ON 2-EXTENSIONS WITH RESTRICTED RAMIFICATION

DENIS VOGEL

ABSTRACT. We study the connection between Massey products and relations in pro-p-groups and give an arithmetical example related to the 2-class field tower of quadratic number fields.

1. Massey products and relations in pro-p-groups

In this section we generalize the well-known connection between the cup product in the cohomology of pro-p-groups and presentations of pro-p-groups in terms of generators and relations.

Let p be a prime number and G a finitely generated pro-p-group. In the following we will make use of the cohomology groups $H^i(G, \mathbb{Z}/p\mathbb{Z})$, and for simplicity we will denote them by $H^i(G)$. We set $n = \dim_{\mathbb{Z}/p\mathbb{Z}} H^1(G)$. It is well-known that this is the generator rank of G. Let

$$1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$$

be a minimal presentation of G, where F is a free pro-p-group on generators x_1, \ldots, x_n . Using the Hochschild-Serre spectral sequence we obtain the exact sequence

$$0 \longrightarrow H^1(G) \xrightarrow{\inf} H^1(F) \xrightarrow{\operatorname{res}} H^1(R)^G \xrightarrow{\operatorname{tg}} H^2(G) \longrightarrow 0.$$

By the minimality of the above presentation it follows that the inflation map

$$\inf: H^1(G) \to H^1(F)$$

is an isomorphism by which will identify both groups in the following. In particular, also the transgression map

$$\operatorname{tg}: H^1(R)^G \to H^2(G)$$

is an isomorphism. For each $\rho \in R$ we have the trace map

$$\operatorname{tr}_{o}: H^{2}(G) \to \mathbb{Z}/p\mathbb{Z}, \ \phi \mapsto (\operatorname{tg}^{-1}\phi)(\rho).$$

Let I be the kernel of the augmentation map $\mathbb{F}_p\llbracket F\rrbracket \to \mathbb{F}_p$ where $\mathbb{F}_p\llbracket F\rrbracket$ denotes the complete group algebra of F over \mathbb{F}_p . Setting

$$F_{(m)} = \{ f \in F \mid f - 1 \in I^m \}$$

we have a filtration on F, the so-called Zassenhaus filtration. It is well known that the cup product pairing

$$H^1(G) \times H^1(G) \xrightarrow{\cup} H^2(G)$$

yields some information on R: If χ_1, \ldots, χ_n denotes the dual basis of $H^1(F) = \text{Hom}(F, \mathbb{Z}/p\mathbb{Z})$ to x_1, \ldots, x_n then for each $\rho \in R$ we have

$$\rho \equiv \prod_{k=1}^{n} x_k^{pb_{kk}} \prod_{1 \le k < l \le n} (x_k, x_l)^{b_{kl}} \mod F_{(3)}$$

(here (x_k, x_l) is the commutator $x_k^{-1} x_l^{-1} x_k x_l$), with

$$\operatorname{tr}_{\rho}(\chi_k \cup \chi_l) = -b_{kl}.$$

We are going to study what happens if the cup product is trivial. In this case we have triple Massey products, which are defined as follows. Let $u_1, u_2, u_3 \in H^1(G)$ with $u_1 \cup u_2 = 0$, $u_2 \cup u_3 = 0$. Then there exist 1-cochains u_{12} , u_{23} , such that on the level of 2-cochains we have

$$u_1 \cup u_2 = \partial u_{12}, \quad u_2 \cup u_3 = \partial u_{23},$$

and we set

$$\langle u_1, u_2, u_3 \rangle = [u_1 \cup u_{23} + u_{12} \cup u_3] \in H^2(G),$$

where $[\cdot]$ denotes the cohomology class of the corresponding cocycle. We remark that $\langle u_1, u_2, u_3 \rangle$ is independent of the choices we made. Generalizing this, we can define Massey products $\langle u_1, \ldots, u_m \rangle$ of length m for $u_1, \ldots, u_m \in H^1(G)$ ([Mo],[Vo]), in general, however, $\langle u_1, \ldots, u_m \rangle$ lies in some quotient of $H^2(G)$. We give a criterion when $\langle u_1, \ldots, u_m \rangle$ lies inside $H^2(G)$ and calculate $\operatorname{tr}_{\rho}\langle u_1, \ldots, u_m \rangle$ in this case. In order to do so, we need the notations of the Fox differential calculus. If $\mathbb{Z}_p[\![F]\!]$ denotes the complete group algebra of F over \mathbb{Z}_p and $\psi: \mathbb{Z}_p[\![F]\!] \to \mathbb{Z}_p$ the augmentation map, then for each $i=1,\ldots,n$ there exist uniquely determined maps

$$\frac{\partial}{\partial x_i}: \mathbb{Z}_p[\![F]\!] \to \mathbb{Z}_p[\![F]\!],$$

th so-called free derivatives, such that the equation

$$\alpha = \psi(\alpha) \mathbb{1}_{\mathbb{Z}_p[\![F]\!]} + \sum_{i=1}^n \frac{\partial \alpha}{\partial x_i} (x_i - 1)$$

holds for each $\alpha \in \mathbb{Z}_p[\![F]\!]$. For $1 \leq i_1, \ldots, i_m \leq n$ we define

$$\varepsilon_{(i_1,\ldots,i_m)}: F \to \mathbb{Z}_p, \ f \mapsto \psi\left(\frac{\partial^m f}{\partial x_{i_1}\cdots \partial x_{i_m}}\right) \mod p.$$

We have the following theorem (see [Mo],[Vo]).

Theorem 1.1. R is contained in $F_{(m)}$ if and only if all Massey products up to length m-1 are trivial. In this case all Massey products of length m are inside $H^2(G)$, and for $u_1, \ldots, u_m \in H^1(G)$, $\rho \in R$ we have

$$\operatorname{tr}_{\rho}\langle u_1,\ldots,u_m\rangle=(-1)^{m-1}\sum_{1\leq i_1,\ldots,i_m\leq n}u_1(x_{i_1})\cdot\ldots\cdot u_m(x_{i_m})\varepsilon_{(i_1,\ldots,i_m)}(\rho).$$

In particular

$$\operatorname{tr}_{\rho}\langle\chi_{i_1},\ldots,\chi_{i_m}\rangle=(-1)^{m-1}\varepsilon_{(i_1,\ldots,i_m)}(\rho)$$

For $\rho \in F_{(m)}$ the $\varepsilon_{(i_1,\dots,i_m)}(\rho)$ are intimately connected to the image of ρ in $F_{(m)}/F_{(m+1)}$. We give the following example.

Example 1.2. If $\rho \in F_{(3)}$ and $p \neq 3$ then

$$f \equiv \prod_{\substack{1 \le k < l \le n \\ m \le l}} ((x_k, x_l), x_m)^{p - \varepsilon_{(l,k,m)}(f)} \prod_{\substack{1 \le k < l \le n}} ((x_k, x_l), x_l)^{\varepsilon_{(k,l,l)}(f)} \mod F_{(4)}.$$

2. On the 2-class field tower of imaginary quadratic number fields

In this section we study an example of a triple Massey product coming from number theory. For this purpose we consider the relation structure of the 2-class field tower of an imaginary quadratic number field.

Let K be an imaginary quadratic number field and let K_{\varnothing} be the maximal unramified 2-extension of K. Let $S = \{l_1, \ldots, l_n, \infty\}$ denote the set of ramified primes in K/\mathbb{Q} . A result of Koch describes the structure of $G(K_{\varnothing}/K)$ in terms of generators and relations.

Theorem 2.1. (Koch, [Ko]) There exists a minimal presentation

$$1 \longrightarrow R \longrightarrow F \longrightarrow G(K_{\varnothing}/K) \longrightarrow 1$$

of $G(K_{\varnothing}/K)$ where F is a free pro-2-group on generators x_1, \ldots, x_{n-1} . The relation subgroup R is generated as a normal subgroup of F by relators r_1, \ldots, r_n which are given modulo $F_{(3)}$ by

$$r_m \equiv x_m^{2\ell_{m,n}} \prod_{\substack{1 \le j \le n-1 \ j \ne m}} (x_m^2 x_j^2(x_m, x_j))^{\ell_{m,j}} \mod F_{(3)}, \quad m = 1, \dots, n,$$

$$r_n \equiv \prod_{m=1}^{n-1} (x_m^2)^{\ell_{n,m}} \mod F_{(3)},$$

with

$$(-1)^{\ell_{i,j}} = \left(\frac{l_i}{l_j}\right).$$

We consider the case that R lies inside $F_{(3)}$. In the first section we have seen how the description of R modulo $F_{(4)}$ is connected to triple Massey products. An arithmetic interpretation of the pairings

 $H^1(G(K_\varnothing/K))\times H^1(G(K_\varnothing/K))\times H^1(G(K_\varnothing/K))\stackrel{\langle\cdot,\cdot,\cdot\rangle}{\to} H^2(G(K_\varnothing/K))\stackrel{\operatorname{tr}_*}{\to} \mathbb{Z}/2\mathbb{Z}$

(here $H^i(G(K_\varnothing/K)) = H^i(G(K_\varnothing/K), \mathbb{Z}/2\mathbb{Z})$) is given by the Rédei symbol. This symbol was introduced by Rédei ([Re]) in 1934 and is defined as follows. We consider prime numbers p_1, p_2, p_3 with $p_i \equiv 1 \mod 4$ and

$$\left(\frac{p_1}{p_2}\right) = \left(\frac{p_1}{p_3}\right) = \left(\frac{p_2}{p_3}\right) = 1.$$

Let $\alpha = x + y\sqrt{p_1}$, where $x, y \in \mathbb{Z}$ are solutions of

$$x^2 - p_1 y^2 - p_2 z^2 = 0$$

that have to fulfill some additional conditions. Then there exists a prime ideal \mathfrak{p}_3 in $k_1 = \mathbb{Q}(\sqrt{p_1})$ above p_3 such that \mathfrak{p}_3 is unramified in $k_1(\sqrt{\alpha})$, and we define the Rédei symbol $[p_1, p_2, p_3]$ by

$$[p_1, p_2, p_3] = \begin{cases} 1, & \text{if } \mathfrak{p}_3 \text{ splits in } k_1(\sqrt{\alpha}), \\ -1, & \text{if } \mathfrak{p}_3 \text{ is inert in } k_1(\sqrt{\alpha}) \end{cases}$$

The Rédei symbol is independent of the choices we made ([Re]). We have the following theorem (see [Vo]).

Theorem 2.2. Let $K = \mathbb{Q}(\sqrt{D})$ where $D = -l_1 \cdot \ldots \cdot l_n$ with $l_1, \ldots, l_{n-1} \equiv 1 \mod 4$ and $l_n \equiv 3 \mod 4$, and assume that

$$\left(\frac{l_i}{l_j}\right) = 1 \ for \ all \ \ 1 \leq i,j \leq n, \ i \neq j.$$

Then $R \subseteq F_{(4)}$, and for $m = 1, \ldots, n-1$ we have

$$r_m \equiv \prod_{\substack{1 \le i < j \le n-1, \\ k \le j}} ((x_i, x_j), x_k)^{e_{i,j,k,m}} \mod F_{(4)},$$

where for pairwise distinct i, j, k we have

$$(-1)^{e_{i,j,k,m}} = \left\{ \begin{array}{cc} [l_i,l_j,l_k] & \textit{if} \quad m=j \ \textit{or} \ m=k, \\ 1 & \textit{otherwise}. \end{array} \right.$$

If $\chi_1, \ldots, \chi_{n-1}$ denotes the dual base of $H^1(G(K_{\varnothing}/K))$ to x_1, \ldots, x_n , then for the triple Massey product

$$\langle \cdot, \cdot, \cdot \rangle : H^1(G(K_{\varnothing}/K)) \times H^1(G(K_{\varnothing}/K)) \times H^1(G(K_{\varnothing}/K)) \to H^2(G(K_{\varnothing}/K))$$

we have (with i, j, k, m as above) the identity

$$(-1)^{\operatorname{tr}_{r_m}\langle\chi_i,\chi_j,\chi_k\rangle} = \begin{cases} [l_i,l_j,l_k] & \text{if } m=i \text{ or } m=k, \\ 1 & \text{otherwise.} \end{cases}$$

Since $H^1(G(K_{\varnothing}/K))$ is isomorphic to $(Cl(K)/2)^*$, where Cl(K) denotes the ideal class group and * denotes the Pontryagin dual, we obtain pairings

$$(\operatorname{Cl}(K)/2)^* \times (\operatorname{Cl}(K)/2)^* \times (\operatorname{Cl}(K)/2)^* \to \mathbb{Z}/2\mathbb{Z}.$$

Example 2.3. For $K = \mathbb{Q}(\sqrt{-5 \cdot 41 \cdot 61 \cdot 131})$ the triple Massey product considered above is nontrivial.

REFERENCES

- [Ko] Koch, H.: On p-extensions with given ramification. Appendix 1 in Haberland, K.: Galois Cohomology of Algebraic Number Fields., Deutscher Verlag der Wiss., Berlin, 1978
- [Mo] Morishita, M.: Milnor invariants and Massey products for prime numbers. Compositio Math. 140 (2004), 69-83
- [Re] Rédei, L. Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I. J. reine u. angew. Math. 171 (1934), 55-60
- [Vo] Vogel, D.: On 2-extensions with restricted ramification. to appear in J. reine u. angew. Math.