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On p-adic families of Hilbert cusp forms of finite
slope
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Department of Mathematics, Kyoto University

0. Introduction

Let p be an odd prime number. We fix an algebraic closure Q of the

field Q of rational numbers in the field C of complex numbers and an
embedding i, : Q < Q,, where Q, is an algebraic closure of the field Q,
of p-adic numbers. We denote by i, the fixed embedding Q < C. Then
we take the p-adic completion C, of @p and fix an isomorphism C, = C
of fields which is compatible with the embeddings ¢, and i.,. We denote
by ord, the normalized p-adic valuation in C, so that ord,(p) = 1 and
by |- | the absolute value given by ord,. In this section, we would like
to see the author’s motivation, which is a story over Q, for working on
p-adic families of Hilbert cusp forms of finite slope.
- Let N be a positive integer prime to p and k > 2 an integer. We
take a normalized cuspidal Hecke eigenform f of level Np and weight &
whose Fourier expansion is given by f(¢) =>_,5; an(f)¢" with a;(f) =
1. Then we know that the Fourier coefficint ay, is the 7'(n)-eigenvalue of
f for each n > 1, where T'(n) is the Hecke operator at n. In particular,
all a,(f)’s belong to Q. We then put « := ord,(i,(a,(f))) and call it the
T'(p)-slope of f, which is a non-negative rational number in this case.
Then it is known that if f satisfies some technical assumptions, then
there exists a family { fi }irexc of normalized cuspidal Hecke eigenforms
fir of weight &' and level Np having fixed T'(p)-slope « parametrizd by
an arithmetic progression X of radius p™ starting from k with some
non-negative integer m. This fact has been proved in the case where
a = 0, i.e., ordinary case, by Hida [8] and [9], and his result has been
generalized to the case where o is any non-negative rational number
by Coleman [5] and [6].

The author [16, Main Theorem] used such families of finite T'(p)-

slopes to prove Gouvéa’s conjecure in the unobstructed case, which

asserts that all deformations of the mod p Galois representation asso-
ciated with f to complete Noetherian local rings are associated with
Katz’s generalized p-adic modular forms of tame level N (for the de-
tails of this conjecture, see [16]). The author would like to generalize
this result to the case over totally real fields.

The author is a JSPS Postdoctoral Fellow in Department of Mathematics, Kyoto
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Now let us recall Coleman’s arguments in [6] to obtain p-adic fam-
ilies {fi }wex of eigenforms having fixed T'(p)-slope « as above. He
constucted in [6, Section B4] the Banach module ST(N) consisting of
families of overconvergent cusp forms which is specialized to the Ba-
nach space S}(N) of overconvergent cusp forms of weight k. One of
the key points is that the Hecke operator T(p) acts on these spaces
completely continuously. The space SZ(INp) of classical cusp forms of
weight &k and level Np is included in ST(N). For any non-negative ra-
tional number o, we denote by S}(N)* (resp. SZ(Np)®) the subspace
of SI(N) (resp. SZ(Np)) generated by all generalized T'(p)-eigenspaces
for all T(p)-eigenvalues whose p-adic valuation are o. Coleman [5,
Theorem 8.1] proved that if & > o -+ 1, then

SHN)* = S{(Np)*,

i.e., the classciality of overconvergent cusp forms of small T'(p)-slope,
and that if £ = &' (mod p™®) with some non-negative integer m(c)
depending on «, then we have

dimg, SH(N)* = dimg, S} (N)?,

i.e, the local constancy of dimg, S}(N)* with respect to weights & (cf.
[6, Theorem B3.4]). Then as an application of these facts, under some
technical conditions, he constructed p-adic families {fi }wex as above
by means of the duality theorems between then classical Hecke algebras
and the spaces of classical cusp forms and the theory of newforms and
oldforms (see [6, Corollary B5.7.1]).

The aim of this article is to generalize Coleman’s argments above
to the case over totally real fields. Namely, we shall define in Section
1.1 the spaces Sfﬁb’v) (G;T'1(N); C,) of classical Hilbert cusp forms which
are interpolated by the Banach module S{G;T'1(N)) of “p-adic Hilbert
cusp forms” defined in Section 1.2. Then in Section 2.1 we shall define
the Hecke operator T'(7) which acts on them completely continuously,
and prove in Section 2.2 the classicality of p-adic Hilbert cusp forms of
small T'(7)-slope and in Section 2.3 the local constancy of dimensions
of submodules having fixed T'(7)-slope . The method which we shall
use is based on works of Buzzard 3] on “eigenvariety machine,” and of
Chenevier [4] dealing with automorphic forms on any twisted form of
GL,, over Q which is compact at infinity modulo center.

Acknowledgement. The author is grateful to Professor Morishita for
giving him an opportunity to give a talk in the conference “Algebraic
Number Theory and Related Topics” at RIMS in Kyoto.



1. Classical and p-adic automorphic forms

In this section, we define spaces of classical automorphic forms and
p-adic ones on the algebraic groups defined by the unit groups of totally
definite quaternion algebras over totally real fields. In this article, we
assume that p is an odd prime number for simplicity, although the case
of p = 2 can be also done as well.

1.1. Classical automorphic forms

Let F be a totally real field of degree ¢ and O its ring of integers.
Let p1,...,p, be all prime ideals of ' above p. Then the set I of all
embeddings ¢ : F' < Q has the partition I = | |{_, J;, where I; is the
subset of I consisting of embeddings o such that the completion of
ip(F) in G, coincides with the pf-adic completion Fi of F°.

In this article, we shall formulate “modular forms” as “automorphic
forms” on adelic groups on quaternion algebras defined over F'. Let
B be a totally definite quaternion algebra over F. We fix a maximal
order R of B and a finite Galois extension Ky over Q containing F' for
which there is an isomorphism

B ®q Ky = My(Kp)!
such that we have R ®z Oy = M, (Oo)?, where M3(A) with some ring
A stands for the ring of 2 x 2 matrices with coeflicients in A and Z

and O, are the rings of integers in Q and Kj, respectively. Then we
may assume that for a prime ideal [ at which B is unramified, this

isomorphism induces an isomorphism

B ®r Fi = My(F t)
such that we have R®o Oy = M>(Oy), where Oy is the l-adic completion
of O. We fix this isomorphism in this article. Let G be the algebraic
group defined over Q given by '

G(A) = (BQgA)”"

for Q-algebras A. Let A be the adele ring of Q and Ay its finite part. We
denote by K the p-adic completion of 4,( Kp) in C, whose ring of integers
is denoted by O. For v € G(A¢), under the natural identification

F®@Qp HF%M

we then take the o-projection v, € GLQ (K) of the p-part v, = (Vi)i—; €

G(Q) = [T (B ®p Fy,)* of v as the image in GLy(K) of v; under
the projection ¢ with the subscript ¢ determined by the condition that
o € I; for each o € 1.
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Let N be an integral ideal of F' at which B is unramified. We put
R := R®,7Z, where 7 := Hl:prime Z,; with the rings Z; of [-adic integers.
We then define an open compact subgroup

I'(N):={z¢€ R*with zy = (Z S) la—1,¢,d—~1€ NOn}

of R*, where zy is the N-part of z and Oy := [Ty s -prime Or. By the
approximation theorem, there exist #1, ... , ¢, € G(A) for some positive
integer h such that (#;)y = 1 and (t;)eo = 1 foreach i =1,...,h and

h
(1) G(A) = U G(QLI(N)G(R).,

where G(R),. is the connected component of G(R) with the indentity.
We fix the decomposition (1) in this article and put T'; := (¢; 1G(@Q)t)N
I'\(N)G(R), for each ¢ = 1,...,h, which is a discrete subgroup of
G(R), (cf. [10, Section 2]). Since we assume that B is totally definite,
we see that the quotient subgroup I';/TiN(F@gR)* of G(R) 4 /G(R) . N
(F ®q R)* is finite for each 1 =1,... , A.

Let Z[I] be the free Z-module generated by I. We define an equiva-
lence relation ~ in Z[I] as follows: for a,b € Z[I], a ~ b if and only if

a — b € Zty, where ty:= ) ., 0. We then put
W= {(n,v) € Z[I] x Z[I] | n.+ 2v ~ 0,n > 0},

where we mean by n > 0 that n is positive, i.e., all coefficients n,
of n are positive integers. We call W¢ the set of classical weights.
For (n,v) € W% and any O-algebra A, we denote by L(n,v; A) the
left GLo(O)!-module consisting of polynomials P of 2g-parameters
(X5, Y )oer with coeflicients in A which are homogeneous of degree
n. for each variable (X,,Y,), on which v = (v, )oes € GLo(O)! acts by

(2) v+ P o= det(7)" P((Xo, Yo) ™75 )oer)-
Here we define det(y)” := [], ., det(v,)" and for a 2 x 2 mafrix z =
a b b d -b
e g) weputzt={(_ ")
Definition 1.1. For (n,v) € W and an O-algebra A, we put
S(wa) (G;T1(N); A) :={f : GIQ\G(A¢) — L{n,v; A) : function |
flzu) =ut- f(z) for u e T1(N),z € G(A)},

which we call the space of classical automorphic forms of level T'1(N)
and weight (n,v) on G (defined over A). '



Remark 1.1. In the case where we regard A = C as an O-algebra
via the fixed isomorphism C, — C and B is unramified at all finite
places of F' (hence g must be even by Hasse principle (cf. [15, XIII,
Sections 3 and 6])), it is known that S¢, ,(G;T1(IV); C) are 1som0rphic
to the spaces of classical holomorphic Hilbert cusp forms of weight
(ne + 2)ser and level N by a result of Jacquet-Langlands and Shimizu

(cf. [10, Theorem 2.1}).

1.2. p-Adic automorphic' forms

We fix a classical weight (n,v) € W Let N be an integral ideal of
F which is not prime to p and unramified in B. We now take arbitrarily
- 5(< r) prime ideals above p which divide N. We may denote them by

P1,...,Ps. We then put I’ := U{_;I; C I and denote the cardinality

of I' by ¢'(< g). We fix a prime element m; of the p;-adic completion

F,, of F at p; for each i = 1,... ;5. We then denote by (é 2 the

element of G(A¢) whose pi-part is the diagonal matrix ((1) 7? for each

i =1,...,s and other parts are trivial. In the following, for an element
v € I'{(N), we write its o-projection as

{1+ 7]a, b,
To =\ nfcy  1477d,

with some ay,by, ¢y, dy € O for each o € I with 7 such that o € I;.
Then we have

(3) (X, Vo)t = (1 + 7fdy) Xy = bs Yo, Yo + 77 (a6 Yy — € Xo))
~for all o € I’ with ¢ such that o € I, and

t/1 0\ (17X,,Y,) (celcl),
© &) (g w)f{(xa,m (o e I\ D)

For any elements v = v, ((1] 2) vo with 1,72 € T'1(IV) of the double

coset I'1(NV) é 2

endomorphism [y} on L(n, v; K ) with normalization of the det’-part
by '

(5) (nv ) H deJﬁ 'Y—r H det(71072d)vd

Tel\I’ oel
XP(((XT: YT)t'Y'Lr)TEI)-

I'y(IN), using actions (3) and (4), we define a K-
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Let K({(z,|oc € I') be the strictly convergent power series ring of
g'-variables (z,)sep with coefficients in K, which is the subring of the
formal power series ring K[z,|oc € I'] consisting of power series P(z) =
Z(ig)aeﬂezgo Aliy) e pr ngp zl such that i&(iv)oeﬂl —0as) ,opis =
oo. This is an orthonormalizable K-Banach algebra with sup norm |- |
with respect to coeflicients in K (for the notion in the p-adic Banach
theory, see-[6, Chapter A]). We can take the set {[] ., % i, >0, o €
I'} as an orthonormal basis of K{(z,|o € I'). We define actions on the

variables (z,),epr of the o-projections of v € I'y(IN) and ((1) g) for

o € I' as follows:
—by + (1 +77dy) 2, 10
and
1477 (ay — Cos) 0 =

with 7 such that o € I;. Note that the denominator 1+77 (e, —¢,%,) in
the action (6) is a unit in O(z,). Then by [6, Lemma A1.6], we see that
elements in the double coset I'; (V) (é 2) I'; (V) give completely con-
tinuous K-endomorphisms on K (x,|o € I') whose operator norms are
at most 1. Here the operator norm |L] of a continuous endomorphism
L on a Banach module M is defined by
L{m
|L| ;= sup ()] ( )J
0£meM |
Now we define a Banach module S over the strictly convergent power
series ring K (€,|o € I') of ¢'-variables (&,),cr as follows: S is the set of
polynomials P of 2(g—g¢')-parameters (X, Y;)-enr with coefficients in
K(&,,z,|0c € I') which are homogeneous of degree n, for each variable
(X7, Y;). We can take the set

{(T] x=v) I =r<lar + b, = n, with ar, b, > 0, m, > 0}
€I\l cel’

as an orthonormal basis of S over K(¢,;|o € I'). Let e(p;) be the
ramification index of the prime ideal p; in F/Q. In order to define an
action of I'; (V) on S, we assume the condition that

(6)7y, - Ty 1= ) Ty =T Ty

(ram) e(p;)) <p—1 foreach i=1,...,s
is satisfied in the following. We see that j, (v,) for elements v of I'; (V)
and 'y (V) (1 O) I'1(N), and det(y,) for v € I'1(N) are of the form

0
1 +m{a with some a € O for each ¢ € I’ with i such that ¢ € I;, Then



25

we can define their powers with any element s in G, (resp. ©,(&,))
such that |s| < 1 by a convergent power series as '

IR R R i et i e D (reyigt

in O, (resp. O, (§)) because of the assumption (ram) (cf. 4, Lemme-
3.6.1]). Here we denote by Oc, the ring of p-adic integers in C,, i..,
the subring of C, consisting of elements s such that |s] < 1. We then
define an action [y] of vy € ['|(N) on S as

® 1P [T detlon) ([ o) detr) )
Tel\I' oel’ ‘
XP(((X’H Yr)t’Y;)TEI\I'; (fm Yo xo‘)oEI’)-

1 0 1 0 .
As for v = 7 (O ﬂ) vy € T'1(N) (0 7r) Iy (N) with v1, 72 € I'i(N),

we define a K (¢, |0 € I')-endomorphism on S as

9) [v]-P = J] det(r)"(]] jo(70)* det(r10720

Tel\I’ gel!
XP(((XT7 }/:l')t')/:—)TEI\I’; (gcr: Yo - xa)ae]”)a

which is completely continuous with operator norm < 1.

p(nv)—€o
) )

Definition 1.2. We denote by W,y the g'-dimensional closed affi-
noid ball over K of radius 1 around (ny)ser. Then the set Win)(Cp)
of its C,-valued points coincides with (’)é’p and K{&|o € I') is the
affinoid algebra associated to Wy, ,y. (For the details of affinoid al-
gebras and affinoid varieties, see [1, Part B and Chapter 7] and 6,
Section A5).) We call it the space of the I'-parts of p-adic weights as-
sociated to (n,v). We then associate (t, := H(”’—Uz)i‘i)g6 r to any point
(8¢)oerr € Wi (Cy), and put the p-adic weight (s, t) as

3:22300—}— Z n.7 and

ol rel\I’

t = wn, Qgto L Ztaa + Z VT

cel rel\I'

Further, we denote by W, v the subset of Win)(G,) consisting of

elements (n')secr whose components are positive integers of the same
parity as p(n,v) for all o € I'. We call it the set of the I'-parts

of classical weights associated to (n,v). For (n))ser € W&ﬂ), we put
(v = M)ae r and define (n',v') as well as (s, t). By the definition

o 2
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of W&, we see that v, are also integers for all o & I' and that
n' + 20 = u(n,v)to.

For (85 )oer € Winm(Cp), we denote by K the p-adic completion
in C, of the fraction field of K{(¢,|o € I') /(§—s,|o € I'). We denote by
S(s,+) the specialized orthonormalizable K »-Banach space. S®k (¢, ocr')

K(s,5- Then we denote by [v](s, the specialized K, p-endomorphism
| 10
(7] ® K(s4 on S(sy) for elements v of T'1(N) and I (N) { ['1(N).

Definition 1.3. (1) Assume the condition (ram). We define the space
of p-adic automorphic forms of level T1(N) on G (with coefficients in

K) as

S(G;T1(N)) := {f :G(Q\G(As) —» S : function]

flzu) =[u™Y] - f(z),u € D1(N),z € G(A)}.

We then have a K-isomorphism
(10)  S(G;Ty(N)) = @iy ST, fr (F(t)s - F (),
where t1,... ,t, € G(A) are the fixed representatives of the decompo-
sition (1). Here each S is the submodule of the orthonormalizable
K{(¢,lo € I''-module S consisting of elements fixed under the action of
T; = (t72G(Q)t;) NT1(N)G(R) ¢ Since Ty acts on .S via the finite quo-
tient group I';/T; N (F @g R)* because of the assumption n + 2v ~ 0,
we then see that ST satisfies the property (Pr) of [3, Section 2] for
each i = 1,...,h. We now define a norm in S(G;I'{(IV})) via this
isomorphism as '

|f] = sup [f(&)]-

1<i<h
Therefore, S(G;T'1(N)) can be regarded as a K(&Jo € I')-Banach

module with the norm |- | which satisfies the property (Pr) of [3,

Section 2]. ,
(2) Let (sy)ocrr € Winw(Cp). Assume the condition (ram) in the

case where (s, )ser € W(‘;i’v). We define the space of p-adic automorphic

forms of weight (s,t) and level T1(N) on G (defined over Ksz) as

S (G T1(N)) = {f :G(Q\G(A¢) = S(s, ¢ function]
flzu) = [u’l}(g,t) - f(z),u e T1(N),z € G(As)}.

Then we have an isomorphism

(11> S(S,t) (G7 Pl(N)) — ®?:1S€:,t)7 f =~ (f(t1)7 e 7f(ih})



of K, »-Banach spaces satisfying the property (Pr) of [3, Section 2],
where we define a norm in Si, 4 (G; (V) as

[f1:= sup [f(t:)].
1<i<h
Putting z, = %{,f for each o € I, we then see easily the following

Lemma 1.1. Forany (n))ser € W(%,v), we have a natural K-inclusion
L(n',v's K) < Sar w1y,
P((Xy,Yy)rer) = P((Xy, Yo)rens; (2o, oer)

which is compatible with [y (nr vy for all v in T'1(N) and the double coset

'y (N) (é 2) T'1(N) on these spaces. Thus we have an inclusion

St (G T1(N); K) = Sty (G T1(N)
of K-Banach spaces satisfying the property (Pr) of [3, Section 2].
2. p-Adic automorphic forms of small 7'(7)-slope

Let the notation be as in Section 1.2. In this section, we shall in-
troduce the Hecke operator T(m) on the spaces of p-adic automorphic
forms. Then we shall investigate some properties of p-adic automorphic
forms having small T'(7)-slope.

2.1. The Hecke operator T(r)

In this subsection, we assume the condition (ram), i.e., e(p;) < p—1

foralli =1,...,s, unless we deal with the I'-parts of classical weights
in W&,v). In order to define the Hecke operator T'(w), we decompose

the double coset I'1 (V) (é g

as

) I';(N) in a disjoint union of right cosets

r) (o) i) = gcm(zv).

For .f € S(G: rl (N)) (I’GSp. S(s,t} (Ga Fl(N)) .fOI' (SU)O'EI’ € W(n,v) ((CP))a
we put :

. ! !
12 GITE)@E) = 306 706) (resp. S Ilws - /@6)

i=1 i=1

for z € G(Q)\G(A¢). Note that this definition is independent of choices
of representatives {(;} and f|7'(w) is also an element of S(G;T'1(N))
(resp. S(sn(G;T1(N))) (cf. [10, Section 2]).
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Proposition 2.1. Assume the condition (ram) unless (S)ser € W, -
The Hecke operator T(x) is completely continuous on S(G;T1(N)) and
Sty (G5 T1(N)) for any (5s)serr € Wina)(Cp) with operator norm < 1.

Proof. We shall prove the proposition for S(G;T'1(V)), because we can
prove in the case of S (G;T1(IV)) as well. To see the complete con-
tinuity of T'(rw), we calculate the action of T'(r) on @F_;S"7 via the
isomorphism (10) by means of the decomposition

T’y (N) (g“) 0) Iy(N) = Ugn

For f € S(G;T1(N)), the image of f |T'(7r) under the isomorphism (10)

s

(FIT(m))(t), - (FIT (7)) (t))
=3 (G- F0iG)s -5 1G] F(EaG))-

=1

We fix 1 < ¢ <!l Foreach j=1,...,h, there exist 1 < oi(j) < h and
u;(7) € I'y(N) such that ’

tiGi = toy(g)uild)
in G(Q)\G(As). Then we see that
Ft56) = Fltauus(5) = lw() 7T ftan) |

by the definition of automorphic forms of level I'; (V). Therefore we
see that

(AT E), ., (FIT ) (00))
= D (G ()7 Florws - W) ]S o)

"Thus the proposition is proven, because the endomorphisms [-] given by

the double coset I'y (V) (é U

) I';(INV) on S are completely continuous
with operator norm < 1. : O

We denote by K(&|o € I'){{X}} the subring of the formal power
series ring K{(&;|o € I")[X] consisting of power series ), ¢ X* such
that

lei|M*—=0 as i-+o00



for all M € R By Proposition 2.1 and the arguments in [3, Section
2] dealing with Banach modules satisfying the property (Pr), we have
the following

Proposition 2.2. Assume the condition (ram). We have the charac-
teristic power series

P((&)oer, X) : = det(1 — XT'(7)|s(ama(vy)
=1+ Zc@Xi € K{&lo e IN{{X}}

of T(7) on S(G;T1(N)) with |¢;] < 1. Furthermore, for any (ss)cer €
Wiy (Cp), we see that

P((SG)GEIHX) =1+ zci((scr)ael’)Xi € K(S,t){{X}}

‘ i>1
is the characteristic power series of T(m) on Sy (G; T1(IN)).

Let « be a non-negative rational number. For (s4)ser € W) (Cp),
let S(s)(G; T1(N))E, be the Gy-subspace of Si5.6(G;T1(N)) ®xk, by G
generated by all generalized T'(m)-eigenspaces for all eigenvalues A such
that ord,(A) = a. In the following subsections, we shall investigate p-
adic automorphic forms which have small T'(7)-slope.

2.2. Classicality of p—adié automorphic forms

In Lemma 1.1 without the condition (ram), we have seen that the
spaces of classical automorphic forms are included in the ones of p-adic
automorphic forms. Now we shall see that p-adic automorphic forms
of small T'(r)-slope are classical. Namely,

Theorem 2.3. Let a € Q¢ and (n,)oer € W‘;‘L,U). If the condition

o . . F;
RQES 1%13%{6(;32-) (min{rip} + 1)}

is satisfied, then we have (without the condition (ram) )
S(n’,'u’) (G, FI(N))& = Sg,'z,,uf)(G; Pl(N), Cp)a'

Proof. By the isomorphism (11) in Section 1, we see that the C,-Banach
quotient space (St v)(G3T1(IV)) ®k Cp)/Sgy (G5 T1(IV); Gp) s iso-
morphic to a direct summand of the direct sum of h-copies of the or-
thonormalizable C,-Banach quotient space Sy ®x Cp/L(n',V'; )
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whose orthonormal basis is

{( [T xzv) ] = lar + b, = n, with ar, b, > 0, mg >0
Te;\I’ cel’ ‘
and m, > n, for some o}.

By the actions (3), (4) and (6) on the variables X.,Y; and =, in Section
1.2, we then see easily that

T(m)| <p™*»

(
on (S vy ®x Cp/L(n',v';G,))". Hence we see that if & < vy, then
the 1ma,ge of any generahzed T () eigenvector of slope « is 0 in the
quotient space (S vy (G5 T1(N)) @k Cp)/ S5 (G5 T1(N); Cp). So we

have
St (G TN = Si oy (G TN G )™
O

Remark 2.1. Tt is known that the spaces of definite quaternionic au-
tomorphic forms over Q defined by means of homogeneous polynomi-
als of degree n are isomorphic to-the spaces of elliptic cusp forms of
weight £ = n + 2 by Jacquet-Langlands’ theorem (cf. [2, Theorem 2]).
Coleman [5, Theorem 6.1 and Theorem 8.1] showed that p-adic over-
convergent modular forms of weight & and U,-slope o are classical if
a<k-—1{(=n+1). Since s =1 and e(p) = 1 in the case of F' = Q,
Theorem 2.3 is a generalization of the result of Coleman to the case

over totally real fields.
2.3. The Iocal constancy of dimg, Ss(G;I'1(V))E

We assume the condition (ram), i.e., e(p;) < p—1foralli=1,.
Let a € Q>. In this subsection, we shall give an explicit descmptlon of

m(e) such that if (s;)ger, (Sg)o-ep € Win)(C,) satisfy that |s, — s, | <
p~™) for all o € I, then we have

dimg, S(s.(G;T1(N))E, = dimg, Sy (G; T2 (N))E,

by applying Chenevier’s argument in [4, Section 5] to our case.
By Definition 1.3 (2), we regard S(;, (G;I'1(V)) as a direct summand
of the orthonormalizable K, ;- Banach module S (5.4) for which we can

also have the characteristic power series

P'((80)er, X) =1 1+ ZCQ(('SG)UEI’)Xﬁ € Kn{{X}}

i>1



with |¢/((ss)eer)] < 1. To obtain m(e) as above; we shall investigate
the Newton polygon N, ,, of P'((s5)ger, X). We can take the set

{eM,a. = (O, cee s M, ey 0)}M€§m, 1<a<h

as an orthonormal basis of S, ,y, where we put the set of monomials

M= {{ H X;“Yf*) H z7la, + b, = n, with a,,b, > 0, m, > 0}
ren\r’ ocl’

and M sits in the a-th component in ey ,. We shall calculate the p-

adic valuations of coefficients ¢((s,)ger) of P'((ss)ser, X) by means of

this basis. For y =7 (é 2) v € T1(N) (é 0) [ (V) with 71,72 €

I['y(N) and a monomial M = ([],cpp XeY?) [Lep 25 € DN, we
have
(13) ey - M = T det(y)* (] ] Jo ()" det(mi0720)")

AV oel’

<(( J] Xevrya) [[Go - 20)™

Tel\I' gell
By the definition of j,(v,)® and the action (6) on the variable z, in
Section 1.2 for each o € I') we see that the p-adlc valuatlons of all

coefficients of monomials of the form ([, cp, X7 Y [T, cp 25 in the
expansion of (13) in Si, are at least XY _.p k,,, where we put the
positive rational number A := 1'1r11111<,‘<5{e(43 s} — 571~ Now we order the
basis {€p.0}um,q as follows: For k& > 0, we define the subset

Ap = {ene]l <a < h, M is of the form

(T xeve) [I ok with > ke =k}

TeI\I' oel’ cET!

of {enro}ara- Then we see that the cardinality §.4x = hy (’”9 1) for
k > 0, where hy = h[] pp(n, + 1), and that for & 2> 1,

k
1 . = hyng' .
(14) ;q 4= hg <9’+1) |
We then exhibit elements of A as 8{0) : egf arbitrarily. Next we ex-
hibit elements of A; as egi) PR egl)( o41) arbitrarily. We then repeat

this operation for all £ > 2 as
(%) (k}

e ()1 ()

€
' ¢
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We are going to obtain the representatlon matrix of infinite degree of
T'(m) with respect to the basis {e( ) };; ordered as above. For each e( ),

we write

hn k+9)
eP|T(r) = Zam Goel+3 Y P60
tg=1 k>1 in=hn (k—gl-gill)_i_l

with a( )( 1) € Oy for all k > 0, where O/s,1 1s the ring of integers
in K. As mentioned above, we then see that

(15) ord (O{A )(7,1)) = kA
forallk>0,7>1andi>0. The representation matrix of 7'(7) with
respect to the ordered basis {e . ego), . } is of the form '
/ago)(l,o) 0)(hn70) \
o) (1,0) -+ >(hn,0>

It is known that the coefficient ci((s,)ser) of P'((Ss)rer, X) is given
by (—1)ix (the convergent sum of 4-th minors of the above matrix) for

each 7 > 1 (cf. [13, Proposition 7 (a)}). So we see easily that
224"
(¢ +1)(g'+2

L
Pl

o1, (ci((s0)oer)) > it ; S

by (14) and (15) in the case where

' 2 ' /
hn< e 1)+1§z‘§hn<k+,g>
g g

with some k > 2. On the other hand, in the case where 1 <4 < hy(g'+
1), we see that ord,(ci((ss)ser)) > 0 by Proposition 2.2. Therefore we

have

16)
oxdy (i(sebeer)) 2 i) 16V = (huls' + 1))

for all 1 > 1. We put the function

1

Wa) = s g (P ale? = (nld + 1)7)




on Rg, which is a monotone increasing function. Since the Newton
polygon N,z of the characteristic power series P((sq)oer, X) of T'(r)
acting on S(5(G;T1(N)) is bounded by N, from the bottom, we
then obtain the following
Proposition 2.4. Assume the condition (ram). Then we have

Ny (z) 2 p(z)
for all (s5)ser € Winw(Cp) and z € Ryo.

Secondly, the characteristic power series P((&,)ser, X) for T(r) on
S(G;T1(N)) shall be investigated. The coefficients ¢; € K{{;|o €
I'Y (i > 1) of P((&)ser,X) can be regarded as analytic functions on
Win,w). We then have the following '

Proposition 2.5. Assume the condition (ram). We take two elements

(80)oer, (85)oer € Winn(Cp). We assume that there exists an inieger

m > 0 such that
_m.max1gigs{'e?%ﬁ}

ss — 8,1 <P
for all o € I'. Then we have
'Y it <ic e
ei((s0)oer) — ci((sh)oer)| < p~ Jminicicsd oy}
for all i > 1, where we put N := minjcics{1 — %},

Proof. Since S(G;T1(N)) can be regarded as a direct summand of Sh
via the isomorphism (10) in Definition 1.3 (1), it is enough to show
the statement for the coefficients ¢ of the characteristic power se-
ries P'{((£,)per, X) of T(m) on Sh. Note that both Sy and Sge )
can be generated by the same orthonormal basis 901 over K, and

Ky vy, respectively. For M = (ILrens XYV [ Ler 2o € 9 and
v = (1 g) s € T3(N) (1 O) Ty (N) with 41,72 € T1(N), we see

0 0 7

that |

(17) ['ﬂ(s,t) M = H det(’YT)UT(H ja(%r)sa det('}’lcf’}@cr)ta) ,
Tel\I' . oel’

x(( T xevtym) [l (o wo)™  and
ren\I’ el

(18) [V}(S’,t’) ’ M - H det(fYT)vT(H ja(”)’a)s:’ det(’YlafYZJ)t;)

Tel\I' gel!

<((T] xeviye) [0 2e)™-

TeI\I’ cel’
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By the assumption that [s, — s/ | < p*ﬁ") for each ¢ € I' with 7 such
that o € I;, we can write in C,

U
S; = §; + (ﬂf)mua and t:, =1; — _50—( :’)m

with some u, € Oc, by Definition 1.2. Then we have
(19) 3o = do(7)" (s (v,) ") and
det(’)’m’)’za) = det(’)’iﬁ’f;a) (det(’Yla’Yza)(Wf)fn)—g-

Noting that j,(7,) and det(yi,72,) are of the form 1 + 77a with some
a with norm |a| < 1, by (17), (18) and (19) and the formula (7) in
Section 1.2, we can calculate that for each o € I’ with ¢ such that
0 € Iiy 1o (%0) — Jo(5)" | and | det(vio720)% — det(v10720)" | are at
most ]7{‘?’}”“”\' because we can see easily that

akm

under the condition (ram). Here the symbol v/, stands for both u, and

“. By Proposition 2.2 and the isomorphism.(ll) in Definition 1.3,
this implies that the absolute values of all components in the difference

of the representation matrices of T'(r) on Sf, , and the one on S, .,

calculated before are at most p~ ™) minici<o {7} This implies that
e(s)oer) — ex((shJoer)| < p ez les)
for all 7 > 1. | L]
Let (s¢)oer; (85 )oer € Wi (GCy). By Proposition 2.4, we see that
Ny (), Ng () 2 pw(z).
We put

@ e

2X¢' (g” 1,1

) = RO (6 = (e + D)7)

for z € Ryp. Then v is a strictly monotone increasing function, and
we have

v(0) <0 and lim v(z) = co.

00

Moreover, the inverse function
¢+ 1) +2)°
2Ag'(g")e

v Hz) = hy( z+ (g —{—1)517)

4»—*



of v is also a monotone increasing function on Ryo and v *(z) > 0 for
x> 0. For o € Q>9, we put

_ maxicics{e(ps)} -1
m{e) = mini<;<s{e(ps) } Jlow (o))

By Proposition 2.5, we then see that if s, —s.| < p~™® forallo € I,
then
lci((so)oer) — ci((Sy)oer
for all i > 1. Since we can replace Z, (resp. my{a) + 1) by Oc, (resp.
minlggg{-e—(—b}((maxlggs{e(pi)}){av‘l(a)} + X)) in the statement of
(14, Lemma 4.1], we have the following

)| < p- i) (mmgic{elpoDlor @HX)

Proposition 2.6. Assume the condition (ram). For any o € Qso, we
put
max;<i<s{e(ps) } g + 1)y +2 Lag
s o0} o, (@D LI, 4 gy iy
min;i<s{e(pi) } 20 (") 7
If (s5)ecr, (8))oer € Winw(Cp) satisfy |s, — s,| < p~™) for all
o € I', then the slope-c-part of the Newton polygons of P((ss)oer, X)
and P((sl)ser, X) are equal.
By combining this proposition with [12, Corollary of Section IV.4],
we obtain the following

m{a) ==

Theorem 2.7. Assume the condition (rafn). Let o € Q5o and (so)ocr,
(s )oer € Wnn)(Cp). If [so—s,| < p~™@) for all o € I', then we have

dlIIlc(j?7 S(s,t) (G, Pi (N))%p = dlm@P S(s’,t’) (G, FI(N))& .
Further, by Theorem 2.3, we then have immediately the following

Corollary 2.8. Assume the condition (ram). If( Noer, (M) )ger €
WM) satisfy the conditions that [nl, —nll| <p ~m(@) for oll o € I' and

Uy, Upn > @, then we have
dlm([‘,p S(C;/;’UI)(G, F]_(N), Cp)a = dlm@p S(C}.bnmn)(G, FI(N), (Cp)a

Remark 2.2. In Corollary 2.8, we need to assume the condition (ram)
to apply the modified Wan’s lemma with the positive rational number
M. This corollary is a generalization of Coleman’s result [5, Theorem
B3.4] which gives a solution to a conjecture of Gouvéa and Mazur 7,

Conjecture 1 in Section 5].
Remark 2.3. Kassaei [11] has constructed overconvergent P-adic mod-

ular forms on quaternion algebras defined over any totally real field F
which are unramified at P and exactly one infinite place, where P is a
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prime ideal of F' above p whose residue field has cardinality > 3. Then
he has also showed the local constancy of dimensions of the spaces of
overconvergent forms ([11, Theorem 1.1]).
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