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ABSTRACT

Competition of arbitrary n-species in chemostat equations with peri-
odic washout rate is considered. Convergence theorem [12] allows us
to consider the asymptotic dynamics of the main system by the limit-
ing system. Explicit values of Floquet exponents corresponding to the
variational equations of the limiting system is calculated. A necessary

condition for the coexistence of n-species is derived.
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1 Introduction

Chemostat equations have been used to study population dynamics of microor-
ganisms in experimental apparatuses or aquatic ecosystems such as lakes. The
Competitive Exclusion Principle states that among several species compet-
ing for common resources, the number of coexistence species does not ex-
ceed the number of available resources [3]. The mathematical results for a
standard chemostat equations of competition for a single limiting resource,
only the species with lowest break even concentration survives (see Armstrong
and McGehee [1], Smith and Waltman [10, Chapter 1, Chapter 2}). On the
other hand, the competitive exclusion principle is not valid for the chemo-
stat equations if the fluctuating enviromment is under consideration. Butler

et al. showed that the coexistence of two species competing for one resource



is possible when the washout rate varies periodically [2]. In [2], coexistence is
expected if the washout rate varies in such a way that each competitor has its
own competitive advantage depending on the concentration of the resource.
It is a basic interest and problem on chemostat equations whether fluctuat-
ing environment can support the coexistence of more than three species under
only one resource. Lenas and Pavlou [6] showed that the coexistence of three
species is possible by numerical bifurcation analysis. Wolkowicz and Zhou [13]
gave sufficient conditions for the uniform persistence of competing arbitrary
n-species on a periodic chemostat. To obtain biological interpretation of the
mechanism of coexistence, it should be derived necessary conditions which give
a clear interpretation how competing species can coexist. In this paper, let us

consider the chemostat equations of the form

§ = (5"~ D) - 3 (S
> "

2, = 2;(fi(S) — D(t)), (i=1,2,---n).

System (1.1) models that arbitrary n-species z; (i = 1,2, - n) compete for the
same limiting nutrient S in the environment with an oscillatory washout D(z).
Here SY is a positive constant. D : [0,00) — [0,00) is a positive, periodic
function with a period w. The mean value of the periodic function D(#) is

denoted by (D). Then

(D) = % /0 * D(s) ds.

We assume that f; : Ry — Ry is continuously differentiable, f;(0) = 0 and
f/(S) > 0. A typical example of f; is Michaelis-Menten functional response of
the form :

m;S
a; -+ S ’

filS) = (1=1,2,---,n). (1.2)

Here a; and m; (i = 1,2,--- ,n) are positive constants.

- . . . . . o __1_
Now let us measure all variables in units of S° and time in units of (D)™

%HS,%Hxiand(D)th.
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Then (1.1) takes the form:

S = (1= $)D() =" £,(S)a;,
( )D(t) ; ) 15)

2t = 2;(fi(S) = D(t)), (i=1,2,---n).

Here we relabeled f;(S) and D(t) in the equations (1.3) each of which is actually
(DY=1£;(5°8) and (D)~*D(t/{D)) in (1.1), respectively. Note that this scaling
affects both the period and the mean value of D. The former becomes (D)w,
which we relabel w and the latter becomes the unity: (D) = 1.

In Section 2, some well known results of periodic system are summarized.
Section 3 gives sufficient conditions for the extinction of all species and the
survival of a single species. In Section 4, explicit values of Floquet exponent
are calculated. Moreover the conditions of exclusion and invasion are given
in terms of the sign of Floquet exponent. In Section 5, a necessary condition
for the coexistence of competing n-species is derived. Finally we discuss our

results in Section 6.

2 Preliminary results

In this section, basic contexts of periodic ordinary differential equations are
summarized.

Consider the general periodic system:
o’ = f(t,z), (2.1)

where f : RxR" is continuously differentiable with respect to its all arguments.

Moreover for some w > 0,

flt+w,z) = f(t,2)

holds for all (¢,z). Let p(t) be a periodic solution of system (2.1). Then the

variational equations corresponding to p(t) is defined by

2= ;(t,p(t))z. (2.2)



Let ®(t) be the fundamental matrix solution of (2.2). The Floquet multiplier
of (2.2) are the cigenvalues of ®(#); if p is a Floquet multipliers and p = e**
then A is called a Floquet exponent. There is a useful theorem about the
determinant of the fundamental matrix ®(#). If ®(0) = I where 7 is the n X n
identity matrix, then

det ®(w) = exp [ / i trA(s)ds] |

0

Here A(t) is the coefficient matrix of (2.2). Moreover “‘det” and “tr” denote
the determinant and the trace of the matrix, respectively. Thus the product
of Floquet multipliers is the determinant of ®(w).

Stability of periodic general systems associated with Floquet theory is stud-
ied by Hale [4].

Definition 2.1. [4] z(t) is uniformly asymptotically stable if

(i) For every € > O there exists § > § such that if |z(to) — y(to)] < & for
some tg > 0 and some solution y(t), then |x(t) — y(t)] < e for allt > to.

(%) There exists b > 0 such that if |z(to) — y(to)| < b for some to > 0, then

|(t) — y(t)] — 0 as t — oo uniformly in t;.

Theorem 2.1. [4] If |p] < 1 for all multipliers of (2.2), then p(t) is a uni-
formly asymptotically stable periodic solution of (2.1). If |u| > 1 for some

multiplier p of (2.2). then p(t) is unstable.

Remark 2.1. In terms of Floguet exponents, the condition for stability is
RA < 0 for all exponents and the condition for instability is that ®A > 0

for some exponent \. Here R\ denotes the real part of A.

Finally, let us introduce the Poincaré map. Let z(f,2¢) be the solution of

(2.1) satisfying 2(0) = . The Poincaré map is defined by
Pzg = x{w, xq).

Poincaré map P possesses some useful properties such that P is continuously

differentiable with respect to zq.
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3 Extinction and survival of species

In this section, let us consider the extinction of competing n species and the

survival of a single species. Set
S=5+Y 3 -1 (3.1)
j=1

Adding the equations (1.3) gives the periodic linear system
¥ (t) = —=D(t)3(t). (3.2)
Then (1.3) corresponds to

> = —D(t)%,
I;ZL,(f,(S)—D(t)), (7’= 1,2,?’1)

(3.3)

Since (D) = 1, solving (32) gives

ot
5() =20 exp |- [ (D) = vy e
0
Hence we have
tl'En ¥(t) =0.

It follows that solutions of (1.3) exist and are bounded for ¢t > 0. Both S(%)
and 2,(¢) remain nonnegative from the form of (1.1), the convergence theoremn
obtained by Thieme [12] is applied to (1.3), which leads to consider the system
(3.3) restricted to the invariant hyperplane ¥ = 0, to which all solutions are
attracted at some exponential rate.

Setting ¥ = 0, or equivalently, S = 1 — Z;;l z; yields the limiting system:

T; = @ (f, (1 - Z;J'v’) B D(t)) ’ (L)

i=1,2,-n.

Biologically relevant initial data for (L) belong to

1)
Q = {(113:1727" 'l’n)T & Rﬁ'_ . ZZEJ _<__ 1} ,
j=1



51

where
R:‘_ — {(Q’,’]_;_’I;z’A . ‘Q}'“)T = Rn N 2 O; (’i = 1,27 . "n)} .

It is shown that  is positively invariant for (L).
The following result gives a sufficient condition for the washout of a com-
petitor from the chemostat which is independent of the presence or absence of

adversaries.
Proposition 3.1. If fi(1) < 1, then limy_o 2:(t) =0 (i = 1,2,-- - n).

As the proof of Proposition 3.1 proceeds in the same manner given in the
book of the chemostat [10, pp. 165, Chapter 7], we omit the proof.

Proposition 3.1 implies that the extinction of species does not result in the
effect of competition; it occurs even in the absence of the other competitor.

As our interest is in the effects of competition, hereafter we assume that
fl(l) > 1, (i =1,2,-- 7'1’2,). (34)

The following result states that under (3.4) competitor can survive in the
chemostat in the absence of competition and with its concentration oscillating
in response to the periodically varying washout rate.

Proposition 3.2. The notation (0, -+ ,0,,,0,--- ,0) represents that all com-
ponents except for the i-th are zero. There exist unique, positive periodic func-
tions &(t) such that (0,--- ,0,&(t),0,--- ,0) are solutions of (L).

If (0, ,0,24(t),0,--- ,0) is a solution of (L) satisfying z;(0) > 0, then

tlim lps(t) — &) =0, (¢=1,2,---,n).

The proof of Proposition 3.2 also proceeds in the same manner as in the

hook of the chemostat (see [10, pp. 166, Chapter 7).

4 Calculation of Floquet exponents

Tt will be convenient to use familiar notation FE; for the single competitor

periodic solutions whose existence is asserted by Proposition 3.2,

Ei(t) = (O>"' ,O,f,;(t),O,--- ,0).
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Theorem 4.1. Floguet exponenls of F,(t) are given by

— < i,f'z’l'i >, Z':',-7

NI BRI RS ) w
<fi(1-&>-1, (i#7)

E;(t) is asymptotically stable if \i; <0 (j = 1,2,---,n). On the other hand,

E;(t) is unstable if at least one Floquet exponent X;; is positive.

Proof. It suffices to consider only the case ¢ = 1 for the symmetricity. The

variational equations corresponding to Ey(t) is

7= At)z,
where
A(t) = (ai(t) =
AQ=&)=D=&fi(1-&) - —fil-&)& - —-fA0-&)&
0 o R(l=&)=D - 0
0 . 0 f(1-£)-D

NOtE‘ tha.t (Llj = —f{(l - gl)gl (j = 2,3,"‘ ,77)7 Oy = f,(l — 51) - D ('Z =
2,3, ,njanday;=00+#7,i=2,---,n, =12, LT

A computation gives the fundamental matrix ®(t):

D(t) = (¢i5(t)) =

/exp UJ an(s)ds} . wi(t) e u,, (t) \
5 ceo exp [foi ;Lii(.s)d.s} e O ,
\ O O <+ exp [fﬂt (L,,,,,(s)dsw

where ¢1j = Uy (.7 =2,3, - 7“’)7 Gii = €Xp l:fgf CLH(S)CZSJ (l' = 172787"' )n)
and ¢y =0 (G A£j,i=2-+ ,n =12 ,n).

u;(t) is given by

wit)= [ oo | [ antons| asrren | [ autois]dr



Evaluating ®(t) at ¢ = w, we obtain that the multipliers exp [ fow a,»i(s)ds]
(i = 1,2,---,n). It follows that A;; are Floquet exponents. The remaining

assertions follow from the discussion in Theorem 2.1. 0

Note that Theorem 4.1 generalizes the result obtained by Butler et al. [2].

5 Average competition

In this section, a necessary condition for the coexistence of competing n-species

is derived by using a function in terms of the ratio between z; and z; (i # j).
Let P;; : [0,00) X (0, 00) — [0,00) be a continuously differentiable function

(4,5 =1,2,-++,n, i # 7). Average competition functions F;; are defined by

Pij(wi, ) = %i/x; (5.1)

for ; # 0. The derivative of P; along the solution of (L) is denoted by
Py (:(t), z(t)). Direct calculation gives

Py (i), 50) _ (1 _§ ‘

) _ (oS mw ) -5 (1= w®]. 62
Poslwi(t),25(0)) ; : 2L
Theorem 5.1. Let (Z1(t), Za(t), -+, Za(t)) be a positive w-periodic solution of
(L). Then

P(Z:, &4) . o
AT 0, L7 = 1:2:'” LT %] (BC)
<P17(~"Julj)>

Proof. Since i,(t) is a positive w-periodic solution of (L},

z;(0) = Z;(w) = %;(0) exp {/w (f,i (1 - Zz;\) - D(.s-)) d.s] .
0 k=1

Since (DY = 1, {f; (1 =3, ax)) = 1 for all z. Since (B Py) = —(Pu/ Py,
(BC) holds. This completes the proof. O

Note that the right hand side of (5.2) describes the difference of nutrient uptake
between z; and z;. That is, P,-j/ P;; measures tl‘le superiority (or inferiority) of
competition between z; and z;. Hence (BC) implies that the average competi-
tion between z; and 2, is balanced. Theorem 5.1 states that all of the average

competition must be balanced among competing n-species if they coexist.
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6 Conclusions

In this paper, we considered chemostat equatiéns with periodic washout rate
where n-species compete for one limiting nutrient. In Section 4, it was shown
that the limiting system (L) is unstable if all F;(f) are unstable. In other words,
it was shown that system (L) is unstable if at least one Floquet exponent A;;
is positive for each i. Theorem 4.1 gives a generalization of the result obtained
by Butler et al. [2] for the two-species competition case. In Section 5, we
found that all of the average competition among species is balanced when they
coexist. In [9], the authors demonstrated that the coexistence of three species
competing for one limiting nutrient is not likely to occur by mathematical and
numerical study. The coexistence of more than three-species is also observed
on autonomous chemostat equations in the form of periodic oscillation when
they compete for several resources (see Huisman and Weissing [5], Li and
Smith [7], [8]). In [7], it is suggested that with a wide range of parameter
values, sustained oscillations of species abundances for the model of three
species competing for three nutrients are possible. It is also expected that
all of the average competition among competing species are halanced on each
model considered in [5], [7] and [8]. Then it should be figured out why several
resources availability can support. the coexistence of more than three species
onl a wide range of parameter values. Further studies are left for our future

consideration.
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