂowing figure, so that there exists a path 7¢ = (B =
An-1)" (= I)*(A},_1)7¢, corresponding to the path 7 = m;(An_1)(= I)(B =
An__l)Z
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2
a :B*ANAL_ M: 1
= B
let {z,a) =a’ in M : L (AE)
Case of (VI):
11
An—2
M A )

A X M VX Ap- (¥1)
Then we have the path n¢ from A%_,, corresponding to the path m; to A,_1,
as follows:

a . A’:.—l

2
M1
Now we have the path 7¢ = (VX.An_l)*(VI)*(An_l)*ﬂé, corresponding to the
path 7(A,_1)(VI)(VX.Ap_1) to VX Ap_1:
[a: A} _]
21

o (IXAL_, ML -
let (X,a)=a’ in M : 1L (BE)

(3) A, (n > i+ 2) is derived by an introduction rule.

Iy
A
A 2 (In_g)
n—1
AL (fn-1)
Case I,_1 of (= I):
[z : A]
15
An-—2
WA, dn-2)
(= 1)

A M: A=A, 1

From the induction hypothesis, there exists the following deduction

x A"

a: Al i

ML

(In-1)"
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where we have a path 7 from A% _;, corresponding to the path 7 to Ap_:.
Then in the following deduction:

[ : TﬁA*]

: L
a’ T —A* A AX _M_:_L (In-1)

73— 1

= I)*
let {(z,a)=a' in M : L (=1)

we obtain the path 7% = (A = An.1)*(= I)*(An-1)*7{, corresponding to the
path 7 = m (A, _1)(= (A = A,_1) to (A= A,_4)
Case I, of (VI):

I
An-2
A, )
AXM VX Apy (v1)
Then in the following deduction:

a: Al _, 1L .
s L (n—2)

we have a path 7r‘1’1 from A} _,, corresponding to the path m; to A,_,. Now
the following deduction gives the path 7% = (VX . A,_;)*(VI)*(A,_1)*n

d
¢, cor-
responding to the path # = 71 (An-1)(VI)(VX.Ap_1):
a: A} _ L
’ ) [ n l] (Inﬁg)*
o tAX.AL_, M: L .
let (X,a)=2d in%:_i_( )

O

It is remarked that from the theorem above, inference rules in a path of normal
deductions of A2 are reversely applied in the corresponding path of A%, under the

correspondence between (VI) and (3E); (VE) and (31); etc. Moreover, together
with lemma 8, normal forms have the following shape:

NF = za

|let (x,a1)=a in let (x,as) = a1 in .
let (x,an) = ap_1 in &(Nf,... , Nf an)
where Nf = A* | Aa. NF.



7 Concluding remarks

It is remarked that A¥ can be regarded as a subsystem of A2, in the sense that A
and 3 with reduction rules can be impredicatively coded in A2. We have estab-
lished a Galois embedding from polymorphic A2 into ¥, in which proof duality
appears such that polymorphic functions with V-type can be interpreted by ab-
stract data types with 3-type [MP85] and vice versa. Moreover, inference rules
in a path of normal deductions of A2 are reversely applied in the corresponding
dual paths of A3, under the correspondence between (VI) and (IE); (VE) and
(31); etc. The involved CPS-translation is similar to that of [Plot75], [HS97],
[Seli01] or [Fuji03]. However, relating to extensionality, the case of conjunction-
elimination is essentially distinct from them, and this point is important for the
completeness. Although none of two through [Plot75], [HS97] and ours in this
paper are fn-equal, we remark that they are isomorphic to each other in the
simply typed case, from the work on answer type polymorphism by Thielecke
[Thie04]. Our definition of the CPS-translation can work even for polymorphic
Ap-calculus (second order classical logic) [Pari92].
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