On *p*-adic families of Hilbert cusp forms of finite slope

京大理 山上 敦士 (Atsushi Yamagami) Department of Mathematics, Kyoto University

0. Introduction

Let p be an odd prime number. We fix an algebraic closure \mathbb{Q} of the field \mathbb{Q} of rational numbers in the field \mathbb{C} of complex numbers and an embedding $i_p: \mathbb{Q} \hookrightarrow \mathbb{Q}_p$, where \mathbb{Q}_p is an algebraic closure of the field \mathbb{Q}_p of p-adic numbers. We denote by i_{∞} the fixed embedding $\mathbb{Q} \hookrightarrow \mathbb{C}$. Then we take the p-adic completion \mathbb{C}_p of \mathbb{Q}_p and fix an isomorphism $\mathbb{C}_p \cong \mathbb{C}$ of fields which is compatible with the embeddings i_p and i_{∞} . We denote by ord_p the normalized p-adic valuation in \mathbb{C}_p so that $\operatorname{ord}_p(p) = 1$ and by $|\cdot|$ the absolute value given by ord_p . In this section, we would like to see the author's motivation, which is a story over \mathbb{Q} , for working on p-adic families of Hilbert cusp forms of finite slope.

Let N be a positive integer prime to p and $k \geq 2$ an integer. We take a normalized cuspidal Hecke eigenform f of level Np and weight k whose Fourier expansion is given by $f(q) = \sum_{n\geq 1} a_n(f)q^n$ with $a_1(f) = 1$. Then we know that the Fourier coefficint a_n is the T(n)-eigenvalue of f for each $n \geq 1$, where T(n) is the Hecke operator at n. In particular, all $a_n(f)$'s belong to \mathbb{Q} . We then put $\alpha := \operatorname{ord}_p(i_p(a_p(f)))$ and call it the T(p)-slope of f, which is a non-negative rational number in this case. Then it is known that if f satisfies some technical assumptions, then there exists a family $\{f_{k'}\}_{k'\in\mathcal{K}}$ of normalized cuspidal Hecke eigenforms $f_{k'}$ of weight k' and level Np having fixed T(p)-slope α parametrized by an arithmetic progression \mathcal{K} of radius p^m starting from k with some non-negative integer m. This fact has been proved in the case where $\alpha = 0$, i.e., ordinary case, by Hida [8] and [9], and his result has been generalized to the case where α is any non-negative rational number by Coleman [5] and [6].

The author [16, Main Theorem] used such families of finite T(p)slopes to prove Gouvêa's conjecure in the unobstructed case, which
asserts that all deformations of the mod p Galois representation associated with f to complete Noetherian local rings are associated with
Katz's generalized p-adic modular forms of tame level N (for the details of this conjecture, see [16]). The author would like to generalize
this result to the case over totally real fields.

The author is a JSPS Postdoctoral Fellow in Department of Mathematics, Kyoto University.

Now let us recall Coleman's arguments in [6] to obtain p-adic families $\{f_{k'}\}_{k'\in\mathcal{K}}$ of eigenforms having fixed T(p)-slope α as above. He constucted in [6, Section B4] the Banach module $S^{\dagger}(N)$ consisting of families of overconvergent cusp forms which is specialized to the Banach space $S_k^{\dagger}(N)$ of overconvergent cusp forms of weight k. One of the key points is that the Hecke operator T(p) acts on these spaces completely continuously. The space $S_k^{\rm cl}(Np)$ of classical cusp forms of weight k and level Np is included in $S^{\dagger}(N)$. For any non-negative rational number α , we denote by $S_k^{\dagger}(N)^{\alpha}$ (resp. $S_k^{\rm cl}(Np)^{\alpha}$) the subspace of $S_k^{\dagger}(N)$ (resp. $S_k^{\rm cl}(Np)$) generated by all generalized T(p)-eigenspaces for all T(p)-eigenvalues whose p-adic valuation are α . Coleman [5, Theorem 8.1] proved that if $k > \alpha + 1$, then

$$S_k^{\dagger}(N)^{\alpha} = S_k^{\rm cl}(Np)^{\alpha},$$

i.e., the classicality of overconvergent cusp forms of small T(p)-slope, and that if $k \equiv k' \pmod{p^{m(\alpha)}}$ with some non-negative integer $m(\alpha)$ depending on α , then we have

$$\dim_{\mathbb{C}_p} S_k^{\dagger}(N)^{\alpha} = \dim_{\mathbb{C}_p} S_{k'}^{\dagger}(N)^{\alpha},$$

i.e, the local constancy of $\dim_{\mathbb{C}_p} S_k^{\dagger}(N)^{\alpha}$ with respect to weights k (cf. [6, Theorem B3.4]). Then as an application of these facts, under some technical conditions, he constructed p-adic families $\{f_{k'}\}_{k'\in\mathcal{K}}$ as above by means of the duality theorems between then classical Hecke algebras and the spaces of classical cusp forms and the theory of newforms and oldforms (see [6, Corollary B5.7.1]).

The aim of this article is to generalize Coleman's argments above to the case over totally real fields. Namely, we shall define in Section 1.1 the spaces $S_{(n,v)}^{\operatorname{cl}}(G;\Gamma_1(N);\mathbb{C}_p)$ of classical Hilbert cusp forms which are interpolated by the Banach module $S(G;\Gamma_1(N))$ of "p-adic Hilbert cusp forms" defined in Section 1.2. Then in Section 2.1 we shall define the Hecke operator $T(\pi)$ which acts on them completely continuously, and prove in Section 2.2 the classicality of p-adic Hilbert cusp forms of small $T(\pi)$ -slope and in Section 2.3 the local constancy of dimensions of submodules having fixed $T(\pi)$ -slope α . The method which we shall use is based on works of Buzzard [3] on "eigenvariety machine," and of Chenevier [4] dealing with automorphic forms on any twisted form of GL_n over $\mathbb Q$ which is compact at infinity modulo center.

Acknowledgement. The author is grateful to Professor Morishita for giving him an opportunity to give a talk in the conference "Algebraic Number Theory and Related Topics" at RIMS in Kyoto.

1. Classical and p-adic automorphic forms

In this section, we define spaces of classical automorphic forms and p-adic ones on the algebraic groups defined by the unit groups of totally definite quaternion algebras over totally real fields. In this article, we assume that p is an odd prime number for simplicity, although the case of p=2 can be also done as well.

1.1. Classical automorphic forms

Let F be a totally real field of degree g and O its ring of integers. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be all prime ideals of F above p. Then the set I of all embeddings $\sigma: F \hookrightarrow \bar{\mathbb{Q}}$ has the partition $I = \bigsqcup_{i=1}^r I_i$, where I_i is the subset of I consisting of embeddings σ such that the completion of $i_p(F^{\sigma})$ in \mathbb{C}_p coincides with the \mathfrak{p}_i^{σ} -adic completion $F_{\mathfrak{p}_i^{\sigma}}^{\sigma}$ of F^{σ} .

In this article, we shall formulate "modular forms" as "automorphic forms" on adelic groups on quaternion algebras defined over F. Let B be a totally definite quaternion algebra over F. We fix a maximal order R of B and a finite Galois extension K_0 over $\mathbb Q$ containing F for which there is an isomorphism

$$B \otimes_{\mathbb{O}} K_0 \cong M_2(K_0)^I$$

such that we have $R \otimes_{\mathbb{Z}} O_0 \cong M_2(O_0)^I$, where $M_2(A)$ with some ring A stands for the ring of 2×2 matrices with coefficients in A and \mathbb{Z} and O_0 are the rings of integers in \mathbb{Q} and K_0 , respectively. Then we may assume that for a prime ideal \mathfrak{l} at which B is unramified, this isomorphism induces an isomorphism

$$B \otimes_F F_{\mathfrak{l}} \cong M_2(F_{\mathfrak{l}})$$

such that we have $R \otimes_O O_{\mathfrak{l}} \cong M_2(O_{\mathfrak{l}})$, where $O_{\mathfrak{l}}$ is the \mathfrak{l} -adic completion of O. We fix this isomorphism in this article. Let G be the algebraic group defined over \mathbb{Q} given by

$$G(A) := (B \otimes_{\mathbb{Q}} A)^{\times}$$

for \mathbb{Q} -algebras A. Let \mathbb{A} be the adele ring of \mathbb{Q} and \mathbb{A}_f its finite part. We denote by K the p-adic completion of $i_p(K_0)$ in \mathbb{C}_p whose ring of integers is denoted by \mathcal{O} . For $\gamma \in G(\mathbb{A}_f)$, under the natural identification

$$F \otimes_{\mathbb{Q}} \mathbb{Q}_p = \prod_{i=1}^r F_{\mathfrak{p}_i},$$

we then take the σ -projection $\gamma_{\sigma} \in \operatorname{GL}_{2}(K)$ of the p-part $\gamma_{p} = (\gamma_{i})_{i=1}^{r} \in G(\mathbb{Q}_{p}) = \prod_{i=1}^{r} (B \otimes_{F} F_{\mathfrak{p}_{i}})^{\times}$ of γ as the image in $\operatorname{GL}_{2}(K)$ of γ_{i} under the projection σ with the subscript i determined by the condition that $\sigma \in I_{i}$ for each $\sigma \in I$.

Let N be an integral ideal of F at which B is unramified. We put $\hat{R} := R \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}$, where $\hat{\mathbb{Z}} := \prod_{l:\text{prime}} \mathbb{Z}_l$ with the rings \mathbb{Z}_l of l-adic integers. We then define an open compact subgroup

$$\Gamma_1(N) := \{ x \in \hat{R}^{\times} \text{with } x_N = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a - 1, c, d - 1 \in NO_N \}$$

of \hat{R}^{\times} , where x_N is the N-part of x and $O_N := \prod_{l \mid N: \text{prime}} O_l$. By the approximation theorem, there exist $t_1, \ldots, t_h \in G(\mathbb{A})$ for some positive integer h such that $(t_i)_N = 1$ and $(t_i)_{\infty} = 1$ for each $i = 1, \ldots, h$ and

(1)
$$G(\mathbb{A}) = \bigsqcup_{i=1}^{h} G(\mathbb{Q}) t_i \Gamma_1(N) G(\mathbb{R})_+,$$

where $G(\mathbb{R})_+$ is the connected component of $G(\mathbb{R})$ with the indentity. We fix the decomposition (1) in this article and put $\Gamma_i := (t_i^{-1}G(\mathbb{Q})t_i) \cap \Gamma_1(N)G(\mathbb{R})_+$ for each $i = 1, \ldots, h$, which is a discrete subgroup of $G(\mathbb{R})_+$ (cf. [10, Section 2]). Since we assume that B is totally definite, we see that the quotient subgroup $\Gamma_i/\Gamma_i \cap (F \otimes_{\mathbb{Q}} \mathbb{R})^\times$ of $G(\mathbb{R})_+/G(\mathbb{R})_+ \cap (F \otimes_{\mathbb{Q}} \mathbb{R})^\times$ is finite for each $i = 1, \ldots, h$.

Let $\mathbb{Z}[I]$ be the free \mathbb{Z} -module generated by I. We define an equivalence relation \sim in $\mathbb{Z}[I]$ as follows: for $a, b \in \mathbb{Z}[I]$, $a \sim b$ if and only if $a - b \in \mathbb{Z}t_0$, where $t_0 := \sum_{\sigma \in I} \sigma$. We then put

$$W^{\text{cl}} := \{ (n, v) \in \mathbb{Z}[I] \times \mathbb{Z}[I] \mid n + 2v \sim 0, n > 0 \},$$

where we mean by n > 0 that n is positive, i.e., all coefficients n_{σ} of n are positive integers. We call W^{cl} the set of classical weights. For $(n, v) \in W^{\text{cl}}$ and any \mathcal{O} -algebra A, we denote by L(n, v; A) the left $\mathrm{GL}_2(\mathcal{O})^I$ -module consisting of polynomials P of 2g-parameters $(X_{\sigma}, Y_{\sigma})_{\sigma \in I}$ with coefficients in A which are homogeneous of degree n_{σ} for each variable (X_{σ}, Y_{σ}) , on which $\gamma = (\gamma_{\sigma})_{\sigma \in I} \in \mathrm{GL}_2(\mathcal{O})^I$ acts by

(2)
$$\gamma \cdot P := \det(\gamma)^{v} P(((X_{\sigma}, Y_{\sigma})^{t} \gamma_{\sigma}^{\iota})_{\sigma \in I}).$$

Here we define $\det(\gamma)^v := \prod_{\sigma \in I} \det(\gamma_\sigma)^{v_\sigma}$ and for a 2×2 matrix $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we put $x^\iota := \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Definition 1.1. For $(n, v) \in W^{cl}$ and an \mathcal{O} -algebra A, we put

$$S_{(n,v)}^{\mathrm{cl}}(G;\Gamma_1(N);A) := \{ f : G(\mathbb{Q}) \backslash G(\mathbb{A}_{\mathrm{f}}) \to L(n,v;A) : \text{ function } | f(xu) = u^{-1} \cdot f(x) \text{ for } u \in \Gamma_1(N), x \in G(\mathbb{A}_{\mathrm{f}}) \},$$

which we call the space of classical automorphic forms of level $\Gamma_1(N)$ and weight (n, v) on G (defined over A).

Remark 1.1. In the case where we regard $A = \mathbb{C}$ as an \mathcal{O} -algebra via the fixed isomorphism $\mathbb{C}_p \xrightarrow{\sim} \mathbb{C}$ and B is unramified at all finite places of F (hence g must be even by Hasse principle (cf. [15, XIII, Sections 3 and 6])), it is known that $S_{(n,v)}^{\text{cl}}(G;\Gamma_1(N);\mathbb{C})$ are isomorphic to the spaces of classical holomorphic Hilbert cusp forms of weight $(n_{\sigma}+2)_{\sigma\in I}$ and level N by a result of Jacquet-Langlands and Shimizu (cf. [10, Theorem 2.1]).

1.2. p-Adic automorphic forms

We fix a classical weight $(n, v) \in W^{\operatorname{cl}}$. Let N be an integral ideal of F which is not prime to p and unramified in B. We now take arbitrarily $s(\leq r)$ prime ideals above p which divide N. We may denote them by $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$. We then put $I' := \bigsqcup_{i=1}^s I_i \subset I$ and denote the cardinality of I' by $g'(\leq g)$. We fix a prime element π_i of the \mathfrak{p}_i -adic completion $F_{\mathfrak{p}_i}$ of F at \mathfrak{p}_i for each $i=1,\ldots,s$. We then denote by $\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}$ the element of $G(\mathbb{A}_f)$ whose \mathfrak{p}_i -part is the diagonal matrix $\begin{pmatrix} 1 & 0 \\ 0 & \pi_i \end{pmatrix}$ for each $i=1,\ldots,s$ and other parts are trivial. In the following, for an element $\gamma \in \Gamma_1(N)$, we write its σ -projection as

$$\gamma_{\sigma} = \begin{pmatrix} 1 + \pi_i^{\sigma} a_{\sigma} & b_{\sigma} \\ \pi_i^{\sigma} c_{\sigma} & 1 + \pi_i^{\sigma} d_{\sigma} \end{pmatrix}$$

with some $a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} \in \mathcal{O}$ for each $\sigma \in I$ with i such that $\sigma \in I_i$. Then we have

(3)
$$(X_{\sigma}, Y_{\sigma})^t \gamma_{\sigma}^{\ \iota} = ((1 + \pi_i^{\sigma} d_{\sigma}) X_{\sigma} - b_{\sigma} Y_{\sigma}, Y_{\sigma} + \pi_i^{\sigma} (a_{\sigma} Y_{\sigma} - c_{\sigma} X_{\sigma}))$$

for all $\sigma \in I'$ with i such that $\sigma \in I_i$, and

(4)
$$(X_{\sigma}, Y_{\sigma})^{t} \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}_{\sigma}^{t} = \begin{cases} (\pi_{i}^{\sigma} X_{\sigma}, Y_{\sigma}) & (\sigma \in I_{i} \subset I'), \\ (X_{\sigma}, Y_{\sigma}) & (\sigma \in I \setminus I'). \end{cases}$$

For any elements $\gamma = \gamma_1 \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \gamma_2$ with $\gamma_1, \gamma_2 \in \Gamma_1(N)$ of the double coset $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$, using actions (3) and (4), we define a K-endomorphism $[\gamma]_{(n,v)}$ on L(n,v;K) with normalization of the \det^v -part by

$$(5) [\gamma]_{(n,v)} \cdot P := \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} \prod_{\sigma \in I'} \det(\gamma_{1\sigma} \gamma_{2\sigma})^{v_{\sigma}} \times P(((X_{\tau}, Y_{\tau})^{t} \gamma_{\tau}^{\iota})_{\tau \in I}).$$

Let $K\langle x_{\sigma}|\sigma\in I'\rangle$ be the strictly convergent power series ring of g'-variables $(x_{\sigma})_{\sigma\in I'}$ with coefficients in K, which is the subring of the formal power series ring $K[x_{\sigma}|\sigma\in I']$ consisting of power series $P(x)=\sum_{(i_{\sigma})_{\sigma\in I'}\in\mathbb{Z}_{\geq 0}^{I'}}a_{(i_{\sigma})_{\sigma\in I'}}\prod_{\sigma\in I'}x_{\sigma}^{i_{\sigma}}$ such that $|a_{(i_{\sigma})_{\sigma\in I'}}|\to 0$ as $\sum_{\sigma\in I'}i_{\sigma}\to\infty$. This is an orthonormalizable K-Banach algebra with sup norm $|\cdot|$ with respect to coefficients in K (for the notion in the p-adic Banach theory, see [6, Chapter A]). We can take the set $\{\prod_{\sigma\in I'}x_{\sigma}^{i_{\sigma}}|i_{\sigma}\geq 0,\ \sigma\in I'\}$ as an orthonormal basis of $K\langle x_{\sigma}|\sigma\in I'\rangle$. We define actions on the variables $(x_{\sigma})_{\sigma\in I'}$ of the σ -projections of $\gamma\in \Gamma_1(N)$ and $\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}$ for $\sigma\in I'$ as follows:

$$(6) \gamma_{\sigma} \cdot x_{\sigma} := \frac{-b_{\sigma} + (1 + \pi_{i}^{\sigma} d_{\sigma}) x_{\sigma}}{1 + \pi_{i}^{\sigma} (a_{\sigma} - c_{\sigma} x_{\sigma})} \quad \text{and} \quad \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}_{\sigma} \cdot x_{\sigma} := \pi_{i}^{\sigma} x_{\sigma}$$

with i such that $\sigma \in I_i$. Note that the denominator $1 + \pi_i^{\sigma}(a_{\sigma} - c_{\sigma}x_{\sigma})$ in the action (6) is a unit in $\mathcal{O}\langle x_{\sigma}\rangle$. Then by [6, Lemma A1.6], we see that elements in the double coset $\Gamma_1(N)\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}\Gamma_1(N)$ give completely continuous K-endomorphisms on $K\langle x_{\sigma}|\sigma\in I'\rangle$ whose operator norms are at most 1. Here the operator norm |L| of a continuous endomorphism L on a Banach module M is defined by

$$|L| := \sup_{0 \neq m \in M} \frac{|L(m)|}{|m|}.$$

Now we define a Banach module S over the strictly convergent power series ring $K\langle \xi_{\sigma} | \sigma \in I' \rangle$ of g'-variables $(\xi_{\sigma})_{\sigma \in I'}$ as follows: S is the set of polynomials P of 2(g-g')-parameters $(X_{\tau}, Y_{\tau})_{\tau \in I \setminus I'}$ with coefficients in $K\langle \xi_{\sigma}, x_{\sigma} | \sigma \in I' \rangle$ which are homogeneous of degree n_{τ} for each variable (X_{τ}, Y_{τ}) . We can take the set

$$\left\{ \left(\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}} \right) \prod_{\sigma \in I'} x_{\sigma}^{m_{\sigma}} | a_{\tau} + b_{\tau} = n_{\tau} \text{ with } a_{\tau}, b_{\tau} \ge 0, \ m_{\sigma} \ge 0 \right\}$$

as an orthonormal basis of S over $K\langle \xi_{\sigma} | \sigma \in I' \rangle$. Let $e(\mathfrak{p}_i)$ be the ramification index of the prime ideal \mathfrak{p}_i in F/\mathbb{Q} . In order to define an action of $\Gamma_1(N)$ on S, we assume the condition that

(ram)
$$e(\mathfrak{p}_i) < p-1$$
 for each $i = 1, \dots, s$

is satisfied in the following. We see that $j_{\sigma}(\gamma_{\sigma})$ for elements γ of $\Gamma_1(N)$ and $\Gamma_1(N)\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}\Gamma_1(N)$, and $\det(\gamma_{\sigma})$ for $\gamma \in \Gamma_1(N)$ are of the form $1 + \pi_i^{\sigma} a$ with some $a \in \mathcal{O}$ for each $\sigma \in I'$ with i such that $\sigma \in I_i$. Then

we can define their powers with any element s in \mathbb{C}_p (resp. $\mathbb{C}_p\langle\xi_\sigma\rangle$) such that $|s| \leq 1$ by a convergent power series as

(7)
$$(1 + \pi_i^{\sigma} a)^s := 1 + \sum_{k>1} \frac{s(s-1)\cdots(s-k+1)}{k!} (\pi_i^{\sigma})^k a^k$$

in $\mathcal{O}_{\mathbb{C}_p}$ (resp. $\mathcal{O}_{\mathbb{C}_p}\langle \xi_{\sigma} \rangle$) because of the assumption (ram) (cf. [4, Lemme 3.6.1]). Here we denote by $\mathcal{O}_{\mathbb{C}_p}$ the ring of p-adic integers in \mathbb{C}_p , i.e., the subring of \mathbb{C}_p consisting of elements s such that $|s| \leq 1$. We then define an action $[\gamma]$ of $\gamma \in \Gamma_1(N)$ on S as

(8)
$$[\gamma] \cdot P := \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} (\prod_{\sigma \in I'} j_{\sigma}(\gamma_{\sigma})^{\xi_{\sigma}} \det(\gamma_{\sigma})^{\frac{\mu(n,v) - \xi_{\sigma}}{2}})$$

$$\times P(((X_{\tau}, Y_{\tau})^{t} \gamma_{\tau}^{\iota})_{\tau \in I \setminus I'}; (\xi_{\sigma}, \gamma_{\sigma} \cdot x_{\sigma})_{\sigma \in I'}).$$

As for $\gamma = \gamma_1 \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \gamma_2 \in \Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$ with $\gamma_1, \gamma_2 \in \Gamma_1(N)$, we define a $K\langle \xi_{\sigma} | \sigma \in I' \rangle$ -endomorphism on S as

(9)
$$[\gamma] \cdot P := \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} (\prod_{\sigma \in I'} j_{\sigma}(\gamma_{\sigma})^{\xi_{\sigma}} \det(\gamma_{1\sigma} \gamma_{2\sigma})^{\frac{\mu(n,v) - \xi_{\sigma}}{2}})$$

$$\times P(((X_{\tau}, Y_{\tau})^{t} \gamma_{\tau}^{\iota})_{\tau \in I \setminus I'}; (\xi_{\sigma}, \gamma_{\sigma} \cdot x_{\sigma})_{\sigma \in I'}),$$

which is completely continuous with operator norm ≤ 1 .

Definition 1.2. We denote by $W_{(n,v)}$ the g'-dimensional closed affinoid ball over K of radius 1 around $(n_{\sigma})_{\sigma \in I'}$. Then the set $W_{(n,v)}(\mathbb{C}_p)$ of its \mathbb{C}_p -valued points coincides with $\mathcal{O}_{\mathbb{C}_p}^{I'}$ and $K\langle \xi_{\sigma} | \sigma \in I' \rangle$ is the affinoid algebra associated to $W_{(n,v)}$. (For the details of affinoid algebras and affinoid varieties, see [1, Part B and Chapter 7] and [6, Section A5].) We call it the space of the I'-parts of p-adic weights associated to (n,v). We then associate $(t_{\sigma} := \frac{\mu(n,v)-s_{\sigma}}{2})_{\sigma \in I'}$ to any point $(s_{\sigma})_{\sigma \in I'} \in W_{(n,v)}(\mathbb{C}_p)$, and put the p-adic weight (s,t) as

$$s := \sum_{\sigma \in I'} s_{\sigma} \sigma + \sum_{\tau \in I \setminus I'} n_{\tau} \tau \quad \text{and}$$

$$t := \frac{\mu(n, v)t_0 - s}{2} = \sum_{\sigma \in I'} t_{\sigma} \sigma + \sum_{\tau \in I \setminus I'} v_{\tau} \tau.$$

Further, we denote by $W_{(n,v)}^{\text{cl}}$ the subset of $W_{(n,v)}(\mathbb{C}_p)$ consisting of elements $(n'_{\sigma})_{\sigma \in I'}$ whose components are positive integers of the same parity as $\mu(n,v)$ for all $\sigma \in I'$. We call it the set of the I'-parts of classical weights associated to (n,v). For $(n'_{\sigma})_{\sigma \in I'} \in W_{(n,v)}^{\text{cl}}$, we put $(v'_{\sigma} := \frac{\mu(n,v)-n'_{\sigma}}{2})_{\sigma \in I'}$ and define (n',v') as well as (s,t). By the definition

of $W_{(n,v)}^{\text{cl}}$, we see that v'_{σ} are also integers for all $\sigma \in I'$ and that $n' + 2v' = \mu(n,v)t_0$.

For $(s_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$, we denote by $K_{(s,t)}$ the p-adic completion in \mathbb{C}_p of the fraction field of $K\langle \xi_{\sigma} | \sigma \in I' \rangle / (\xi_{\sigma} - s_{\sigma} | \sigma \in I')$. We denote by $S_{(s,t)}$ the specialized orthonormalizable $K_{(s,t)}$ -Banach space $S \otimes_{K\langle \xi_{\sigma} | \sigma \in I' \rangle} K_{(s,t)}$. Then we denote by $[\gamma]_{(s,t)}$ the specialized $K_{(s,t)}$ -endomorphism $[\gamma] \otimes K_{(s,t)}$ on $S_{(s,t)}$ for elements γ of $\Gamma_1(N)$ and $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$.

Definition 1.3. (1) Assume the condition (ram). We define the space of p-adic automorphic forms of level $\Gamma_1(N)$ on G (with coefficients in K) as

$$S(G; \Gamma_1(N)) := \{ f : G(\mathbb{Q}) \setminus G(\mathbb{A}_f) \to S : \text{function} |$$
$$f(xu) = [u^{-1}] \cdot f(x), u \in \Gamma_1(N), x \in G(\mathbb{A}_f) \}.$$

We then have a K-isomorphism

(10)
$$S(G; \Gamma_1(N)) \xrightarrow{\sim} \bigoplus_{i=1}^h S^{\Gamma_i}, f \mapsto (f(t_1), \dots, f(t_h)),$$

where $t_1, \ldots, t_h \in G(\mathbb{A})$ are the fixed representatives of the decomposition (1). Here each S^{Γ_i} is the submodule of the orthonormalizable $K\langle \xi_{\sigma} | \sigma \in I' \rangle$ -module S consisting of elements fixed under the action of $\Gamma_i = (t_i^{-1}G(\mathbb{Q})t_i) \cap \Gamma_1(N)G(\mathbb{R})_+$. Since Γ_i acts on S via the finite quotient group $\Gamma_i/\Gamma_i \cap (F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ because of the assumption $n+2v \sim 0$, we then see that S^{Γ_i} satisfies the property (Pr) of [3, Section 2] for each $i=1,\ldots,h$. We now define a norm in $S(G;\Gamma_1(N))$ via this isomorphism as

$$|f| := \sup_{1 \le i \le h} |f(t_i)|.$$

Therefore, $S(G; \Gamma_1(N))$ can be regarded as a $K\langle \xi_{\sigma} | \sigma \in I' \rangle$ -Banach module with the norm $|\cdot|$ which satisfies the property (Pr) of [3, Section 2].

(2) Let $(s_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$. Assume the condition (ram) in the case where $(s_{\sigma})_{\sigma \in I'} \notin W^{\mathrm{cl}}_{(n,v)}$. We define the space of p-adic automorphic forms of weight (s,t) and level $\Gamma_1(N)$ on G (defined over $K_{(s,t)}$) as

$$S_{(s,t)}(G;\Gamma_1(N)) := \{ f : G(\mathbb{Q}) \backslash G(\mathbb{A}_f) \to S_{(s,t)} : \text{function} | f(xu) = [u^{-1}]_{(s,t)} \cdot f(x), u \in \Gamma_1(N), x \in G(\mathbb{A}_f) \}.$$

Then we have an isomorphism

$$(11) \quad S_{(s,t)}(G;\Gamma_1(N)) \xrightarrow{\sim} \bigoplus_{i=1}^h S_{(s,t)}^{\Gamma_i}, \ f \mapsto (f(t_1),\ldots,f(t_h))$$

of $K_{(s,t)}$ -Banach spaces satisfying the property (Pr) of [3, Section 2], where we define a norm in $S_{(s,t)}(G;\Gamma_1(N))$ as

$$|f| := \sup_{1 \le i \le h} |f(t_i)|.$$

Putting $x_{\sigma} = \frac{X_{\sigma}}{Y_{\sigma}}$ for each $\sigma \in I'$, we then see easily the following

Lemma 1.1. For any $(n'_{\sigma})_{\sigma \in I'} \in W^{\mathrm{cl}}_{(n,v)}$, we have a natural K-inclusion

$$L(n', v'; K) \hookrightarrow S_{(n',v')},$$

$$P((X_{\tau}, Y_{\tau})_{\tau \in I}) \mapsto P((X_{\tau}, Y_{\tau})_{\tau \in I \setminus I'}; (x_{\sigma}, 1)_{\sigma \in I'})$$

which is compatible with $[\gamma]_{(n',v')}$ for all γ in $\Gamma_1(N)$ and the double coset $\Gamma_1(N)\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}\Gamma_1(N)$ on these spaces. Thus we have an inclusion

$$S_{(n',v')}^{\mathrm{cl}}(G;\Gamma_1(N);K) \hookrightarrow S_{(n',v')}(G;\Gamma_1(N))$$

of K-Banach spaces satisfying the property (Pr) of [3, Section 2].

2. p-Adic automorphic forms of small $T(\pi)$ -slope

Let the notation be as in Section 1.2. In this section, we shall introduce the Hecke operator $T(\pi)$ on the spaces of p-adic automorphic forms. Then we shall investigate some properties of p-adic automorphic forms having small $T(\pi)$ -slope.

2.1. The Hecke operator $T(\pi)$

In this subsection, we assume the condition (ram), i.e., $e(\mathfrak{p}_i) < p-1$ for all $i=1,\ldots,s$, unless we deal with the I'-parts of classical weights in $W_{(n,v)}^{\text{cl}}$. In order to define the Hecke operator $T(\pi)$, we decompose the double coset $\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$ in a disjoint union of right cosets as

$$\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N) = \bigsqcup_{i=1}^l \zeta_i \Gamma_1(N).$$

For $f \in S(G; \Gamma_1(N))$ (resp. $S_{(s,t)}(G; \Gamma_1(N))$ for $(s_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$), we put

(12)
$$(f|T(\pi))(x) := \sum_{i=1}^{l} [\zeta_i] \cdot f(x\zeta_i) \text{ (resp. } \sum_{i=1}^{l} [\zeta_i]_{(s,t)} \cdot f(x\zeta_i))$$

for $x \in G(\mathbb{Q})\backslash G(\mathbb{A}_f)$. Note that this definition is independent of choices of representatives $\{\zeta_i\}$ and $f|T(\pi)$ is also an element of $S(G;\Gamma_1(N))$ (resp. $S_{(s,t)}(G;\Gamma_1(N))$) (cf. [10, Section 2]).

Proposition 2.1. Assume the condition (ram) unless $(s_{\sigma})_{\sigma \in I'} \in W^{\operatorname{cl}}_{(n,v)}$. The Hecke operator $T(\pi)$ is completely continuous on $S(G; \Gamma_1(N))$ and $S_{(s,t)}(G; \Gamma_1(N))$ for any $(s_{\sigma})_{\sigma \in I'} \in W_{(n,v)}(\mathbb{C}_p)$ with operator norm ≤ 1 .

Proof. We shall prove the proposition for $S(G; \Gamma_1(N))$, because we can prove in the case of $S_{(s,t)}(G; \Gamma_1(N))$ as well. To see the complete continuity of $T(\pi)$, we calculate the action of $T(\pi)$ on $\bigoplus_{j=1}^h S^{\Gamma_j}$ via the isomorphism (10) by means of the decomposition

$$\Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N) = \bigsqcup_{i=1}^l \zeta_i \Gamma_1(N).$$

For $f \in S(G; \Gamma_1(N))$, the image of $f|T(\pi)$ under the isomorphism (10) is

$$((f|T(\pi))(t_1),\ldots,(f|T(\pi))(t_h))$$

$$=\sum_{i=1}^l([\zeta_i]\cdot f(t_1\zeta_i),\ldots,[\zeta_i]\cdot f(t_h\zeta_i)).$$

We fix $1 \le i \le l$. For each j = 1, ..., h, there exist $1 \le \sigma_i(j) \le h$ and $u_i(j) \in \Gamma_1(N)$ such that

$$t_j \zeta_i = t_{\sigma_i(j)} u_i(j)$$

in $G(\mathbb{Q})\backslash G(\mathbb{A}_f)$. Then we see that

$$f(t_j\zeta_i) = f(t_{\sigma_i(j)}u_i(j)) = [u_i(j)^{-1}] \cdot f(t_{\sigma_i(j)})$$

by the definition of automorphic forms of level $\Gamma_1(N)$. Therefore we see that

$$((f|T(\pi))(t_1), \dots, (f|T(\pi))(t_h))$$

$$= \sum_{i=1}^{l} ([\zeta_i u_i(1)^{-1}] \cdot f(t_{\sigma_i(1)}), \dots, [\zeta_i u_i(h)^{-1}] \cdot f(t_{\sigma_i(h)})).$$

Thus the proposition is proven, because the endomorphisms $[\cdot]$ given by the double coset $\Gamma_1(N)\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}\Gamma_1(N)$ on S are completely continuous with operator norm ≤ 1 .

We denote by $K\langle \xi_{\sigma}|\sigma \in I'\rangle\{\{X\}\}$ the subring of the formal power series ring $K\langle \xi_{\sigma}|\sigma \in I'\rangle[X]$ consisting of power series $\sum_{i\geq 0} c_i X^i$ such that

$$|c_i|M^i \to 0$$
 as $i \to \infty$

for all $M \in \mathbb{R}$. By Proposition 2.1 and the arguments in [3, Section 2] dealing with Banach modules satisfying the property (Pr), we have the following

Proposition 2.2. Assume the condition (ram). We have the characteristic power series

$$P((\xi_{\sigma})_{\sigma \in I'}, X) := \det(1 - XT(\pi)|_{S(G;\Gamma_1(N))})$$
$$= 1 + \sum_{i>1} c_i X^i \in K\langle \xi_{\sigma} | \sigma \in I' \rangle \{\{X\}\}\}$$

of $T(\pi)$ on $S(G; \Gamma_1(N))$ with $|c_i| \leq 1$. Furthermore, for any $(s_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$, we see that

$$P((s_{\sigma})_{\sigma \in I'}, X) = 1 + \sum_{i \ge 1} c_i((s_{\sigma})_{\sigma \in I'}) X^i \in K_{(s,t)} \{ \{X\} \}$$

is the characteristic power series of $T(\pi)$ on $S_{(s,t)}(G;\Gamma_1(N))$.

Let α be a non-negative rational number. For $(s_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$, let $S_{(s,t)}(G;\Gamma_1(N))_{\mathbb{C}_p}^{\alpha}$ be the \mathbb{C}_p -subspace of $S_{(s,t)}(G;\Gamma_1(N)) \otimes_{K_{(s,t)}} \mathbb{C}_p$ generated by all generalized $T(\pi)$ -eigenspaces for all eigenvalues λ such that $\operatorname{ord}_p(\lambda) = \alpha$. In the following subsections, we shall investigate p-adic automorphic forms which have small $T(\pi)$ -slope.

2.2. Classicality of p-adic automorphic forms

In Lemma 1.1 without the condition (ram), we have seen that the spaces of classical automorphic forms are included in the ones of p-adic automorphic forms. Now we shall see that p-adic automorphic forms of small $T(\pi)$ -slope are classical. Namely,

Theorem 2.3. Let $\alpha \in \mathbb{Q}_{\geq 0}$ and $(n'_{\sigma})_{\sigma \in I'} \in W^{\mathrm{cl}}_{(n,v)}$. If the condition

$$\alpha < \nu_{n'} := \min_{1 \le i \le s} \left\{ \frac{1}{e(\mathfrak{p}_i)} \left(\min_{\sigma \in I_i} \{ n'_{\sigma} \} + 1 \right) \right\}$$

is satisfied, then we have (without the condition (ram))

$$S_{(n',v')}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p} = S^{\mathrm{cl}}_{(n',v')}(G;\Gamma_1(N);\mathbb{C}_p)^{\alpha}.$$

Proof. By the isomorphism (11) in Section 1, we see that the \mathbb{C}_p -Banach quotient space $(S_{(n',v')}(G;\Gamma_1(N))\otimes_K\mathbb{C}_p)/S^{\mathrm{cl}}_{(n',v')}(G;\Gamma_1(N);\mathbb{C}_p)$ is isomorphic to a direct summand of the direct sum of h-copies of the orthonormalizable \mathbb{C}_p -Banach quotient space $S_{(n',v')}\otimes_K\mathbb{C}_p/L(n',v';\mathbb{C}_p)$

whose orthonormal basis is

$$\{ (\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}}) \prod_{\sigma \in I'} x_{\sigma}^{m_{\sigma}} | a_{\tau} + b_{\tau} = n_{\tau} \text{ with } a_{\tau}, b_{\tau} \ge 0, \ m_{\sigma} \ge 0 \}$$
and $m_{\sigma} > n_{\sigma}'$ for some σ .

By the actions (3), (4) and (6) on the variables X_{τ} , Y_{τ} and x_{σ} in Section 1.2, we then see easily that

$$|T(\pi)| \le p^{-\nu_{n'}}$$

on $(S_{(n',v')} \otimes_K \mathbb{C}_p/L(n',v';\mathbb{C}_p))^h$. Hence we see that if $\alpha < \nu_{n'}$, then the image of any generalized $T(\pi)$ -eigenvector of slope α is 0 in the quotient space $(S_{(n',v')}(G;\Gamma_1(N))\otimes_K \mathbb{C}_p)/S_{(n',v')}^{\mathrm{cl}}(G;\Gamma_1(N);\mathbb{C}_p)$. So we have

$$S_{(n',v')}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p} = S^{\mathrm{cl}}_{(n',v')}(G;\Gamma_1(N);\mathbb{C}_p)^{\alpha}.$$

Remark 2.1. It is known that the spaces of definite quaternionic automorphic forms over \mathbb{Q} defined by means of homogeneous polynomials of degree n are isomorphic to the spaces of elliptic cusp forms of weight k = n + 2 by Jacquet-Langlands' theorem (cf. [2, Theorem 2]). Coleman [5, Theorem 6.1 and Theorem 8.1] showed that p-adic overconvergent modular forms of weight k and U_p -slope α are classical if $\alpha < k - 1 (= n + 1)$. Since s = 1 and e(p) = 1 in the case of $F = \mathbb{Q}$, Theorem 2.3 is a generalization of the result of Coleman to the case over totally real fields.

2.3. The local constancy of $\dim_{\mathbb{C}_p} S_{(s,t)}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p}$

We assume the condition (ram), i.e., $e(\mathfrak{p}_i) < p-1$ for all $i = 1, \ldots, s$. Let $\alpha \in \mathbb{Q}_{\geq 0}$. In this subsection, we shall give an explicit description of $m(\alpha)$ such that if $(s_{\sigma})_{\sigma \in I'}$, $(s'_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$ satisfy that $|s_{\sigma} - s'_{\sigma}| \leq p^{-m(\alpha)}$ for all $\sigma \in I'$, then we have

$$\dim_{\mathbb{C}_p} S_{(s,t)}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p} = \dim_{\mathbb{C}_p} S_{(s',t')}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p}$$

by applying Chenevier's argument in [4, Section 5] to our case.

By Definition 1.3 (2), we regard $S_{(s,t)}(G;\Gamma_1(N))$ as a direct summand of the orthonormalizable $K_{(s,t)}$ -Banach module $S_{(s,t)}^h$ for which we can also have the characteristic power series

$$P'((s_{\sigma})_{\sigma \in I'}, X) =: 1 + \sum_{i \ge 1} c'_i((s_{\sigma})_{\sigma \in I'}) X^i \in K_{(s,t)} \{ \{X\} \}$$

with $|c'_i((s_{\sigma})_{\sigma \in I'})| \leq 1$. To obtain $m(\alpha)$ as above, we shall investigate the Newton polygon $N'_{(s,t)}$ of $P'((s_{\sigma})_{\sigma \in I'}, X)$. We can take the set

$${e_{M,a} := (0, \ldots, M, \ldots, 0)}_{M \in \mathfrak{M}, 1 \le a \le h}$$

as an orthonormal basis of $S_{(s,t)}^h$, where we put the set of monomials

$$\mathfrak{M} := \{ (\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}}) \prod_{\sigma \in I'} x_{\sigma}^{m_{\sigma}} | a_{\tau} + b_{\tau} = n_{\tau} \text{ with } a_{\tau}, b_{\tau} \geq 0, \ m_{\sigma} \geq 0 \}$$

and M sits in the a-th component in $e_{M,a}$. We shall calculate the p-adic valuations of coefficients $c_i'((s_\sigma)_{\sigma\in I'})$ of $P'((s_\sigma)_{\sigma\in I'}, X)$ by means of this basis. For $\gamma = \gamma_1 \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \gamma_2 \in \Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$ with $\gamma_1, \gamma_2 \in \Gamma_1(N)$ and a monomial $M = (\prod_{\tau \in I \setminus I'} X_\tau^{a_\tau} Y_\tau^{b_\tau}) \prod_{\sigma \in I'} x_\sigma^{m_\sigma} \in \mathfrak{M}$, we have

$$(13) [\gamma]_{(s,t)} \cdot M = \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} (\prod_{\sigma \in I'} j_{\sigma} (\gamma_{\sigma})^{s_{\sigma}} \det(\gamma_{1\sigma} \gamma_{2\sigma})^{t_{\sigma}}) \times ((\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}})^{t} \gamma_{\tau}^{\iota}) \prod_{\sigma \in I'} (\gamma_{\sigma} \cdot x_{\sigma})^{m_{\sigma}}.$$

By the definition of $j_{\sigma}(\gamma_{\sigma})^{s_{\sigma}}$ and the action (6) on the variable x_{σ} in Section 1.2 for each $\sigma \in I'$, we see that the p-adic valuations of all coefficients of monomials of the form $(\prod_{\tau \in I \setminus I'} X_{\tau}^{a'_{\tau}} Y_{\tau}^{b'_{\tau}}) \prod_{\sigma \in I'} x_{\sigma}^{k_{\sigma}}$ in the expansion of (13) in $S_{(s,t)}$ are at least $\lambda \sum_{\sigma \in I'} k_{\sigma}$, where we put the positive rational number $\lambda := \min_{1 \leq i \leq s} \{\frac{1}{e(\mathfrak{p}_i)}\} - \frac{1}{p-1}$. Now we order the basis $\{e_{M,a}\}_{M,a}$ as follows: For $k \geq 0$, we define the subset

 $\mathcal{A}_k := \{e_{M,a} | 1 \leq a \leq h, M \text{ is of the form } \}$

$$\left(\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}}\right) \prod_{\sigma \in I'} x_{\sigma}^{k_{\sigma}} \text{ with } \sum_{\sigma \in I'} k_{\sigma} = k\}$$

of $\{e_{M,a}\}_{M,a}$. Then we see that the cardinality $\sharp \mathcal{A}_k = h_n\binom{k+g'-1}{g'-1}$ for $k \geq 0$, where $h_n := h \prod_{\tau \in I \setminus I'} (n_\tau + 1)$, and that for $k \geq 1$,

(14)
$$\sum_{q=0}^{k} q \cdot \sharp \mathcal{A}_q = h_n g' \binom{k+g'}{g'+1}.$$

We then exhibit elements of \mathcal{A}_0 as $e_1^{(0)}, \ldots, e_{h_n}^{(0)}$ arbitrarily. Next we exhibit elements of \mathcal{A}_1 as $e_{h_n+1}^{(1)}, \ldots, e_{h_n(g'+1)}^{(1)}$ arbitrarily. We then repeat this operation for all $k \geq 2$ as

$$e_{h_n\binom{k+g'-1}{g'}+1}^{(k)}, \ldots, e_{h_n\binom{k+g'}{g'}}^{(k)}.$$

We are going to obtain the representation matrix of infinite degree of $T(\pi)$ with respect to the basis $\{e_j^{(l)}\}_{j,l}$ ordered as above. For each $e_j^{(l)}$, we write

$$e_{j}^{(l)}|T(\pi) = \sum_{i_{0}=1}^{h_{n}} \alpha_{i_{0}}^{(0)}(j,l)e_{i_{0}}^{(0)} + \sum_{k\geq 1} \sum_{i_{k}=h_{n}\binom{k+g'-1}{g'-1}+1}^{h_{n}\binom{k+g'}{g'}} \alpha_{i_{k}}^{(k)}(j,l)e_{i_{k}}^{(k)}$$

with $\alpha_{i_k}^{(k)}(j,l) \in \mathcal{O}_{(s,t)}$ for all $k \geq 0$, where $\mathcal{O}_{(s,t)}$ is the ring of integers in $K_{(s,t)}$. As mentioned above, we then see that

(15)
$$\operatorname{ord}_{p}(\alpha_{i_{k}}^{(k)}(j, l)) \ge k\lambda$$

for all $k \geq 0$, $j \geq 1$ and $l \geq 0$. The representation matrix of $T(\pi)$ with respect to the ordered basis $\{e_1^{(0)}, \ldots, e_{h_n}^{(0)}, \ldots\}$ is of the form

$$\begin{pmatrix} \alpha_{1}^{(0)}(1,0) & \cdots & \alpha_{1}^{(0)}(h_{n},0) & \cdots \\ \vdots & & \vdots & & \vdots \\ \alpha_{h_{n}}^{(0)}(1,0) & \cdots & \alpha_{h_{n}}^{(0)}(h_{n},0) & \cdots \\ \vdots & & \vdots & & \vdots \\ \vdots & & \vdots & & \vdots \end{pmatrix}.$$

It is known that the coefficient $c'_i((s_\sigma)_{\sigma\in I'})$ of $P'((s_\sigma)_{\sigma\in I'}, X)$ is given by $(-1)^i \times$ (the convergent sum of *i*-th minors of the above matrix) for each $i \geq 1$ (cf. [13, Proposition 7 (a)]). So we see easily that

$$\operatorname{ord}_{p}(c'_{i}((s_{\sigma})_{\sigma \in I'})) > i^{1 + \frac{1}{g'}} \frac{2\lambda g'}{(g'+1)(g'+2)^{2}} (\frac{g'!}{h_{n}})^{\frac{1}{g'}}$$

by (14) and (15) in the case where

$$h_n\binom{k+g'-1}{g'}+1 \le i \le h_n\binom{k+g'}{g'}$$

with some $k \geq 2$. On the other hand, in the case where $1 \leq i \leq h_n(g'+1)$, we see that $\operatorname{ord}_p(c'_i((s_\sigma)_{\sigma \in I'})) \geq 0$ by Proposition 2.2. Therefore we have

(16)

$$\operatorname{ord}_{p}(c'_{i}((s_{\sigma})_{\sigma \in I'})) \geq \frac{2\lambda g'}{(g'+1)(g'+2)^{2}} (\frac{g'!}{h_{n}})^{\frac{1}{g'}} i (i^{\frac{1}{g'}} - (h_{n}(g'+1))^{\frac{1}{g'}})$$

for all $i \geq 1$. We put the function

$$\mu(x) := \frac{2\lambda g'}{(g'+1)(g'+2)^2} \left(\frac{g'!}{h_n}\right)^{\frac{1}{g'}} x \left(x^{\frac{1}{g'}} - \left(h_n(g'+1)\right)^{\frac{1}{g'}}\right)$$

on $\mathbb{R}_{\geq 0}$, which is a monotone increasing function. Since the Newton polygon $N_{(s,t)}$ of the characteristic power series $P((s_{\sigma})_{\sigma \in I'}, X)$ of $T(\pi)$ acting on $S_{(s,t)}(G; \Gamma_1(N))$ is bounded by $N'_{(s,t)}$ from the bottom, we then obtain the following

Proposition 2.4. Assume the condition (ram). Then we have

$$N_{(s,t)}(x) \ge \mu(x)$$

for all $(s_{\sigma})_{\sigma \in I'} \in W_{(n,v)}(\mathbb{C}_p)$ and $x \in \mathbb{R}_{\geq 0}$.

Secondly, the characteristic power series $P((\xi_{\sigma})_{\sigma \in I'}, X)$ for $T(\pi)$ on $S(G; \Gamma_1(N))$ shall be investigated. The coefficients $c_i \in K\langle \xi_{\sigma} | \sigma \in I' \rangle$ $(i \geq 1)$ of $P((\xi_{\sigma})_{\sigma \in I'}, X)$ can be regarded as analytic functions on $\mathcal{W}_{(n,v)}$. We then have the following

Proposition 2.5. Assume the condition (ram). We take two elements $(s_{\sigma})_{\sigma \in I'}$, $(s'_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$. We assume that there exists an integer $m \geq 0$ such that

$$|s_{\sigma} - s'_{\sigma}| \le p^{-m \cdot \max_{1 \le i \le s} \left\{ \frac{1}{e(\mathfrak{p}_i)} \right\}}$$

for all $\sigma \in I'$. Then we have

that

$$|c_i((s_\sigma)_{\sigma\in I'}) - c_i((s'_\sigma)_{\sigma\in I'})| \le p^{-(m+\lambda')\min_{1\le i\le s}\{\frac{1}{e(\mathfrak{p}_i)}\}}$$

for all $i \geq 1$, where we put $\lambda' := \min_{1 \leq i \leq s} \{1 - \frac{e(\mathfrak{p}_i)}{p-1}\}.$

Proof. Since $S(G; \Gamma_1(N))$ can be regarded as a direct summand of S^h via the isomorphism (10) in Definition 1.3 (1), it is enough to show the statement for the coefficients c_i' of the characteristic power series $P'((\xi_{\sigma})_{\sigma \in I'}, X)$ of $T(\pi)$ on S^h . Note that both $S_{(s,t)}$ and $S_{(s',t')}$ can be generated by the same orthonormal basis \mathfrak{M} over $K_{(s,t)}$ and $K_{(s',t')}$, respectively. For $M = (\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}}) \prod_{\sigma \in I'} x_{\sigma}^{m_{\sigma}} \in \mathfrak{M}$ and $\gamma = \gamma_1 \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \gamma_2 \in \Gamma_1(N) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \Gamma_1(N)$ with $\gamma_1, \gamma_2 \in \Gamma_1(N)$, we see

$$(17) [\gamma]_{(s,t)} \cdot M = \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} (\prod_{\sigma \in I'} j_{\sigma} (\gamma_{\sigma})^{s_{\sigma}} \det(\gamma_{1\sigma} \gamma_{2\sigma})^{t_{\sigma}})$$

$$\times ((\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}})^{t} \gamma_{\tau}^{\iota}) \prod_{\sigma \in I'} (\gamma_{\sigma} \cdot x_{\sigma})^{m_{\sigma}} \quad \text{and}$$

$$(18) [\gamma]_{(s',t')} \cdot M = \prod_{\tau \in I \setminus I'} \det(\gamma_{\tau})^{v_{\tau}} (\prod_{\sigma \in I'} j_{\sigma}(\gamma_{\sigma})^{s'_{\sigma}} \det(\gamma_{1\sigma}\gamma_{2\sigma})^{t'_{\sigma}}) \times ((\prod_{\tau \in I \setminus I'} X_{\tau}^{a_{\tau}} Y_{\tau}^{b_{\tau}})^{t} \gamma_{\tau}^{\iota}) \prod_{\sigma \in I'} (\gamma_{\sigma} \cdot x_{\sigma})^{m_{\sigma}}.$$

By the assumption that $|s_{\sigma} - s'_{\sigma}| \leq p^{-\frac{m}{e(p_i)}}$ for each $\sigma \in I'$ with i such that $\sigma \in I_i$, we can write in \mathbb{C}_p

$$s'_{\sigma} = s_{\sigma} + (\pi_i^{\sigma})^m u_{\sigma}$$
 and $t'_{\sigma} = t_{\sigma} - \frac{u_{\sigma}}{2} (\pi_i^{\sigma})^m$

with some $u_{\sigma} \in \mathcal{O}_{\mathbb{C}_p}$ by Definition 1.2. Then we have

(19)
$$j_{\sigma}(\gamma_{\sigma})^{s'_{\sigma}} = j_{\sigma}(\gamma_{\sigma})^{s_{\sigma}} (j_{\sigma}(\gamma_{\sigma})^{(\pi_{i}^{\sigma})^{m}})^{u_{\sigma}} \quad \text{and} \quad \det(\gamma_{1\sigma}\gamma_{2\sigma})^{t'_{\sigma}} = \det(\gamma_{1\sigma}\gamma_{2\sigma})^{t_{\sigma}} (\det(\gamma_{1\sigma}\gamma_{2\sigma})^{(\pi_{i}^{\sigma})^{m}})^{\frac{u_{\sigma}}{2}}.$$

Noting that $j_{\sigma}(\gamma_{\sigma})$ and $\det(\gamma_{1\sigma}\gamma_{2\sigma})$ are of the form $1 + \pi_i^{\sigma}a$ with some a with norm $|a| \leq 1$, by (17), (18) and (19) and the formula (7) in Section 1.2, we can calculate that for each $\sigma \in I'$ with i such that $\sigma \in I_i$, $|j_{\sigma}(\gamma_{\sigma})^{s'_{\sigma}} - j_{\sigma}(\gamma_{\sigma})^{s_{\sigma}}|$ and $|\det(\gamma_{1\sigma}\gamma_{2\sigma})^{t'_{\sigma}} - \det(\gamma_{1\sigma}\gamma_{2\sigma})^{t_{\sigma}}|$ are at most $|\pi_i^{\sigma}|^{m+\lambda'}$, because we can see easily that

$$\left| \frac{(\pi_i^{\sigma})^{km}(\pi_i^{\sigma})^k}{k!} u_{\sigma}'(u_{\sigma}' - 1) \cdots (u_{\sigma}' - k + 1) \right| \le |\pi_i^{\sigma}|^{m + \lambda'} \quad (k \ge 1, \ m \ge 0)$$

under the condition (ram). Here the symbol u'_{σ} stands for both u_{σ} and $\frac{u_{\sigma}}{2}$. By Proposition 2.2 and the isomorphism (11) in Definition 1.3, this implies that the absolute values of all components in the difference of the representation matrices of $T(\pi)$ on $S^h_{(s,t)}$ and the one on $S^h_{(s',t')}$ calculated before are at most $p^{-(m+\lambda')\min_{1\leq i\leq s}\{\frac{1}{\varepsilon(p_i)}\}}$. This implies that

$$|c_i((s_\sigma)_{\sigma\in I'}) - c_i((s'_\sigma)_{\sigma\in I'})| \le p^{-(m+\lambda')\min_{1\le i\le s}\left\{\frac{1}{e(\mathfrak{p}_i)}\right\}}.$$

for all
$$i \geq 1$$
.

Let $(s_{\sigma})_{\sigma \in I'}$, $(s'_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$. By Proposition 2.4, we see that $N_{(s,t)}(x), N_{(s',t')}(x) \geq \mu(x)$.

We put

$$\nu(x) := \frac{2\lambda g'}{(g'+1)(g'+2)^2} \left(\frac{g'!}{h_n}\right)^{\frac{1}{g'}} \left(x^{\frac{1}{g'}} - \left(h_n(g'+1)\right)^{\frac{1}{g'}}\right)$$

for $x \in \mathbb{R}_{\geq 0}$. Then ν is a strictly monotone increasing function, and we have

$$\nu(0) < 0$$
 and $\lim_{x \to \infty} \nu(x) = \infty$.

Moreover, the inverse function

$$\nu^{-1}(x) = h_n \left(\frac{(g'+1)(g'+2)^2}{2\lambda g'(g'!)^{\frac{1}{g'}}} x + (g'+1)^{\frac{1}{g'}} \right)^{g'}$$

of ν is also a monotone increasing function on $\mathbb{R}_{\geq 0}$ and $\nu^{-1}(x) \geq 0$ for $x \geq 0$. For $\alpha \in \mathbb{Q}_{\geq 0}$, we put

$$m(\alpha) := \left(\frac{\max_{1 \le i \le s} \{e(\mathfrak{p}_i)\}}{\min_{1 < i < s} \{e(\mathfrak{p}_i)\}}\right) [\alpha \nu^{-1}(\alpha)].$$

By Proposition 2.5, we then see that if $|s_{\sigma} - s'_{\sigma}| \leq p^{-m(\alpha)}$ for all $\sigma \in I'$, then

$$\left|c_i((s_\sigma)_{\sigma\in I'})-c_i((s'_\sigma)_{\sigma\in I'})\right|\leq p^{-\min_{1\leq i\leq s}\{\frac{1}{e(\mathfrak{p}_i)}\}((\max_{1\leq i\leq s}\{e(\mathfrak{p}_i)\})[\alpha\nu^{-1}(\alpha)]+\lambda')}$$

for all $i \geq 1$. Since we can replace \mathbb{Z}_p (resp. $m_v(\alpha) + 1$) by $\mathcal{O}_{\mathbb{C}_p}$ (resp. $\min_{1 \leq i \leq s} \{\frac{1}{e(\mathfrak{p}_i)}\}((\max_{1 \leq i \leq s} \{e(\mathfrak{p}_i)\})[\alpha \nu^{-1}(\alpha)] + \lambda'))$ in the statement of [14, Lemma 4.1], we have the following

Proposition 2.6. Assume the condition (ram). For any $\alpha \in \mathbb{Q}_{\geq 0}$, we put

$$m(\alpha) := \left(\frac{\max_{1 \le i \le s} \{e(\mathfrak{p}_i)\}}{\min_{1 \le i \le s} \{e(\mathfrak{p}_i)\}}\right) \left[\alpha h_n\left(\frac{(g'+1)(g'+2)^2}{2\lambda g'(g'!)^{\frac{1}{g''}}}\alpha + (g'+1)^{\frac{1}{g'}}\right)^{g'}\right].$$

If $(s_{\sigma})_{\sigma \in I'}$, $(s'_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$ satisfy $|s_{\sigma} - s'_{\sigma}| \leq p^{-m(\alpha)}$ for all $\sigma \in I'$, then the slope- α -part of the Newton polygons of $P((s_{\sigma})_{\sigma \in I'}, X)$ and $P((s'_{\sigma})_{\sigma \in I'}, X)$ are equal.

By combining this proposition with [12, Corollary of Section IV.4], we obtain the following

Theorem 2.7. Assume the condition (ram). Let $\alpha \in \mathbb{Q}_{\geq 0}$ and $(s_{\sigma})_{\sigma \in I'}$, $(s'_{\sigma})_{\sigma \in I'} \in \mathcal{W}_{(n,v)}(\mathbb{C}_p)$. If $|s_{\sigma} - s'_{\sigma}| \leq p^{-m(\alpha)}$ for all $\sigma \in I'$, then we have $\dim_{\mathbb{C}_p} S_{(s,t)}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p} = \dim_{\mathbb{C}_p} S_{(s',t')}(G;\Gamma_1(N))^{\alpha}_{\mathbb{C}_p}$.

Further, by Theorem 2.3, we then have immediately the following

Corollary 2.8. Assume the condition (ram). If $(n'_{\sigma})_{\sigma \in I'}$, $(n''_{\sigma})_{\sigma \in I'} \in W^{\mathrm{cl}}_{(n,v)}$ satisfy the conditions that $|n'_{\sigma} - n''_{\sigma}| \leq p^{-m(\alpha)}$ for all $\sigma \in I'$ and $\nu_{n'}$, $\nu_{n''} > \alpha$, then we have

$$\dim_{\mathbb{C}_p} S^{\mathrm{cl}}_{(n',v')}(G;\Gamma_1(N);\mathbb{C}_p)^{\alpha} = \dim_{\mathbb{C}_p} S^{\mathrm{cl}}_{(n'',v'')}(G;\Gamma_1(N);\mathbb{C}_p)^{\alpha}.$$

Remark 2.2. In Corollary 2.8, we need to assume the condition (ram) to apply the modified Wan's lemma with the *positive* rational number λ' . This corollary is a generalization of Coleman's result [5, Theorem B3.4] which gives a solution to a conjecture of Gouvêa and Mazur [7, Conjecture 1 in Section 5].

Remark 2.3. Kassaei [11] has constructed overconvergent \mathcal{P} -adic modular forms on quaternion algebras defined over any totally real field F which are unramified at \mathcal{P} and exactly one infinite place, where \mathcal{P} is a

prime ideal of F above p whose residue field has cardinality > 3. Then he has also showed the local constancy of dimensions of the spaces of overconvergent forms ([11, Theorem 1.1]).

References

- [1] S. Bosch, U. Güntzer and R. Remmert, "Non-Archimedean Analysis," Grundlehren der math. Wissenschaften 261, 1984.
- [2] K. Buzzard, On p-adic families of automorphic forms, pp. 23-44, in "Modular Curves and Abelian Varieties" (J. Cremona, J.-C. Lario, J. Quer and K. Ribet, Eds.), Progress in Math. Vol. 224, Birkhäuser Verlag Basel/Switzerland, 2004.
- [3] K. Buzzard, Eigenvarieties, preprint, 2004.
- [4] G. Chenevier, Familles p-adiques de formes automorphes pour GL(n), J. reine angew. Math. 570 (2004), 143-217.
- [5] R.F. Coleman, Classical and overconvergent modular forms, *Invent. Math.* **124** (1996), 214-241.
- [6] R.F. Coleman, P-adic Banach spaces and families of modular forms, *Invent. Math.* 127 (1997), 417-479.
- [7] F.Q. Gouvêa and B. Mazur, Families of modular eigenforms, *Math. Comp.* 58 (1992), 793-805.
- [8] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup. 4e série 19 (1986), 231-273.
- [9] H. Hida, Galois representations into $GL_2(\mathbb{Z}_p[\![X]\!])$ attached to ordinary cusp forms, *Invent. Math.* 85 (1986), 545-613.
- [10] H. Hida, On p-adic Hecke algebras for GL₂ over totally real fields, Ann. of Math. 128 (1988), 295-384.
- [11] P. L Kassaei, \mathcal{P} -adic modular forms over Shimura curves over totally real fields, Comp. Math. 140 (2004), 359-395.
- [12] N. Koblitz, "p-adic Numbers, p-adic Analysis, and Zeta Functions," 2nd edition, Graduate Texts in Math. 58, Springer-Verlag, Berlin and New York, 1984.
- [13] J.-P. Serre, Endomorphismes complètements continues des espaces de Banach p-adiques, Publ. Math. I.H.E.S. 12 (1962), 69-85.
- [14] D. Wan, Dimension variation of classical and p-adic modular forms, *Invent. Math.* 133 (1998), 449-463.
- [15] A. Weil, "Basic Number Theory," Die Grundlehren der math. Wiss. in Einzeldarstellungen, Bd. 144, 1974.
- [16] A. Yamagami, On Gouvêa's conjecture in the unobstructed case, J. Number Theory 99 (2003), 120-138.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN

E-mail address: yamagami@math.kyoto-u.ac.jp