
216

Uniform perfectness of fiberwise Julia sets of fibered
rational maps

Hiroki Sumi
Department of Mathematics,

Tokyo Institute of Technology,
2-12-1, Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan

E-mail: sumi@math.titech.ac.jp

December 4, 2003

Abstract

We consider fiber-preserving complex dynamics on fiber bundles
whose fibers are Riernann spheres and whose base spaces are compact
metric spaces. In this context, we show that the fiberwise Julia sets are
$C_{1}$ -uniformly perfect and that the HausdorfT dimensions are greater
than a positive constant $C_{2}$ , where the constants $C_{1}$ and $C_{2}$ do not
depend on any points in the base space. Prom this result, we show
that, for any semigroup $G$ generated by a compact family of rational
maps on $\overline{\mathbb{C}}$ of degree two or greater, there exists a positive constant
$C$ such that the Julia set of any subsemigroup $H$ of $G$ is C-uniformly
perfect. In particular, we show that for any such a semigroup $H$ , if
there exists a super attracting fixed point $z_{0}$ of some element of $H$ in
the Julia set of $H$ , then zo belongs to the interior of the Julia set of $H$.

1 Introduction and the main results

1.1 Results on fibered rational maps

In this section, we state the results on fibered rational maps. The proofs
are given in Section 2.4. First, we provide some notation and definitions
regarding the dynamics of fibered rational maps.

Definition 1.1. ( [J2]) A triplet $(\pi,$Y, X) is called a $‘\overline{\mathbb{C}}$-bundle’ if

1. $Y$ and $X$ are compact metric spaces,

2. $\pi$ : $Yarrow X$ is a continuous and surjective map,

3. and there exists an open covering {Ui} of $X$ such that, for each $\mathrm{i}$ , there
exists a homeomorphism $\Phi_{i}$ : $U_{i}\mathrm{x}$ $\overline{\mathbb{C}}arrow\pi^{-1}(U_{i})$ such that $\Phi_{i}(\{x\}\mathrm{x}$
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C) $=\pi^{-1}(x)$ and $\Phi_{j}^{-1}\circ\Phi_{i}$ : $\{x\}\mathrm{x}$ $\overline{\mathbb{C}}arrow\{x\}$
$><\overline{\mathbb{C}}$ is a Mobius map for

each $x\in U_{i}\cap U_{j}$ , under the identification $\{x\}$
$\rangle\langle\overline{\mathbb{C}}\cong\overline{\mathbb{C}}$.

Remark 1. By the condition 3, each fiber $Y_{x}:=\pi^{-1}(x)$ has a complex
structure. Furthermore, given $x0\in X$ , one may find a continuous family
$\mathrm{i}_{x}$ : $\overline{\mathbb{C}}arrow Y_{x}$ of homeomorphisms, for $x$ close to $x_{0}$ . Such a family $\{\mathrm{i}_{x}\}$

is called a ‘local parameterization’. Since $X$ is compact, we may assume
throughout this paper that there exists a compact subset $M_{0}$ of the set of
M\"obius transformations of $\overline{\mathbb{C}}$ such that $\mathrm{i}_{x}\circ j_{x}^{-1}\in \mathrm{M}\mathrm{o}$ for any two local
parameterizations $\{\mathrm{i}_{x}\}$ and $\{j_{x}\}$ .

Moreover, throughout this paper, we assume the following condition:. there exists a smooth $(1, 1)$ form $\omega_{x}>0$ inducing the distance on
$Y_{x}$ from $Y$ , and $x\mapsto\omega_{x}$ is continuous. That is, if $\{\mathrm{i}_{x}\}$ is a local
parameterization, then the pull back $\mathrm{i}_{x}^{*}\omega_{x}$ is a positive smooth form
on $\overline{\mathbb{C}}$ that depends continuously on $x$ .

Definition 1.2. Let $(\pi, Y, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $Yarrow Y$ and $g$ : $Xarrow$

$X$ be continuous maps. Let $f$ be called a fibered rational map over $g$ (or a
rational map fibered over $g$ ), if

1. $\pi \mathrm{o}f=g\circ\pi$

2. $f|_{Y_{x}}$ : $Y_{x}arrow Y_{g(x)}$ is a rational map, for any $x\in X$ . That is, $(\mathrm{i}_{g_{x}})^{-1}\circ$

$f\circ \mathrm{i}_{x}$ is a rational map from $\overline{\mathbb{C}}$ to itself, for any local parameterization
$\mathrm{i}_{x}$ at $x\in X$ and $\mathrm{i}_{g(x)}$ at $g(x)$ .

Notation: If $f$ : $Yarrow Y$ is a fibered rational map over $g$ : $Xarrow X$,
then we set $f_{x}^{n}=f^{n}|Y_{x}$ , for any $x\in X$ and $n$ $\in$ N. Furthermore, we set
$d_{n}(x)=\deg(f_{x}^{n})$ and $d(x)=d_{1}(x)$ , for any $x\in X$ and $n\in$ N.

Definition 1.3. Let $(\pi, Y, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $Yarrow Y$ be a fibered
rational map over $g$ : $Xarrow X$. Then, for any $x\in X$ , we denote by
$F_{x}(f)(\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{y}F_{x})$ the set of points $y\in Y_{x}$ that has a neighborhood $U$ of
$y$ in $Y_{x}$ such that $\{f_{x}^{n}\}_{n\in \mathrm{N}}$ is a normal family in $U$ ; that is, $y\in F_{x}$ if and
only if the family $Q_{x}^{n}=\mathrm{i}_{x_{n}}^{-1}\circ f_{x}^{n}\circ \mathrm{i}_{x}$ of rational maps on $\overline{\mathbb{C}}$ $(x_{n}:=g^{n}(x))$ is
normal near $\mathrm{i}_{x}^{-1}(y)$ . Note that, by Remark 1, this does not depend on the
choices of local parameterizations at $x$ and $x_{n}$ . Equivalently, $F_{x}$ is the open
subset of $Y_{x}$ , where the family $\{f_{x}^{n}\}$ of mappings from $Y_{x}$ into $Y$ is locally
equicontinuous. We set $J_{x}(f)(\mathrm{s}\mathrm{i}\underline{\mathrm{m}\mathrm{p}1\mathrm{y}J_{x})}=Y_{x}\backslash F_{x}$ .

Furthermore, we set $\tilde{J}(f)$ $= \bigcup_{x\in X}J_{x}$ , where the closure is taken in the
space $Y,\tilde{F}(f)=Y\backslash \tilde{J}(f)$ , and $\hat{J}_{x}(f)(\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{y}\hat{J}_{x})=\overline{J}(f)\cap Y_{x}$, for each $x\in X$ .

Remark 2. There exists a fibered rational map f : Y $arrow$ Y such that
$\bigcup_{x\in X}J_{x}$ is NOT compact.

Now we define uniform perfectness
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Definition 1.4, Let $C$ be a positive number. Let $K$ be a closed subset
of C. We say that $K$ is $C$-uniformly perfect if, $\# K$ $\geq 2$ and for any
doubly connected domain $A$ in $\overline{\mathbb{C}}$ such that $A$ separates $K$ ; i.e., such that
$A\subset\overline{\mathbb{C}}\backslash K$ and both of the two connected components of $\overline{\mathbb{C}}\backslash A$ have non-
empty intersections with $K$, mod $A$ (the modulus of $A$ . For the definition,

see [LV] $)$ is less than $C$.

Theorem 1.5. (Main theorem A) Let $(\pi,$Y, X) be $a\overline{\mathbb{C}}$-bundle. Let
$f$ : $Yarrow Y$ be a fibered rational map over $g$ : $Xarrow X$ such that $d(x)\geq 2$ ,
for any $x\in X$. Then, it follows that:

1. There exists a positive constant C such that, for any x $\in X$ , $J_{x}$ and $\hat{J}_{x}$

are $C$-uniformly perfect. Furthermore, There exists a positive constant
$C_{1}$ such that diam $J_{x}>C_{1}$ , for each $x\in X$ , with respect to the distance
in $Y_{x}$ induced by $\omega_{x}$ . Moreover, there exists a positive constant $C_{2}$ such
that, for each $x\in X$ , the Hausdorff dimension $\dim_{H}(J_{x})$ of $J_{x}$ , with
respect to the distance on $Y_{x}$ induced by $\omega_{xt}$ satisfies the condition that
$\dim_{H}(J_{x})\geq C_{2}$ . (Note that $C_{1}$ and $C_{2}$ do not depend on $x$ . )

2. Suppose further that $f(\overline{F}(f))$ $\subset\tilde{F}(f)$ ( for example, assume that g :
$Xarrow X$ is an open map). If a point $z\in Y$ satisfies $f_{\pi(z)}^{n}(z)=z$ and

$(f_{\pi(z)}^{n})’(z)=0$ for some $n\in \mathrm{N}$ and $z\in\hat{J}_{\pi(z)}$ , then $z$ belongs to the

interior of $\hat{J}_{\pi(z)}$ with respect to the topology of $Y_{\pi(z)}$ .

Example 1.6. Let $z_{0}\in\overline{\mathbb{C}}$ be a point. Let $h_{1}$ and $h_{2}$ be two rational maps
on $\overline{\mathbb{C}}$ of degree two or greater. Let $f$ : $\Sigma_{2}\mathrm{x}$

$\overline{\mathbb{C}}arrow\Sigma_{2}\mathrm{x}\overline{\mathbb{C}}$ be the fibered
rational map associated with the generator system $\{h_{1}, h_{2}\}$ . Suppose that
$z_{0}$ is a superattracting fixed point of $h_{1}$ and is a repelling fixed point of $h_{2}$ .
Then, it can easily be seen that $z_{0}\in\hat{J}_{x}$ , where $x=(1,1, \ldots)\in$ $\mathrm{C}_{2}$ , Since
the shift map a : $\Sigma_{2}arrow\Sigma_{2}$ is an open map, by Theorem 1.5 it follows that
$z_{0}$ belongs to the interior of $\hat{J}_{x}$ .

Remark 3. Uniform perfectness implies many useful properties $([\mathrm{B}\mathrm{P}],[\mathrm{P}\mathrm{o}],[\mathrm{S}\mathrm{u}])$.
This terminology was introduced in [Po]. For a survey on uniform perfect-
ness, see [Su]. We now consider the following:

1. In [BP], it was shown that a closed subset $K$ of $\overline{\mathbb{C}}$ is $C$-uniformly per-
fect if and only if there exists a constant $\delta$ such that, for any component
$U$ of $\overline{\mathbb{C}}\backslash K$,

$\lambda_{U}(z)>\delta/\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(z, \partial U)$ , (1)

where $\lambda u(z)$ denotes the density of the hyperbolic metric of $U$ at $z$

and dist $(2, \mathit{8}U)$ denotes the Euclidian distance of the point $z$ from
the set au. (If $K$ is bounded and $U$ is the unbounded component of

$\overline{\mathbb{C}}\backslash K$ , then (1) will hold only for all $z$ $\in U$ sufficiently close to $K.$ )
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In the above discussion, $\delta$ depends only on $\mathrm{G}$ , and $C$ depends only
on $\delta$ . Detailed inequalities regarding the relationships among 6, $C$ and
other invariants are presented in [Su].

2. If a closed subset $K$ of $\overline{\mathbb{C}}$ is $C$-uniformly perfect, then the Hausdorff
dimension $\dim_{H}(K)$ of $K$ with respect to the spherical metric satisfies
$\dim_{H}(K)$ $\geq C’>0$ , where $C^{J}$ is a positive constant that depends only
on $C$ (Theorem 7.2 in [Su]).

1.2 Results on rational semigroups

In this section, we present several results on rational semigroups. The proofs
are given in Section 2.5. Before stating results, we will first establish some
notation and definitions regarding the dynamics of rational semigroups.

For a Riemann surface $S$ , let End(S) denote the set of all holomorphic
endomorphisms of $S$ . In other words, it is a semigroup whose semigroup
operation constitutes a composition of maps. A rational semigroup is
a subsemigroup of End(C) without any constant elements. We say that
a rational semigroup $G$ is a polynomial semigroup if each element of
$G$ is a polynomial. Research on the dynamics of rational semigroups was
initiated by A. Hinkkanen and G. J. Martin ([HM1]), who were interested
in the role that the dynamics of polynomial semigroups plays in research on
various one-complex-dimensional moduli spaces for discrete groups, and by
F. Ren’s group([GR]).

Definition 1.7. Let G be a rational semigroup, We set

$\mathrm{F}(\mathrm{G})=$ { $z\in\overline{\mathbb{C}}|G$ is normal in a neighborhood of $z$ }, $J(G)=\overline{\mathbb{C}}\backslash F(G)$ .
$F(G)$ is called the Fatou set for $G$ , and $J(G)$ is called the Julia set for $G$ .
The backward orbit $G^{-1}(z)$ of z and the set of exceptional points $E(G)$

are defined by: $G^{-1}(z)=\mathrm{U}_{g\in}cg^{-1}(z)$ and $E(G)=\{z\in\overline{\mathbb{C}}|\# G^{-1}(z)\leq 2\}$ .
For any subset $A$ of $\overline{\mathbb{C}}$ , set $G^{-1}(A)$ $= \bigcup_{g\in}cg^{-1}(A)$ . We denote by $\langle h_{17}h_{2}, \ldots\rangle$

the rational semigroup generated by the family $\{h_{i}\}$ . For a rational map $g$ ,

we denote by $J(g)$ the Julia set of the dynamics of $\underline{o}$ .

We now present a result on uniform perfectness of Julia sets of rational
semigroups.

Theorem 1.8. (Main theorem B) Let A be a compact set in the space

{ $h:\overline{\mathbb{C}}arrow\overline{\mathbb{C}}|h$ : holomorphic, $\deg(h)\geq 2$ } with topology indu $ced$ by uniform
convergence on C. Let $G$ be a rational semigroup generated by the set A.
Then there exists a positive constant $C$ such that each subsemigroup $H$ of $G$

satisfies the condition that $J(H)$ is $C$ -unifomly perfect Furthermore, for
any subsemigroup $H$ of $G$ , if a point $z_{0}\in J(H)$ satisfies the condition that
there exists an element $h\in H$ such that $h(z_{0})=z_{0}$ and $h’(z_{0})=0$ , then it

follows that $z_{0}$ Eint $J(H)$ .
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Example 1.9. Let $G=\langle h_{1}$ , A2) where $h_{1}(z)=2z^{2}+z^{2}$ and $h_{2}(z)= \frac{z^{3}}{z-a}$ ,
$a\in \mathbb{C}$ with $a\neq 0$ . Then, $\mathrm{O}\in J(G)$ and 0 is a superattracting fixed point of
$h_{2}$ . Hence, 0Gint $J(G)$ , by Theorem 1.8. Since ao is a common attracting
fixed point of $h_{1}$ and $h_{2}$ , we have oo 6 $F(G)$ . Furthermore, let $H$ be a
subsemigroup of $G$ such that $\mathrm{O}\in J(H)$ and $h_{2}\in H$ . Then, by Theorem 1.8
again, we have 0Gint $J(H)$ . Moreover, we have oo $\in F(H)$ .

In particular, let $H_{0}$ be a subsemigroup of $G$ that is generated by $G\backslash \langle h_{1}\rangle$ .
Then we have all of the following:

1. $0\in$ int $J(H_{0})$ .

2. oo $\in F(H_{0})$ .

3. For any finitely generated subsemigroup $H_{1}$ of $H0$ , we have $0\in F(H_{1})$ .

For, since 0 crnt $\mathrm{J}(\mathrm{G})$ , $J(G)=\overline{\bigcup_{g\in G}J(g)}$ (Corollary 3.1 in [HM1]), and
$J(h_{1})$ is nowhere dense, we obtain that there exists a suquence $(g_{n})$ in $H_{0}$

such that $d(0, J(g_{n}))arrow 0$ as $narrow\infty$ . Hence, $0\in J(H\mathrm{o})$ . Since 0 is a
superattracting fixed point of $h_{2}$ and $h_{2}\in H_{0}$ , by Theorem 1.8 we obtain
$0\in$ int $J(H_{0})$ . Since $H_{0}\subset G$ and $\infty$ $\in F(G)$ , we obtain oo $\in F(H_{0})$ . For any
finitely generated subsemigroup $H_{1}$ of $H_{0}$ , since 0 is a common attracting
fixed point of any element of Hq, it follows that 06 $F(H_{1})$ .

Remark 4. In [HM2], by A. Hinkkanen and G. Martin, it was shown that
a finitely generated rational semigroup $G$ such that each $g\in G$ is of degree
two or greater satisfies the condition that $J(G)$ is uniformly perfect. In [St],
by R. Stankewitz, it was shown that, if A (this is allowed to have an element
of degree one) is a family of rational maps on $\overline{\mathbb{C}}$ such that the Lipschitz
constant of each element of A with respect to the spherical metric on $\overline{\mathbb{C}}$

is uniformly bounded, then the Julia set of semigroup $G$ generated by A is
uniformly perfect. However, there has been no research done on the uniform
perfectness of the Julia sets of subsemigroups of such a semigroup. In [HM2]
and [St], the proofs were based on the density of repelling fixed points in
the Julia sets (which was shown by an application of Ahlfors’s five-island
theorem), whereas, in this paper, the proof of Theorem 1.8 is based on
the combination of the density of repelling fixed points in a Julia set with
Proposition 2.2 (potential theory).

2 Tools and Proofs

We now present the proofs of the main results, meanwhile providing further
notation and tools.

2.1 Fundamental properties of fibered rational maps

By means of definitions, the following lemma can be easily shown
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Lemma 2.1. Let $(\pi,$Y, X) be $a\overline{\mathbb{C}}$-bundle. Let f : Y $arrow Y$ be a fibered
rational map over g : X $arrow X$ . Then,

1. For each $x\in X$ , $f_{x}^{-1}(F_{g(x\rangle})=F_{x}$ , $f_{x}^{-1}(J_{g(x\rangle})=J_{x}$ . Furthermore,
$f(\tilde{J}(f))\subset\tilde{J}(f)$ .

2.
$\tilde{F}(f)Ifg\cdot..Xarrow X$

is an open map, then $f^{-1}(\tilde{J}(f))$ $=\tilde{J}(f)$ and $f(\tilde{F}(f))$ $\subset$

$\mathit{3}$ . If $g:Xarrow X$ is a surjective and open map, then $f^{-1}(\tilde{J}(f))$ $=\tilde{J}(f)=$

$f(\tilde{J}(f))$ and $f^{-1}(\tilde{F}(f))$ $=\tilde{F}(f)=f(\tilde{F}(f))$ .
$Proo/$. This proof is the same as that for Lemma 2.4 in [SI]. $\square$

2.2 Fundamental properties of rational semigroups

For a rational semigroup $G$ , for each $f\in G$ , it holds that $f(F(G))\subset F(G)$

and $f^{-1}(J(G))\subset J(G)$ . Note that this equality does not hold in gen-
eral. If $\# J(G)$ $\geq 3$ , then $J(G)$ is a perfect set, $\# E(G)$ $\leq 2$ , $J(G)$ is
the smallest closed backward invariant set containing at least three points,
and $J(G)$ is the closure of the union of all repelling fixed points of the el-
ements of $G$ , which implies that $J(G)=\overline{\bigcup_{g\in G}J(g)}$ . If a point $z$ is not

in $E(G)$ , then, for every $x\in J(G)$ , $x\in\overline{G^{-1}(z)}$ . In particular, if $z\in$

$J(G)\backslash E(G)$ then $\overline{G^{-1}(z)}=J(G)$ . For more precise statements, see Lemma
2.3 in [S3], for which the proof is based on [HM1] and [GR]. Further-
more, if $G$ is generated by a precompact subset A of End(C), then $J(G)=$

$\overline{\bigcup_{f\in \mathrm{A}}f^{-1}(J(G))}=\bigcup_{h\in\overline{\Lambda}}h^{-1}(J(G))$ . In particular, if A is compact, then
$\mathrm{J}(\mathrm{G})=\bigcup_{f\in\Lambda}f^{-1}(J(G))([\mathrm{S}1])$ . We call this property of the Julia set back-
ward self-similarity.

Remark 5. In the context of backward self-similarity, the existing research
on the Julia sets of rational semigroups may be considered as a kind of
generalization of the research on self-similar sets constructed by some sim-
ilarity transformations from $\mathbb{C}$ to itself, which can be regarded as the Julia
sets of some rational semigroups. It can be easily seen that the Sierpirlski
gasket is the Julia set of a rational semigroup $G=\langle h_{1}, h_{2}, h_{3}\rangle$ , where
$h_{i}(z)=2(z-p_{i})+p_{l}$ , $\mathrm{i}=1,2,3$ , with $p_{1}p_{2}p_{3}$ a regular triangle.

2.3 Potential theory and measure theory

For the proof of results on uniform perfectness, Johnness, etc., let us borrow
some notation from [J2] and [SI], concerning potential theoretic aspects. By

the arguments in [J2] and [SI], for a fibered rational map $f$ : $Yarrow Y$ over $g$ :
$Xarrow X$ with $d(x)\geq 2$ , for each $x\in X$ , one can show a result corresponding
to Proposition 2.5 in [SI], using the arguments in \S 3 in [J2] and from pp.
580-581 in [S1] . In this paper, the following statements, and especially the
lower semicontinuity of $x\mapsto J_{x}(f)$ , are necessary. (Proposition 2.2.3)
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Proposition 2.2. Let $(\pi, Y, X)$ be $a\overline{\mathbb{C}}$ -bundle. Let $f$ : $Yarrow Y$ be a rational
map fibered over $g$ : $Xarrow X$. Assume iftai $d(x)$ $\geq 2$ , for each $x\in X$ . Then,

for each $x\in X$ , there eists a Borel probability measure $\mu_{x}$ on $Y$ satisfying
all of the following.

1. $x$ $\mapsto\mu_{x}$ is continuous with respect to the weak topology of probability
measures in $Y$.

2. $supp(\mu_{x})=J_{x}$ , for each $x\in X$.

3. $x\mapsto J_{x}$ is lower semicontinuous with respect to the Hausdorff metric
in the space of the non-empty compact subsets of Y. That is, if $x$ , $x^{n}\in$

$X$ , $x^{n}arrow x$ as $narrow\infty$ and $y\in J_{x}$ , then there exists a sequence $(y_{n})$

of points in $Y$ with $y_{n}\in J_{x^{n}}$ , for each $n\in \mathrm{N}$ , such that $y_{n}arrow y$ as
$narrow\infty$ .

Furthermore , $J_{x}(f)$ is a non-empty perfect set, for each $x\in X$ .

Proof Since $d(x)\geq 2$ , for each $x\in X$ , and $x\mapsto d(x)$ is continuous, we can
demonstrate these statements in the same way as in \S 3 in [J2], using the
argument from pp. 580-581 in [SI]. The statement 3 follows easily from 1
and 2.

$\square$

2.4 Proof of main theorem A

In this section, we present a proof of main theorem A in Section 1.1.

Proof of Theorem 1.5. First, we prove statement 1. Since, for each
$x\in X$, $J_{x}$ is a non-empty perfect set (Proposition 2.2), it has uncountably
many points. Combined with the lower semicontinuity of the map $x\mapsto J_{x}$

(statement 3 in Proposition 2.2) and the compactness of $X$ , this suggests
that, for any $x\in X$ , one can take four points $z_{x,1},$ $z_{x,2}$ , $z_{x,3}$ and $z_{x,4}$ in $J_{x}$

so that $d(z_{x},:, z_{x,g})>C_{1}$ , whenever $\mathrm{i}\neq j$ and $x\in X$ , for some constant $C_{1}$

independent of $(\mathrm{i},j)$ and $x\in \mathrm{X}$.
Suppose that there exists a sequence of annuli $\{D_{j}\}$ with $D_{j}\subset Y_{x_{j}}$ , $Xj\in$

$X$ such that $D_{j}$ separates $J_{x_{\mathrm{j}}}$ , for each $j$ and mod $D_{j}arrow\infty$ as $jarrow\infty$ . Let
$D_{j}’$ and $D_{j}’’$ be the two components of $Y_{x_{j}}\backslash D_{j}$ . We may assume that

diam $D_{j}’arrow 0$ as $jarrow\infty$ . (2)

For, by the existence of $\{z_{x,i}\}_{x,i}$ , it may be assumed that $\inf_{f\in \mathrm{N}}$ diam $D_{j}’>$

$0$ . Then, since mod $D_{j}arrow\infty$ as $jarrow\infty$ , by Lemma 6.1 on p. 34 in [LV] it
follows that diam $D_{j}’arrow 0$ as $jarrow\infty$ .

It may also be assumed that $(\mathrm{i}\mathrm{n}\mathrm{t}D_{j}’)\cap J_{x_{j}}\neq\emptyset$ , for each $j\in$ N. Hence,
there exists a smallest positive integer ni such that diam $f^{n_{j}+1}(D_{j}’)\geq C_{1}$ .
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Then, there exists a constant $l_{0}$ such that $l_{0}C_{1}<$ diam $f^{n_{j}}(D_{j}’)$ , for each $j$ .
Since diam $f^{n_{j}}(D_{j}’)<C_{1}$ , there exist three distinct points in $\{z_{x_{\acute{j}},\iota}\}_{i=1,\ldots,4}$

none of which belongs to $f^{n_{j}}(D_{j}’)$ , where $x_{j}’=g^{n_{j}}(xj)$ Since $D_{j}\subset F_{x_{i}}$ , it
follows that none of these three points belongs to $f^{n_{j}}(D_{j})$ , or to $f^{n_{j}}(D_{j}\cup$

$D_{j}’)$ . Let $\varphi_{j}$ : $\{|z|<1\}arrow D_{j}\cup D_{j}’$ be a Riemann map such that $\varphi_{j}(0)=$

$y_{j}\in D_{j}’$ (Note that we may assume that iut $D_{j}’\neq\emptyset$ for each $j$ ). Then, from
the above, it follows that, if we set $\alpha j=\mathrm{i}_{x_{j}}^{-1},f^{n_{j}}\varphi j$ : $\{|z|<1\}arrow\overline{\mathbb{C}}$ then
$\{\alpha_{j}\}_{j\in \mathrm{N}}$ is normal in $\{|z|<1\}$ . But this causes a contradiction, because
diam $\varphi_{j}^{-1}(D_{j}’)arrow 0$ as $jarrow\infty$ , which follows from mod $\varphi_{j}^{-1}(D_{j})=$ mod
$D_{j}arrow$ oo as $jarrow\infty$ , and $l_{0}C_{1}<$ diam $f^{n_{j}}(D_{j}’)$ , for each $j$ .

Next, suppose that there exists a sequence of annuli $\{D_{j}\}$ with $Dj\subset$

$Y_{x_{j}}$ , $x_{j}\in X$ such that $D_{j}$ separates $J_{x_{j}}$ , for each $j$ , and mod $Djarrow\infty$

as $jarrow\infty$ . Let $D_{j}’$ and $D_{j}’$ be the two components of $Y_{x_{j}}\backslash D_{j}$ . As in the
previous paragraph, it may be assumed that diam $D_{j}’arrow 0$ as $jarrow\infty$ .

Fix any $j\in$ N. Let $y\in D_{j}’\cap\hat{J}_{x_{j}}$ b$\mathrm{e}$ a point. There exists a sequence
$((x_{j,n}, y_{j,n}))_{n}$ in $X\mathrm{x}$ $Y$ with $yj,n$ $\in J_{x_{j,n}}$ , for each $n\in \mathrm{N}$ , such that $yj,narrow y$

as $narrow\infty$ . Then it follows that there exists a number $n(j)\in \mathrm{N}$ such that
$J_{x_{j,n\langle j)}}\subset D_{j}’\cup D_{j}’$ . Since $J_{x_{i^{\eta}\langle j)}},\cap D_{j}’\neq\emptyset$ (take $n(j)$ sufficiently large), by the
previous paragraph, it must be that $J_{x_{j,n(\gamma\rangle}}\subset D_{j}’’$ , for large $j$ . However, this
contradicts the existence of $\{z_{x,i}\}_{x,i}$ , because it is also the case that diam
$D_{j}’arrow 0$ as $jarrow\infty$ . Hence, we have proved the first and the second state-
ments in 1. The third statement in 1 follows from the uniform perfectness
of $J_{x}$ , the continuity of $\omega_{x}$ , and Theorem 7.2 in [Su].

Next, we prove statement 2. Suppose the point $z$ belongs to the boundary
of $\hat{J}_{x}$ with respect to the topology of $Y_{x}$ , where $x=\pi(z)$ . Under a coordinate
exchange, the map $f_{x}^{n}$ around $z$ is conjugate to $\alpha(z)=z^{l}$ for some $l\in \mathrm{N}$ .

Since $f_{x}^{n}(Y_{x}\backslash \hat{J}_{x})\subset Y_{x}\backslash \hat{J}_{x}$ , there exists an annulus $A$ around $z$ in $Y_{x}$ that
separates $\hat{J}_{x}$ and is isomorphic to a round annulus $A’=\{r<|z|<R\}$ in the
above coordinate Then, mod $(f_{x}^{ns}(A))=$ mod $(\alpha^{s}(A’))arrow \mathrm{c}\mathrm{a}$ as $sarrow\infty$ . In
addition, $f_{x}^{ns}(A)$ separates $\hat{J}_{x}$ , for each $s\in$ N. This contradicts the fact that
$\hat{J}_{x}$ is uniformly perfect. $\square$

Corollary 2.3. (Corollary of Theorem 1.5) Let $(\pi, Y=X\mathrm{x} \overline{\mathbb{C}}, X)$ be $a$

trivial $\overline{\mathbb{C}}$-bundle. Let $f$ : $Yarrow Y$ be a fibered rational map over $g$ : $Xarrow X$

such that $f_{x}$ is a polynomial with $d(x)\geq 2_{f}$ for each $x\in X$ . Let $R>0$ be
a number such that for each $x\in X_{t}\pi_{\overline{\mathbb{C}}}J_{x}(f)$ $\subset\{z|d(z, \infty)>R\}$ , where

$\pi_{\overline{\mathbb{C}}}$ : $Yarrow\overline{\mathbb{C}}$ denotes the projection and $d$ denotes the spherical metric. (Note
that such an $R$ exists, since $d(x)\geq 2$ for each $x\in X.$) Let $\rho_{x}(z)|dz|$ be the
hyperbolic metric on $\pi_{\overline{\mathbb{C}}}A_{x}(f)$ . Let $\delta_{x}(z)=\inf_{w\in\partial(\pi_{\overline{\mathbb{C}}}A_{x}(f))}|z-w|$ for each
$z\in\pi_{\overline{\mathbb{C}}}A_{x}(f)\cap$ C. Then, there exists a positive constant $C$ depending only on
$f$ and $R$ such that for each $x\in X$ and each $z\in\pi_{\overline{\mathbb{C}}}A_{x}(f)\cap\{z|d(z, \infty)>R\}$ ,
we have $C\leq\rho_{x}(z)\delta_{x}(z)\leq 1$ .

Proof. $\rho_{x}(z)\delta_{x}(z)\leq 1$ follows easily from the Schwarz lemma
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Next, as in the proof of Theorem 1.5, for any $x\in X$ , we can take two
points $z_{x,1}$ and $z_{x,2}$ in $J_{x}(f)$ so that $d(z_{x,1}, z_{x,2})>c_{0}$ , whenever $x\in X$ , for
some positive constant $c0$ independent of $x\in X$ . Let $\psi_{x}(z)$ be a M\"obius

transformation such that $\psi_{x}(z_{x,1})=\infty$ and $\psi_{x}$ preserves the spherical met-
ric. Let $B_{x}=\psi_{x}(\pi_{\overline{\mathbb{C}}}A_{x}(f))(\subset \mathbb{C})$ . By Theorem 1.5 and Theorem 2.16 in
[Su], there exists a positive constant $c_{1}$ such that for each $x\in X$ and each
$z\in B_{x}\cap \mathbb{C}$ , $\rho_{x,1}(z)\inf_{w\in\partial B_{x}}|z-w|\geq c_{1}$ , where $\rho_{x,1}(z)|dz|$ denotes the
hyperbolic metric on $B_{x}$ .

Let $z\in A_{x}(f)\cap\{y|d(y, z_{x,1})>\mathrm{c}\mathrm{o}/2, d(y, \infty)>R\}$. Then, we have
$\rho_{x}(z)=\rho_{x,1}(\psi_{x}(z))|\psi_{x}’(z)|$ . Since $\psi_{x}(z)\in\{y$ $|d(y, \psi_{x}(\infty))>R,d(y, \infty)>$

$c_{0}/2\}$ and $\psi_{x}^{-1}(\{y|d(y, \psi_{x}(\infty))>R\})\subset\{y|d(y, \infty)>R\}$ , by the Cauchy
formula, we have $|\psi_{x}’(z)|=|(\psi_{\overline{x}}1)’(\psi_{x}(z))|^{-1}\geq$ C2, where $c_{2}$ is a positive
constant independent of $z$ and $x$ .

Next, let $w\circ\in\partial(\pi_{\overline{\mathbb{C}}}A_{x}(f))=\pi_{\overline{\mathbb{C}}}J_{x}(f)$ be a point such that $\delta_{x}(z)=$

$|z-w_{0}|$ .
Suppose case (1): $w0\in\{y|d(y, z_{x,1})\leq c_{0}/4\}$ . Then, $|z-?v\mathrm{o}|\geq c_{3}$ , where

$c_{3}$ is a positive constant depending only on $c_{2}$ . Further, $\mathrm{i}_{11}\mathrm{f}_{w\in\partial B_{x}}|\psi_{x}(z)-$

$w|\leq|\psi_{x}(z)-\psi_{x}(z_{x,2})|\leq c4)$ where $c_{4}$ is a positive constant depending only
on $c_{0}$ . Hence, $\delta_{x}(z)\geq\frac{c_{3}}{c_{4}}\inf_{w\in\partial B_{x}}|\psi_{x}(z)-w|$ .

Suppose case (2): $w_{0}\in\{y|d(y\}$ $z_{x,1})>c_{0}/4\}$ . Let $\gamma$ be the Euclidean
segment connecting $z$ and $w_{0}$ . Then, $d(z_{x,1},\gamma)\geq c_{5}$ , where $c_{5}$ is a positive
constant depending only on $c0$ , which implies $d(\infty, \psi_{x}(\gamma))\geq c_{5}$ . Hence, by
the Cauchy formula, we have $\inf_{w\in\partial B_{x}}|\psi_{x}(z)-w|\leq|\psi_{x}(z)-\psi_{x}(w\mathrm{o})|\leq$

$\sup_{w\in\gamma}|\psi_{x}’(w)|\cdot|z-w_{0}|\leq c_{6}\delta_{x}(z)$ , where $c_{6}$ is a positive constant indepen-
dent of 2 and $x_{0}$ .

From these arguments, we find that there exists a positive constant
$c_{7}$ depending only on $f$ and $R$ , such that for each $z\in$ $(\pi_{\overline{\mathbb{C}}}A_{x}(f))$ $\cap\{y|$

$\mathrm{d}(\mathrm{y}, z_{x,1})$ $>\mathrm{c}\mathrm{o}/2$ , $\mathrm{d}(\mathrm{y}, \infty)>R\}$ , we have $\rho_{x}(z)\delta_{x}(z)\geq c_{7}$ . Similarly, we find
that there exists a positive constant $c_{8}$ depending only on $f$ and $R$, such
that for each $z\in(\pi_{\overline{\mathbb{C}}}A_{x}(f))$ fl $\{y|d(y, z_{x,2})>c_{0}/2, \mathrm{d}(\mathrm{y}, \infty)>R\}$ , we have
$\rho_{x}(z)\delta_{x}(z)\geq c_{8}$ . Since $d(z_{x,1}, z_{x,2})>c_{0}$ , we obtain the statement of the
Corollary.

$\square$

2.5 Proof of main theorem $\mathrm{B}$

In this section, we prove main theorem $\mathrm{B}$ in Section 1.2.

Proof of Theorem 1.8. Let $f$ : $\Lambda^{\mathrm{N}}\mathrm{x}$ $\overline{\mathbb{C}}arrow\Lambda^{\mathrm{N}}\mathrm{x}$ $\overline{\mathbb{C}}$ be the fibered rational
map over the shift map $g$ : $\Lambda^{\mathrm{N}}arrow\Lambda^{\mathrm{N}}(g(h_{1}, h_{2}, h_{3}, \cdots) =(h_{2}, h_{3}, \cdots))$

defined as $f((h_{1}, h_{2}, \cdots), y)$ $=((h_{2}, h_{3}, \cdots), h_{1}(y))$ . Then, by Theorem 1.5,
there exist positive constants $C_{0}$ and $C_{1}$ such that each $g\in G$ satisfies the
conditions that $J(g)$ is $C_{0}$-uniformly perfect and that diam $J(g)>C_{1}$ .

Let $H$ be any subsemigroup of $G$. Let $A$ be an annulus that separate
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$\underline{J(H).}$Let $V_{1}$ and $V_{2}$ be two connected components of $\overline{\mathbb{C}}\backslash A$ . Since $J(G)=$

$\bigcup_{g\in G}J(g)$ (Corollary 3.1 in [HM1]) , there exist elements $g_{1}$ and $g_{2}$ in $H$

such that $J(g_{1})$ $\cap V_{1}\neq\emptyset$ and $J(g_{2})\cap V_{2}\neq\emptyset$ .
If $\mathrm{J}(\mathrm{g}\{)\cap V_{2}\neq\emptyset$ or $J(g_{2})\cap V_{1}\neq\emptyset_{)}$ then mod $A\leq C_{0}$ . If $J(g_{1})\cap V_{2}=\emptyset$

and $J(g_{2})\cap V_{1}=\emptyset$ , then, by Lemma 3.1 on p. 34 in [LV], there exists a
constant $C=C(C_{1})$ that depends only on $C_{1}$ such that mod $A\leq C$ . The
second statement follows from the uniform perfectness of $J(H)$ and Theorem
4.1 in [HM2]. $\square$
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