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SUBSPACE THEOREM (PRELIMINARY VERSION)

RYOICHI KOBAYASHI

Graduate School of Mathematics, Nagoya University

ABSTRACT. We establish a new framework of Diophantine geometry which intro-

duces truncated counting function to Schmidt Subspace Theorem. This is a Dio-

phantine analogue of the ramification counting function in Nevanlinna theory. This
framework canonically splits the Diophantine inequality in the Parametric Subspace

Theorem into Archim edean and non-Archimedean parts. Using this framewark, we
will propose some conjectures on the effective version of the Roth theorem with

truncated counting function.

0. Introduction.
In [$\mathrm{V}$ , Chapt-6], Vojta described systematically the similarities between the

proofs of the Cartan-Ahlfors-Weyl Theorem and the Schmidt Subspace Theorem2 .

In this article, we push this direction further. As in Vojta[V], our strategy is to
bridge Nevanlinna theory and Diophantine approximation. What is novel in this
article is to bridge the Nevanlinna-Cartan theory on Wronskian and the theory of
successive minima in geometry of numbers by means of establishing a Diophantine
analogue of the truncated counting functions in Nevanlinna-Cartan theory $([\mathrm{N}],[\mathrm{C}])$ .
We establish this analogue via a new Diophantine analogue of Nevanlinna’s lemma
on logarithmic derivative.

It was Vojta who first formulated and proved a Diophantine analogue of Nevan-
linna’s lemma on logarithmic derivative (see [$\mathrm{V}$ , Theorem 6.4.3] and [$\mathrm{V}$ , Theorem
6.6.1]). In this article, we introduce a new geometric framework in Diophantine
approximation and prove the higher jet version of [$\mathrm{V}$ , Theorem 6.4.3] in our frame-
work.

Let us fix a number field $k$ . Let a finite set of linear forms in general position be
given and $D$ the linear divisor defined by these linear forms. Then, for each point
$x\in \mathrm{P}^{n}(k)\backslash D$ , we can canonically associate the finite set $S_{x}^{n}$ of non-Archimedean
places of $k$ by selecting those places over which the Zariski closures of $x$ and some
component of $D$ over the ring of integers $O_{k}$ intersect with multiplicity $\geq n$ . Our
new view point is to combine the association $x\mapsto S_{x}^{n}$ with Bombieri-Vaaler’s theory

1 This is on approximation to hyperplanes in $\mathrm{P}^{n}(\mathbb{C})$ by holon orphic curves,
2 This is on approximation to hyperplanes in $\mathrm{P}^{\mathit{7}b}(k)$ by rational points.
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on geometry of numbers [B-V], by which we are able to establish a new Diophantine
analogue of Nevanlinna’s lemma on logarithmic derivative. This leads to a strong
version of Schmidt’s Subspace Theorem with the truncated counting function, i.e.,
a strict Diophantine analogue of the Nevanlinna-Cartan theory.

The proximity function $m(x, F_{i})$ (resp. the counting function $N$ ( $x$ , $F_{i}$ )) measures
the Archimedean (resp. non-Archimedean) approximation of $x$ to the hyperplane
$F_{i}=0$ . By truncating $N(x, F_{i})$ at level $n$ , we get the truncated counting function
$N^{n}(x, F_{\mathrm{i}})$ . More generally, given a finite set $S$ of places including all Archimedean
ones, the $S$ proximity function $m_{S}(x, F_{i})$ measures the approximation relative to
the places in $S$ and the $S$-counting function $N_{s}$ $(x, F_{i})$ does the same relative to the
places outside of $S$ . Let’s return to the original situation. By truncating $N(x, F_{i})$

at level $n$ , we get the truncated counting function $N_{n}(x, F_{i})$ and we define the
residual counting function

$N^{n}(x, F_{\mathrm{i}}):=N(x, F_{i})-N_{n}(x, F_{\mathrm{i}})$ .

This counts only intersections having the multiplicity $(=m)$ not smaller than $n$

with weight $m-n$ . The absolute logarithmic height function $\mathrm{h}\mathrm{t}(x)$ measures the
total arithmetic complexity of $x\in \mathrm{P}^{n}(k)$ .

The main result of this article is formulated as follows.

Main Theorem (Theorem 4.3). Let $F=\{F_{\mathrm{i}}\}_{i=0}^{N}$ be a set of linear forms in
$\mathrm{P}^{n}(k)$ in general position. Let $\epsilon>0$ . Then there exists a finite union of linear
subspaces $E(F, \epsilon)$ and a constant $C(F, \epsilon)$ such that for all $x\in \mathrm{P}^{n}(k)\backslash E(F, \epsilon)$ the
approximation znequality

$\sum_{i=0}^{N}m(x, F_{i})+$ I $N^{n}(x, F_{i})\leq(n+1+\epsilon)\mathrm{h}\mathrm{t}(x)+C(F, \epsilon)$

holds.

The presence of the residual counting function in the left hand side strengthens
the Schmidt Subspace Theorem. We hope that this will be useful in the attempt
toward the effective version Schmidt’s Subspace Theorem.

The plan of this article is as follows. Because our method is based on the
analogy between Diophantine approximation and Nevanlinna theory, we included
a brief introduction to Nevanlinna theory in \S 1 and Q3. We then establish their
Diophantine analogue in Q2 and in \S 4.

In the course of the proof of the Main Theorem, we establish a new framework
in Diophantine geometry. Let $k$ be any number field and $S$ any fixed finite set of
places of $k$ containing all Archimedean ones. The basic Diophantine functions (i.e.,
the proximity and counting function) are defined with respect to the fixed $S$ and the
set $S$ is fixed in the whole story. In our new framework, we introduce the varying
$S$ and generalize Vojta’s Theorem $[\mathrm{V}$ , Theorem 6.4.3$]^{3}$ in this setting. The varying
$S$ means the following. We consider $\mathrm{P}^{n}(k)$ together with a linear divisor $D$ defined
over $k$ . To each $x\in \mathrm{P}^{n}(k)-D$ , we select all non-Archimedean places $v$ of $k$ with

3 The role of Vojta’s Theorem [ $\mathrm{V}$ , Theorem 6.4.3] is two-fold in the geometry of Diophantus-
Nevanlinna analogy. One is that as the Diophantine analogue of the Lem ma on logarithmid
cieribvative. The other is that as a $\mathrm{r}\mathrm{e}$-formulation of the Parametric Subspace Theorem.
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the property that the Zariski closures of $x$ and $D$ (over the ring $O_{k}$ of integers)

intersect with multiplicity $\geq n$ over the place $v$ . We define $S_{x}^{n}$ the collection of

such non-Archimedean places $v$ and define an association $x\mapsto S_{x}^{n}$ . The varying $S$

just means $S(x)=S_{\mathrm{m}}\cup \mathrm{S}\%$ . Here we encounter the difficulty stemming from a

non-uniform number of non-Archimedean places. In \S 2, we overcome this difficulty

by geometry of numbers with an appropriate choice of the weights in the length

function (the associated star-body should have a good “shap $\mathrm{e}^{1}$
’ with respect to the

non-Archimedean places involved).

In \S 4, we push the analogy further and formulate this in the shape, Theorem 4.2,

completely analogous to the Lemma on logarithmic derivative. Theorem 4.2 appears

as a new version of the Parametric Subspace Theorem (because this generalizes $[\mathrm{V}$ ,

Theorem 6.4.3]) from which we deduce the Main Theorem. As is clear from the

statement of Theorem 4.2, the new version of Parametric Subspace Theorem splits

into the Archimedean and non-Archimedean parts.

The use of the Roth lemma in the proof of the Roth and Schmidt Subspace

Theorem is the origin of the ineffectiveness of these theorems. In \S 5, we propose
some conjectures toward the effectiveness from the new framework introduced in

Q2. The Diophantus-Nevanlinna analogue we establish in this article is based on the

Nevanlinna-Cartan theory which consists of the Lemma on logarithmic derivative

and the Wronskian formalism (see \S 3). In the most primitive sense, Parametric
Subspace Theorem is the Diophantine analogue of the Lemma on logarithmic de-

rivative and Schmidt’s proof of “$\mathrm{P}\mathrm{S}\mathrm{S}\mathrm{T}\Rightarrow$ SST” is the Diophantine analogue of the

Wronskian $\mathrm{f}\mathrm{o}\mathrm{I}^{\cdot}\mathrm{m}\mathrm{a}1\mathrm{i}\mathrm{s}\mathrm{m}^{4}$ . Vojta refined this analogue by establishing the “Type $\mathrm{A}$

analogue of the Lemm a on logarithmic derivative5 (cf. Theorem 2.1) by showing

“PSST $\Rightarrow \mathrm{T}\mathrm{y}\mathrm{p}\mathrm{e}$ A. Then Vojta’s proof of “Type A $\Rightarrow$ SST” turns out to be the

Diophantine analogue of the Wronskian formalism at this stage. \S 5 is an attempt

toward pushing th is direction further. Reformulating Vojta’s proof of “$\mathrm{P}\mathrm{S}\mathrm{S}\mathrm{T}\Rightarrow$

Type $\mathrm{A}$
” in our new framework, we get the “Type $\mathrm{B}$

” analogue of the Lemma on
logarithmic derivative (see Theorem 4.2). The “Type $\mathrm{B}$

” analogue (in Theorem 4.2)

splits into the inequalities (16) over $S_{\infty}$ and certain conditions over $S_{x}^{n}$ . Here it is

rem arkable that we can propose a Diophantine inequality which seems to be much
simpler compared to the original Roth type inequality which, we conjecture, would
effectively bound the exceptions to the inequality (16). However, since logically

“Type A statement $\Rightarrow$ Type $\mathrm{B}"$ , we cannot avoid establishing “Type A statement”
( $\Leftarrow$ PSST $\Leftarrow$ Roth Theorem). In short, we need ineffective “Type A statement”
to conclude that the effective bound on the exceptions to (16) gives the effective
bound to the “Type A statement”. Since the “Type $\mathrm{B}$

” analogue of the Lemma

on logarithmic derivative obeys the same geometric pattern as in the Nevanlinna
theory, we can establish the Diophantine analogue of the Wronskian formalism to-

gether with the Diophantine analogue of the Wronskian itself. In the Roth case
$(n=1)$ , the Archimedean part of the above splitting reduces to a simple Diophan-

tine inequality for $\mathbb{Z}^{2}$ embedded in $\mathbb{R}^{2}$ . We conjecture that there exists an effective
bound for the height of solutions to the opposite inequality (see \S 5, (17) and (18)).
Once we were able to prove this conjecture, we would argue inductively on $n$ and
finally get the effective Schmidt Subspace Theorem with residual counting function,

4 PSST (resp. SST) is an abbreviation of the Parametric Subspace Theorem (resp. the Sub
space Theorem).

5 This is [ $\mathrm{V}$ , Theorem 6.4.3] on which this article is based
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which implies the effective version of the $\mathrm{a}\mathrm{b}\mathrm{c}$-conjecture and its generalization.

1. Lemma on logarithmic derivative.
We refer to [Y], $[\mathrm{K}1\}2]$ for technical details of this section.
We will freely use standard notation in Nevanlinna theory which we briefly re-

viev here. Let $X$ be a smooth projective variety and $D$ any effective divisor.
Nevanlinna theory provides a natural framework for the study of approximation to
hypersurfaces by transcendental holomorphic curves.

Let $f$ : $\mathbb{C}arrow X$ be a holomorphic curve whose image is not entirely contained in
Supp (D).

The proximity function

$m_{f,D}(r)= \int_{0}^{2\pi}-\log$ dist Euc
$(f(re^{i\theta}), D) \frac{d\theta}{2\pi}$

measures the Euclidean approximation of $f$ to $D$ . Here the Euclidean distance is
measured by using a smooth Hermitian norm of $Ox$ $(D)$ and a defining equation of
$D$ .

The counting function

$N_{f,D}(r)= \sum_{0<|a|<?}01^{\cdot}(3_{a}(\sigma(f))\log|\frac{r}{a}|+\mathrm{o}\mathrm{r}\mathrm{d}_{0}(\sigma(f))$ logr

measures the approximation of $f$ to $D$ by counting the number of roots of $\sigma(f(z))=$

$0$ . The Poisson-Jensen formula implies that the height function
$T_{f,D}(r)=m_{f,D}(r)+N_{f,D}(r)$

depends (up to bounded functions) only on the linear equivalence class of $D$ (First
Main Theorem in Nevanlinna theory).

Let $X$ be a smooth projective variety and $D$ any effective divisor. We will
use the superscript (j) to indicate the j-th jet object. For a holomorphic curve
$f$ : $\trianglearrow X$ , we define the j-th canonical jet lift $f^{(j)}$ : $\mathbb{C}arrow X^{(j)}$ by $f^{\langle j)}(z)=$

$(f(z), f’(z)$ , $\ldots$ , $f^{(j)}.$ ). Two germs of holomorphic curves $f_{i}$ : $\Delta_{i}arrow X(\mathrm{i}=1,2)$

passing through $x\in X$ (i.e., $f_{i}(\mathrm{O})=x$ ) are said to be $j$-equivalent if and only if $f1$

and $f_{2}$ have the same Taylor series at $z=0$ up to order $j$ . The j-th jet space $X^{(j\rangle}$

is by definition the set of all $i$ -equivalence classes of germs of holomorphic curves in
$X$ . We write $\pi^{(j\rangle}$ : $X^{(j\}}arrow X$ for the canonical projection. Let $s$ be a holomorphic
function defined on an open set $U\subset X$ and let $f$ : $\trianglearrow X$ be a representative of
an element of $(\pi^{(j)})^{-1}U$ . Then the association

$(s, f) \mapsto\frac{d^{j}}{dz^{j}}|_{z=0}s(f(z))$

canonically defines a holomorphic function $d^{j}s$ on $(\pi^{(j\rangle})" 1$ $U$ . Let a proper sub-
scheme $Z$ of $X$ be locally given in terms of the generators of the defining ideal by
$Z=V(s_{1}, \ldots, s_{t})$ . By $V_{\mathrm{r}\mathrm{e}\mathrm{g}}$ we mean the regular part of $V$ and we set

$Z^{(j)}=$ the Zariski closure of $V_{1\mathrm{e}\mathrm{g}}(s_{1}, \ldots, s_{\iota}, ds_{1}, \ldots, dst, \ldots, d^{j}s_{1}, \ldots, d^{j}st)$

and call it the j-th jet space of $Z$ . Let oo be the divisor at infinity of (any) projective
completion $\overline{X^{(I)}}$ of the jet space $X^{(j)}$ .

We are now ready to state a modern version of Nevanlinna’s lemma on logarith-
mic derivative ( [Y] , $[1\{1,2]$ ).
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Theorem 1.1. Let $(X, D)$ be as above. Let $f$ : $\mathbb{C}arrow X$ be a holomorphic curve
such that $f(\mathbb{C})\not\subset \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(D)$ . Let $j$ be any positive integer. Then we have

$\{$

$m_{f},z(r)\leq m_{f}(j),z(j)(r)+S;(r)//$ ,

$m_{f^{(j\rangle},\infty}(r)\leq S_{f}(r)//$ .

Here the symbol $S_{f}(r)$ indicates a small order error function

$S_{\mathit{1}}(r)=O(\log^{+}(rT_{JE}.,(r)))$

in the asym ptotic sense as $rarrow\infty$ . The symbol // means that the said inequality
holds outside a Borel set of finite Lebesgue measure.

The Lemma on logarithmic derivative is important in the following two points:
(i) [On approximation.] Suppose that a holomorphic curve $f$ : $\mathbb{C}arrow X$ approximates
a proper subscheme $Z$ . Then the first inequality of Theorem 1.1 implies that any
j-jet of the holomorphic curve $f$ likely approximates the j-jet space of $Z$ in $X^{(j)}$ .
Moreover the second inequality implies that any j-jet of $f$ does not approximate
the divisor at infinity of any projective completion of $X^{(j\rangle}$ .
(ii) [Non sensitivity on targets and subschemes.] The inequalities of Theorem 1.1
are of the same form for any holomorphic curve in any target and with respect to
approximation to any proper subscheme.

In the next section, we will discuss what Diophantine analogue is possible about
the Lemma on logarithmic derivative from the view point of (i) and (ii).

2. A Diophantine analogue of the Lemma on logarithmic derivative.

in this section we closely follow ( $\mathrm{V}$ , Chapt. 6] to prove a Diophantine analogue
of Nevanlinna’s lemma on logarithmic derivative for points of $\mathrm{P}^{n}(k)$ approximating
hyperplanes6 .

We first introduce basic definitions in Diophantine approximation on projective
varieties.

Let $k$ be a fixed number field and $X$ a smooth projective variety defined over
$k$ and $D$ a divisor. Let $v$ be any place (finite or infinite) of $k$ . To define the
Diophantine analogue of $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$ functions, we need to extend
$X$ to an arithmetic variety ,$Y$ over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(O_{k})$ having $X(k)$ as a fiber over a generic
point. The Weil function associated to $v$ is defined by

$\lambda_{D,v}$ : $X-Darrow \mathbb{R}_{\geq \mathrm{c}}$ ; $x\mapsto\lambda_{D,v}(x):=-\log \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{v}(x, D)$ .

By using Weil functions, we introduce fundamental functions in Diophantine
approximation.

Let $S$ be a finite set of places of $k$ containing all infinite ones. For $v\in M_{k}$ we
set $d_{v}=[h_{v}^{n} : \mathbb{Q}_{p}]/[k:\mathbb{Q}]$ (where $v$ divides $p$). Let $x\in X(k)$ .
(i) The $S$-proxim ity function is defined by

$77 \iota_{S}(D, x)=\sum_{v\in S}d_{v}\lambda_{D,v}(x)$
.

6 The Diophantine analogue we $\mathrm{p}\mathrm{r}$ove in this article works only on the approximation to
hyperplanes in projective spaces We will prove in a future paper a more general analogue on
the approxim ation to general subschemes of general projective varieties.
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This measure the approximation to $D$ with respect to places in $S$ .
(ii) The $S$-counting function is defined by

$N_{S}(D, x)= \sum_{v\not\in S}d_{v}\lambda_{D,v}(x)$
.

This measures the approximation to $D$ with respect to places outside of $S$ .
Let $\sigma=0$ be a defining equation of $D$ over $k$ and let $p$ be the prime corresponding

to the restriction of $v$ to Q. Then

$N_{S}(D, x)= \frac{1}{[k\cdot \mathbb{Q}]}.\sum_{v\not\in S}\deg_{v}(\sigma(x))\log N(v)=\sum_{v\not\in S}\frac{\deg_{v}(\sigma(x))}{\deg_{v}p}\log p$ .

The proximity and counting functions may change drastically if we change $D$

in its linear equivalence class. The quantity invariant under linear change of $D$

will define a complete intersection theory of points and divisors in Diophantine
approximation.

The absolute logarithmic height function is defined by the sum of all Weil func-
$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}^{7}$ :

$\mathrm{h}\mathrm{t}_{D}(x)=m_{S}(D, x)+N_{S}(D,$
$x^{)}$, .

The product formula implies that the absolute logarithmic height function $\mathrm{h}\mathrm{t}(x)$ (uP

to bounded functions) depends only on the linear equivalence class of the divisor
$D$ (this is the Diophantine analogue of the First Main Theorem in Nevanlinna
Theory).

The asymptotic behavior of these functions is defined for infinite set of A-rational
points of $X$ . Therefore,

the collection of the images of $f|_{\mathbb{C}(?)}$ : $\mathbb{C}(r)arrow X$ for unbounded set $\{r\}$

$\mathrm{a}\underline{\mathrm{n}\mathrm{a}\log}\mathrm{y}$ an infinite set $\{x\}\subseteq X(k)$

where $\mathbb{C}(r)=\{z\in \mathbb{C};|z|<r\}$ and $f$ : $\mathbb{C}arrow X$ is an entire holomorphic curve. The

prime structure is intrinsic in Diophantine geometry, while its Nevanlinna analogue

is to distinguish the “map” $f$ : $\mathbb{C}arrow X$ from its “image” $f(\mathbb{C})$ :

( $\mathrm{C}(\mathrm{r})$ , point measure) $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}rightarrow$ finite places of $k$ ,

$( \mathrm{C}(\mathrm{r}), \frac{d\theta}{2\pi})\vdasharrow \mathrm{a}\mathrm{n}\dot{\mathrm{r}}1\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ infinite places of $k$ .

Note that there is no “canonical” Diophantine notion of the $\zeta$“Nevanlinna theoretic

non-Archimedean places”. The above defined analogue depends on the holomorphic

curve $f$ and the divisor $D=(\sigma)(a\in \mathbb{C}(r)$ is a “non-Archimedean place” if and only

if $\mathrm{o}\mathrm{r}\mathrm{d}_{a}(\sigma(f))$ is positive). The main idea of this article is to reverse the orientation
of considering analogies and to consider the “Diophantine analogue” of the non-

existence of the “canonical definition” of the “Nevanlinna theoretic finite places”.

7 The absolute logarithmic hight function does not depend on the choice of the field $K$ over

which $x$ is defined.
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To formulate a Diophantine analogue of the Lemma on logarithmic derivative,

we need a Diophantine analogue of the derivative for points of $\mathrm{P}^{n}(k)$ (note that
the derivative is defined intrinsically for holomorphic curves but not for rational
points).

For this purpose, we identify $T[x]\mathrm{P}n$ ( $[x]\in \mathrm{P}_{n}(k)$ where $x\in O_{k,S}^{n+1}-\{0\}$ without

common non $S$-unit factor) with $k^{n+1}$ A $x\cong k^{n+1}/\langle x\rangle>\cong k^{n}$ up to $O(-1)_{x}$ so that
we can work in linear algebra8. This space inherits a canonical lattice structure
$O_{k_{1}S}^{n+1}$ A $x\subset k^{n+1}$ A $x$ .

To proceed, we consider two families of lines in $\mathrm{P}_{n+1}(k)(=$ the projective comple-
tion of $k^{n+1}$ ). One is the family $\mathcal{F}_{1}$ of lines in $\mathrm{P}(k^{n+1})$ passing through $[x]\in \mathrm{P}_{n}(k)$

(the hyperplane at infinity). The other family $\mathcal{F}_{2}$ consists of those lines passing
through the origin of $k^{?\iota+1}$ (naturally parameterized by the hyperplane $\mathrm{P}_{n}(k)$ at
infinity). For any point $p$ of $\mathrm{P}_{n}(k)$ we pick a point $y\in k^{n+1}$ in the corresponding
line in $F_{2}$ in such a way that $y\in O_{k,S}^{n+1}$ without common non $S$-unit factor.

Let $x$ , $v_{2}$ , $\ldots$ , $v_{\mathit{7}l+1}$ be a basis of $O_{k^{n},S}^{n+1}$ and set $y=y_{1^{X}}+y_{2}v_{2}+\cdots+y_{n+1}v_{n+1}$ .
The $S$-unit factor is undetermined for the above choice of $y$ . However, the absolute
logarithmic height

$\overline{h}$ ( $y$ A $x$ ) $:= \frac{1}{[k\cdot \mathbb{Q}]}.\sum_{v\in S}[k_{\mathrm{L}^{1}}. : \mathbb{Q}_{v}]\log\max|y_{\mathrm{i}}|_{v}2\leq \mathrm{i}\leq n+1$

is independ ent of the undetermined $S$-unit factor. The set of all points in $\mathrm{P}_{n}(k)$

with the same $y$ A $x\in O_{k,S}^{n+1}\mathrm{A}x$ forms an infinite set having the following properties:
(a) This infinite set accum ulates at the “center of gravity” $[x]\in \mathrm{P}_{n}(k)$ .
( $\mathrm{b}\}$ This infinite set lies on the line of $\mathrm{P}_{n}(k)$ which is the intersection of $\mathrm{P}_{n}(k)$ and
the 2-plane in $\mathrm{P}_{n+1}(k)$ determined by $x$ and $y$ .
We interpret this infinite set as an analogue of a holomorphic curve $c$ : $\mathbb{C}arrow \mathrm{P}_{n}(\mathbb{C})$

with $f(\mathrm{O})=[x]$ and $y\Lambda x\in O_{k,S}^{n+1}.\wedge x\subset T_{[x]}\mathrm{P}_{n}(k)$ an analogue of the derivative $c’(0)$ .
More explicitly, we associate to $y$ A $x\in k^{n+1}$ A $x$ ( $y$ being as above) a holomorphic
curve $c(z)$ in the following way. The line in $\mathrm{P}_{n}(k)$ determined by the set of all points
in $Fn(k)$ having the same $y$ A $x\in O_{k,S}^{n+1}$ is parameterized as $z\mapsto c(z):=[x+zy]$

( $x$ and $y$ being linearly independent). This is what we want to have. Indeed, we
introduce a system of homogeneous coordinates so that $x=$ $(x_{0}$ : $\ldots$ : $x_{n})$ and
$y=$ $(y_{0} : \cdots : y_{n})$ and assume that $x_{0}+y_{0}\neq 0$ . Then, for $z$ with $|z|$ small, we have

$c(z)=[x_{0}+zy_{0}:. . , : x_{n}+zy_{n}]$

$=[1 : (x_{1}+zy_{1})x_{0}^{-1}(1+z \frac{y_{0}}{x_{0}})^{-1}:. . . : (x_{n}+zy_{n})x_{0}^{-1}(1+z\frac{y_{n}}{x_{n}})^{-1}]$

$=[1 : \frac{x_{1}}{x_{0}}+z\frac{x_{0}y_{1}-x_{1}y_{0}}{x_{0}}+O(z^{2}):. . . : z\frac{x_{0}y_{n}-x_{n}y_{0}}{x_{0}}+O(z^{2})]$ .

In a similar way, given $y^{(1)}$ and $y^{(2)}$ in $O_{k,S}^{n+1}$ , we can associate a holomorphic curve
$c(z)$ with the property that $c(0)=[x]$ and $y^{(1)}$ A $x$ (resp. $y^{(2)}$ A $x$ ) as an analogue
of $c’(0)$ (resp. $c’(0)$ ) by setting

$c(z):=[x+zy^{(1)}+z^{2}(y^{(2)}- \frac{y^{(1)}}{x_{0}})]$

.

8 The Euler exact sequence im plies the isomorphism $k^{n+1}/\langle x\rangle\cong T_{[x]}\mathrm{P}^{n}$ @ 0(-1)[x] .
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Indeed, we have

$c(z)=[1$ : $\frac{x_{1}}{x_{0}}+z\frac{x_{0}y_{1}^{(1)}-x_{1}y_{0}^{(1)}}{x_{0}}+z^{2}\frac{x_{0}y_{1}^{(2)}-x_{\mathrm{i}}y_{0}^{(2)}}{x_{0}}$ :

. . . : $\frac{x_{n}}{x_{0}}+z\frac{x_{0}y_{n}^{([perp])}-x_{n}y_{0}^{(1)}}{x_{0}}+z^{2}\frac{x_{0}y_{n}^{(2)}-x_{n}y_{0}^{(2)}}{x_{0}}]$

Thus, given $y^{([perp])}$ A $x$ and $y^{(2)}\Lambda x$ in $O_{k,S}^{n+1}$ A $x\in T[x]\mathrm{P}n(k)$ , we can associate a

holomorphic curve in $\mathrm{P}_{n}(\mathbb{C})$ in a canonical way. Under this correspondence, $\overline{h}(y\Lambda x)$

being large is an analogue of $|f’(0)|$ being large. Under the above situation we

have $\frac{1}{k!}\frac{d^{k}c}{dt^{l\mathrm{u}}}(0)$ corresponds to $y^{(k)}$ (A $=1,2$). Moreover, we can generalize the

above argument to any given $y^{(1)}$ , $\ldots$ , $y^{(j)}$ $(j=1, \ldots, n)$ . This suggests that a
Diophantine analogue of the sequence of jets of a holomorphic curve is defined by
successively taking linearly independent sequence of vectors in the lattice $O_{k,S}^{n+1}\Lambda x$ .
Minkowski’s geometry of numbers {the theory of successive minima) together with
the appropriate choice of convex bodies provide us a geometric framework for the

Diophantine analogue of the derivatives. It is Vojta’s observation in [$\mathrm{V}$ , Chapt 6]

that the Diophantine analogue of the derivatives should be built modelled after the

Lemma on logarithmic derivative in the Nevanlinna theory. Indeed, the Lemma on
logarithmic derivative (Theorem 1.1) suggests the best choice of the convex bodies
in the theory of successive minima.

The following theorem is a generalization of [ $\mathrm{V}$ , Theorem 6.4.3]. We fix any

finite set $S$ of places of $k$ containing all Archimedean ones. For $k$-rational point
$x$ , we introduce a temporary notion of the relative logarithmic height by setting
$\mathrm{h}\mathrm{t}’(x)=[k : \mathbb{Q}]\mathrm{h}\mathrm{t}(x)$ ( $\mathrm{h}\mathrm{t}(x)$ being the absolute logarithmic height).

Theorem 2.1. Let $F_{0}$ , . . . $\backslash$. $F_{N}$ be a set of linear foms in $k^{n+1}$ in general position.

Let $\epsilon>0$ . Then there exists a finite set $S$ of proper linear subspaces of $k^{n+1}$ such

that if $x\in k^{n+1}$ is not a vector in the union of the linear subspaces in $S$ , then there

exists a sequence $x^{(1)}$ , $\ldots$ , $x^{(n)}\in O_{k^{\mathrm{r}},S}^{L+1}$

. of vectors such that $x\Lambda x^{(1)}\Lambda$ . . , $\Lambda x^{(n)}\neq 0$

and for each $p=1.,$ $\cdots,$
$n_{f}$ the following inequality hola si For $p=1$ , $\ldots$ , $n$ , we set

$X\leq p-1=x\Lambda \mathrm{x}(\mathrm{i})\mathrm{A}$ . . $\Lambda x^{(p-1)}$ and $\Gamma_{i,p}^{\prec}=\Gamma_{i}\prec$ A $F_{n-p+2}\Lambda\cdots$ A $F_{n}$ . Then, after
suitably $re$-ordering the $F$ ’s, we have

$\sum_{v\in S}1o\mathrm{g}\frac{||(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p)}))\cdot F_{i,p}||_{v}}{||x\leq p-1||_{v}||x\leq p-1.F_{i,p}||_{v}}<\epsilon \mathrm{h}\mathrm{t}’(x)$

for all $\mathrm{i}=0$ , . . ., $N$ and for all $x$ such that $x^{\leq p-1}$ . $F_{i,p}\neq 0$ . If $x^{\leq p-1}$ . $F_{\mathrm{z},p}.=0$ then
$(x^{\leq p-2}\Lambda x^{(p)})$ . $\Gamma_{\mathrm{i},p}^{\prec}=0$ .

As $X\leq 0=x$ and $x^{\leq-1}\wedge \mathrm{X}(\mathrm{i})=x^{(1)}$ , [$\mathrm{V}$ , Theorem 6.4.3] corresponds to putting

$p=1$ in Theorem 2.1. The following lemma is a “higher jet analogue” of [$\mathrm{V}$ , Lemma

6.4.4].

Lemma 2.2. Let k be a field with absolute value |. |. Let F0, \ldots ,
$F_{N}$ be $N+1$

linear forms in general position. If for some index i,

$|$ ( $x^{\leq p-1}$ A($x^{\leq p-2}$ A $x^{(p)}$ )) $\cdot F_{\mathrm{i},p}|>$ A $|x^{\leq p-1}||x^{\leq p-1}$ . $F_{i,p}|$ ,
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then there exists a constant $c>0$ (the constant $c$ depends only on the $F$ ’s) such that

after $re$-ordering the $\Gamma^{\tau}$ ’s (the $re$-ordering depends on the $F$ ’s and also on $x^{\leq p-1}$)

$|$ ( $x^{\leq p-1}$ A($x^{\leq p-2}$ AA $x^{(p)}$ )). ( $F_{j,p}$ A $F_{n-p+1,p}$ ) $|>cA|x^{\leq p-1}||x^{\leq p-1}\cdot F_{j,p}|$

holds for some index $j$ (the index $j$ depends on the $F$ ’s, $x^{\leq p-1}$ and also on $x^{\leq p-2}$ A
$x^{(p)})$ .

Proof. We introduce the lexicographical order to the set of all $\mathrm{i}=(\mathrm{i}_{1}, \ldots, \mathrm{i}_{p})$

satisfying $0\leq \mathrm{i}_{1}<\cdots<\mathrm{i}_{p}\leq N$ and write $F_{i}=F_{\mathrm{i}_{1}}\Lambda\cdots$ $\Lambda F_{\mathrm{i}_{p}}$ . After re-ordering

the $F’ \mathrm{s}$ , we may assume that $|x^{\leq p-1}$ . $\Gamma_{i}^{\mathrm{a}}|$ is ordered lexicographically:

$|x^{\leq p-1}\cdot F_{0,1,..p-1}|\leq\cdots\leq|x^{\leq p-1}$ . $F_{N-p+1,\ldots,N}|$ .

In particular we may assume that

$|x^{\leq p-1}\cdot F_{0,\mathrm{p}}|\leq\cdots\leq|x^{\leq p-1}$ . $F_{n-p+1,p}|$ .

Noting that $k^{7t+1}$ A ( $x$ A $x^{(1)}$ A $\ldots$ A $x^{(p-2)}$ ) $\cong k^{n+1}/\langle x, x^{(1)}, \ldots, x^{(p-2\}}\rangle$ , we see that
$F_{0,p}$ , $\ldots$ , $F_{n-p+1},I^{2}$ form basis of $(k^{n+1}/\langle x, x^{(1)}, \ldots, x^{(p-2)}\rangle)^{*}$ . Let $F_{0,p}^{*}$ , $\ldots$ , $F_{n-p+1,p}^{*}$

be its dual basis. Let $a<<b$ indicate that there exists a constant $c$ such that $a\leq cb$ .
We use this abbreviation if the constant depends on the arguments in a uniform
way. Otherwise we will take special care. For instance, if there are two uniform
constants $c_{1}$ and $c_{2}$ such that $c_{1}b\leq a\leq c_{2}b$ , we write $a>><<6$ . Hereafter the
constant implicit in $<<$ , etc. depends only on the $F’ \mathrm{s}$ uniformly. We then have
$|x^{\leq p-1}|>><<|x^{\leq p-1}$ . $F_{n-?)+1,p}|$ . As the lemm a dose not change if we add a scalar
multiple of $x^{(p-1)}$ to $x^{(p)}$ , we may assume ( $x^{\leq p-2}$ A $x^{(p)}$ ) $\cdot$ $F_{n-p}+1,p=0$ .

We now claim that the assumption of Lem ma 2.2 implies

$0 \leq j\leq n-p+1\max\frac{|(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p)}))\cdot F_{j,p}|}{|x\leq p-1.F_{j,p}|}>>A$ .

To prove this, we introduce a unit vector $u$ proportional to $x^{\leq p-1}$ . Then the
vectors $F_{0,p}^{*}$ , $\cdots$ , $F_{0,n-p}^{*}$ and $u$ form a new basis of $k^{n+1}/\langle x, x^{(1)}, \ldots, x^{(p-2)}\rangle$ . It
follows from the rule of $\mathrm{r}\mathrm{e}$-ordering $F’ \mathrm{s}$ that the transition matrix associated to
this base change has bounded coefficients. The same is true for its inverse. The
coordinates of ($x^{\leq p-1}$ A ( $x^{\leq p-2}$ A $x^{(p)}$ )) $\cdot F_{\mathrm{i},p}$ relative to this basis are computed by
evaluating its dual basis. The j-th coordinate for $0\leq j\leq n-p$ is

$|^{x_{0}^{\leq p-[perp]}\cdot\Gamma_{i,p}^{\prec}}$ $(x^{\leq p-2}\Lambda x^{(p)})\cdot\Gamma_{i,p}(x^{\leq p-2}\Lambda x^{(p)})_{j}\prec|=(x^{\leq p-1}\cdot F_{i,p})(x^{\leq p-2} \mathrm{A}x^{(p)})_{j}$

as all j-th coordinates (for $j\leq n-p$ ) of $x$ vanish. Here $(x^{\leq p-2}\Lambda x^{(p)})_{j}$ is the j-th
coordinate of $x^{\leq p-2}$ A $\prime x^{(p)}$ relative to this basis. On the other hand, its $(n-p+1)- \mathrm{s}\mathrm{t}$

coordinate is

$|\begin{array}{llllll}x^{\leq \mathrm{p}-1} .F_{i,p} (x^{\leq p-2} \Lambda x^{(p)})\cdot F_{i,p}|x^{\leq p-\mathrm{l}}| 0 \end{array}|=-$( $(x^{\leq p-2}$ A $x^{(p)})\cdot F_{\iota,p}$) $|x^{\leq p-1}|$ .
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as $x^{\leq p-2}\Lambda x^{(p)}$ is a linear combination of $F_{i,p}^{*}’ \mathrm{s}$ for $0\leq \mathrm{i}\leq n-p$ (this implies that
its $(n-p+1)- \mathrm{s}\mathrm{t}$ coordinate vanishes). Therefore we have

$|$ ( $x^{\leq p-1}$ A $(_{i\chi j}\leq p-2$ A $x^{(p)}$ )) . $F_{i,p}|$

$>> \ll\max\{|x^{\leq p-1}\cdot F_{i,p}||x^{\leq p-2}\Lambda x^{(p)}|, |(x^{\leq p-2}\Lambda x^{(p)})\cdot F_{\mathrm{i}_{T^{2}}},||x^{\leq p-1}|\}$ .

Dividing this by $|x^{\leq p-1}$ . $F_{\mathrm{i},p}||x^{\leq p-1}|$ , we see that the assumption of Lemma 2.2
becom es

$\max\{\frac{|(x^{\leq_{l^{J}}-2}\Lambda x^{(p)})\cdot F_{i,p}|}{|x\leq p-1.F_{i,p}|}$ , $\frac{|x^{\leq p-2}\Lambda x^{(p)}|}{|x\leq p-1|}\}>>A$ .

If the first term is larger, we have the claim. Suppose that the second term is larger.
As ($x^{\leq p-2}$ A $x^{(p)}$ ) $\cdot F_{n-p+1,p}=0$ , there exists some $j$ such that

$|x^{\leq p-2}$ A $x^{(p)}\cdot F_{j,p}|>>|x^{\leq p-2}$ A $x^{(p)}|>>A|x^{\leq p-1}|$ .

On the other hand, $|x^{\leq p-1}|>>|x^{\leq p-1}$ . $F_{j,p}|$ for this $j$ . ${\rm Re}$-ordering $F$ ’s again if
necessary, we have the claim.

We now return to the origin al basis $\{F_{\mathrm{i},p}^{*}\}$ $(0\leq \mathrm{i}\leq n -p+1)$ Let 7 be the
index such that

$\frac{|(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p\}}))\cdot F_{j_{\gamma}p}|}{|x\leq p-1.F_{j,p}|}>>A$

holds as in the claim. We then have

$|$ ( $x^{\leq p-1}$ A ( $x^{\leq p-2}$ A $x^{(p)}$ )) . ( $F_{j,p}$ A $F_{n-p+1,p}$ ) $|$

$=|\det($ $x^{\leq p-1}\cdot F_{n-p+1,p}x^{\leq_{J^{J}}-1}\cdot F_{j,p}$ $x \leq p-2\bigwedge_{X}(p).F_{n-p+1,p}(x^{\leq p-2}\Lambda x^{(p)})\cdot F_{j,p})|$

$>>|$ ( $x^{\leq_{l)}-2}$ A $x^{(p)}$ ) $\cdot\Gamma_{j,p}^{4}||x^{\leq_{l\}}-1}|$ (as ( $x^{\leq p-2}$ A $x^{(p)}$ ) $\cdot F_{n-p+1,p}=0$ )

$>>A|x^{\leq p-1}$ . $\Gamma_{j,p}\prec||x^{\leq p-1}|$ .

We have thus proved Lemma 2.2. $\square$

Proof of Theorem 2.1 : We consider the following sequence of statements indexed
by $p=1$ , $\ldots$ , $7l$ :

Statement $(S_{p})$ : ” Let $\Gamma_{0},$ , $\cdots$ , $\Gamma\tau_{N}$ be a set of linear forms on $k^{n+1}$ in general
position. Let $\epsilon$ $>0$ . Then there exists a finite set $S_{p}$ of points in $\Lambda^{p}k^{n+1}$ such that
if a sequence $x$ , $x^{(1)}$ , $\ldots$ , $x^{(p-1)}$ satisfies the condition that $x^{\leq p-1}$ is not a scalar
multiple of a vector in $S_{p}$ , then there exists a $x^{(p)}\in O_{k,S}^{k+1}$ such that $x\Lambda x^{(1)}\mathrm{A}\cdots\Lambda$

$x^{(p)}\neq 0$ and the inequality

(1) $v \sum_{\in S}\log\frac{||(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(\mathrm{p})}))\cdot F_{i,p}||_{v}}{||x\leq p-1||_{v}||x\leq p-1.\Gamma_{i,p}^{\mathrm{r}}||_{v}}<\epsilon \mathrm{h}\mathrm{t}’(x)$

holds for all $\mathrm{i}=0$ , $\ldots$ , $N$ and for all $x$ such that $x^{\leq p-1}\cdot$ $F_{i,p}\neq 0$ . If $x^{\leq p-1}$ . $F_{i,p}=0$

then $(x^{\leq p-2}\Lambda x^{(p\rangle})$ . $F_{x,p}=0$ . ”

We proceed by induction on $p$ . The case $p=\mathit{7}1$, is Theorem 2.1 which we want
to prove.
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The statement $(S_{[perp]})$ coincides with [$\mathrm{V}$ , Theorem 6.4.3]. Suppose that the state-

ment $(S_{q})$ is true uP to $q=p-$ $1$ . What we have to prove is that the statement
$(S_{p})$ holds. For this we closely follow the arguments in [$\mathrm{V}$ , pp.107-111]. Assume

that the statement $(S_{p})$ is false. Then there exists an infinite sequence of $\{x^{\leq j}\}_{j=1}^{p-1}$

for each of which there exists no $x^{(p)}$ which satisfies the inequality (1). In the case
$p=1$ , Vojta [$\mathrm{V}$ , p.107] considered an infinite sequence of $x$ with no suitable $x’$ . Our
$\{x^{\leq j}\}_{j=1}^{p-1}$ replaces Vojta’s $x$ in $[\mathrm{V}, 107]$ . We will show that the non-existence of

a suitable $x^{(\gamma))}$ is equivalent to the statement that a certain first successive minima

is large. Then we will use Davenport’s lemma [$\mathrm{V}_{j}$ Lemma 6.2.1] and some multilin-

ear algebra to arrive at the infinite sequence of $\{x^{\leq j}\}_{j=1}^{p-1}$ which contradicts to the

Param etric Subspace Theorem [$\mathrm{V}$ , Theorem 6.4.2],

For each $v\in S$ and $\{x^{\leq g}\}_{j=1}^{p-1}$ in the sequence, we consider $\mathrm{k}$ with absolute value

$||\cdot||_{v}$ and $\mathrm{r}\mathrm{e}$-order the $\Gamma^{\mathrm{a}}$ ’s as in the proof of Lemma $2.2^{9}$ . We use the subscript $v$ to

indicate that the $\mathrm{r}\mathrm{e}$ -ordering of the $F’ \mathrm{s}$ is with respect to the place $v$ . For instance,

we write $F_{\mathrm{i}}.$ ( $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.$ FitP) in this situation as $F_{v;i}$ (resp. $F_{v;i,p}$ } . So we have

$||x^{\leq p-1}$ . $\Gamma_{v_{\backslash }0,p}^{\gamma}||_{\tau\prime}\leq\cdots\leq||x^{\leq p-1}$ . $F_{v;n-p+1,p}||_{v}$ .

In particular we have

$\prod_{v\in S}||x^{\leq p-1}$

. $\Gamma_{t):n-p+1,p}\prec||_{v}>><<\exp(\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$ .

As $F’ \mathrm{s}$ are given and $x$ ’s are integral, this estimate is uniform in $S$ . Moreover, we
may assume that

$\prod_{v\in S}||x^{\leq p-2}\cdot F_{v;\geq n-p+2}||_{v}>><<\exp(\mathrm{h}\mathrm{t}’(x^{\leq p-2}))$

uniformly in $S$ . Here $F_{v;\geq n-p+2}=F_{v,n-p+2}$ A $\ldots$ $\Lambda F_{v;n}$ . By passing to an appro-
priate infinite subsequence, we may assume that $F_{v_{ji_{\mathrm{P}}}}$, $(\mathrm{i}=0, \ldots, n-p+1)$ do not
depend on $\{x^{\leq j}\}_{j=[perp]}^{p-1}$ 1n the sequence. Since the inequality (1) is false, Lemma 2.2

implies that there exist indices $\mathrm{i}$ (depending on $v$ , $x^{\leq p-2}$ and $x^{\leq p-1}$ ) such that

(2) $\sum_{v\in S}\log\frac{||(x^{\leq p-1}\Lambda(x^{\leq p-2}\mathrm{A}x^{(p)}))\cdot(F_{v_{j}}\mathrm{i},p\Lambda F_{v_{j}n-p+1,p})||_{v}}{||x\leq p-1||_{\tau)}||x\leq p-1.F_{v\cdot i,p}||_{v}},>\epsilon \mathrm{h}\mathrm{t}’(x^{\leq p-1})$

holdslO. We want to interpret this inequality in terms of Bombieri-Vaaler’s adelic
version of successive minima ([B-V], see also $[\mathrm{V}$ , pp.90-96]). On $k^{n+1}$ A $x^{\leq p-1}$ , we
consider the system of successive minima with respect to the lattice structure in-
duced from that of $O_{k,S}^{n+1}$. and the star body given by the length function determined

9 ${\rm Re}$-ordering $\mathrm{F}’ \mathrm{s}$ separately for different $v’\mathrm{s}$ in $S$ has its Nevanlinna analogue. That is, given
a holomorphic curve $f$ : $\mathbb{C}$ $arrow \mathrm{P}\mathrm{F}\mathrm{n}(\mathbb{C})$ , dividing the circle $\partial \mathbb{C}(r)$ into sub-ar$\mathrm{c}\mathrm{s}c_{i}$ , so that $f|c_{i}$

approximates different portion of the divisor defined by the linear forms Fq, $\ldots$ , $F_{N}$ .
10 If $S$ varies in non-uniform way, the passage from Lemma 2.2 to (2) will need special care
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by the following data :

(3) $L_{v;i,p}$ ( $x^{\leq p-1}$ A ( $x^{\leq p-2}$ A $x^{(p)}$ ))

$=$ ( $x^{\leq p-1}$ A ($x^{\leq p-2}$ A $x^{\{p)}$ )) . ( $(F_{v_{\backslash }n-p+1}$ A $F_{v;\geq n-p+2})$ A $F_{v;i,p}$),

$A_{v;i,p}= \frac{1}{||x\leq p-1||_{\iota)}||x\leq p-1.F_{v,i,p}||_{\gamma)}||x\leq p-2.F_{v\geq n-p+2}||_{v}}$

for $\mathrm{i}=0$ , . . ., $n$ $-p$ (Note that $F_{v:n-p+1,p}=F_{vjn-p+1}$ A $F_{v_{j}}\geq n-p+2$ ). The inequality
(2) implies that the first successive minimum is large:

A $\mathrm{i}^{k\cdot \mathbb{Q}]}1\gg\exp(_{\acute{\mathrm{c}}}\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$ .

Our strategy is to compare this inequality with the estimates of the successive
minima derived from the Bombieri-Vaaler theory [B-V] (see $[\mathrm{V}$ , Theorem 6.1.11])
and to derive a situation which violates the Parametric Subspace Theorem $[\mathrm{V}$ ,

Theorem 6.4.2]. In order to do this, we need to measure the relative volume of
$\Gamma_{v;\mathrm{i}_{\}}p}\prec\Lambda F_{v_{j}n-p+1,p}(0\leq \mathrm{i}\leq 7?, -p)$ relative to the lattice

( $\mathit{0}_{k^{n},S}^{n+1}$ A $x^{\leq p-2}$ ) $\Lambda x^{\leq p-1}\subset(k^{n+1}\Lambda x^{\leq p-2})$ A $x^{\leq p-1}$

$\cong$ ( $k^{n}$%1 A $x^{\leq p-2}$ ) $/\langle x^{\leq p-1}\rangle$

$\cong k^{n+1}/\{x$ , $x^{(1)}$ , $\cdot$ . . , $x^{(p-1)}\rangle$ .

To compute the relative volum $\mathrm{e}$ , we consider the standard basis $\{e_{i}\}_{i=0}^{n}$ and the

associated coordinate functions $\{x_{i}\}_{\mathrm{z}=0}^{7b}$ . We assume that $(e_{0}\Lambda\cdots \Lambda e_{p-2})(x^{\leq p-2})$ $\neq$

$0$ and ( $e_{0}$ A $\ldots$ A $e_{p-1}$ ) $(x^{\leq p-1})$ $\neq 0$ . Then

( $e_{p}$ A $x^{\leq p-2}$ ) A $:r^{\leq p-1}$ , . . ., ( $e_{7b}$ A $x^{\leq p-2}$ ) A $x^{\leq p-1}$

form a basis for a sublattice of (0$k.,Sn+1$ A $x^{\leq p-2}$ ) A $x^{\leq p-1}$ . We need to know its

index. To compute the index, let $v_{p-1}.--x^{\leq p-1}$ , $v_{p}$ , $\ldots$ , $v_{n}$ form a basis of the

lattice $O_{k,S}^{n+1}$, A $x^{\leq p-2}$ . Then the index is

( $(v_{p}^{*}$ A $v_{p-1}^{*})\Lambda\cdots$ A $(v_{n}^{*}$ A $v_{p-1}^{*})$ )

. ( $((e_{p}\Lambda x^{\leq p-2})$ A $v_{p-1})$ A . . . A $((e_{n}$ A $x^{\leq p-2})$ A $v_{p-1})$ )

$=\det\{$

$\mathrm{l})^{*}(pe_{p}\Lambda.\cdot.x^{\leq p-2})$

$..\cdot..$

.
$v_{n}^{*}(e_{n}^{*}\mathrm{A}^{\cdot}.x^{\leq p-2})v_{p}^{*}(e_{n}\Lambda.x^{\leq p-2}))$

$v_{n}^{*}$ ( $e_{p}$ A $x^{\leq p-2}$ )

11 The set up for the successive minima on &’’ relative to $S$ is the following. For each $v\in S$ let

$L_{v,1}$ , . . . , $L_{v,n}$ be $n$ linear iy independent linear forms with coefficients in $k$ and let $A_{v;1,\ldots\prime}A_{v}jn$

be positive real numbers. Given such data, we define the length function by

$f(x)^{[k\mathbb{Q}]}= \prod:11\mathrm{a}\mathrm{x}A_{v,i}||L_{v,i}(x)||_{v}v\in S^{1\leq i\leq n}$
.

For details, see [ $\mathrm{V}$ , p.90-96] for this length function, especially the associated star body and its

relation to the Bom bieri-Vaaler theory
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On the other hand, $e_{p-1}\mathrm{A}x^{\leq p-\underline{9}}\dot,$ $e_{p}\Lambda x\leq r-\underline’$ , $\ldots$ , $e_{n}\Lambda x\leq p-2$ also form a basis of the

lattice $\mathit{0}_{k,S}^{n+1}.\Lambda x^{\leq p-2}$ . Writing $v_{\mathrm{p}-1}$ as a linear combination of $e_{p-1}\Lambda x^{\leq p-2}$ , $e_{p}\Lambda$

$x^{\leq p-2}$ , . . . , $e_{n}$ A $x^{\leq p-\underline{\eta}}$ and applyil$\mathrm{g}\tau_{p-1\}},\prime^{*}\ldots$ , $v_{n}^{*}$ , we have

$1=\det\{$

$v_{p}^{*}(e_{p-1}\Lambda x^{\leq p-2})$ $v_{p}^{*}(e_{p}\Lambda x^{\leq \mathrm{p}-2})$

$v_{p-1}^{*}(e_{\nu_{\mathrm{A}}^{-1}}\mathrm{A}x^{\leq p-2})$ $v_{p-1}^{*}(e_{p}\mathrm{A}x^{\leq p-2})\mathrm{A}$ $.\cdot...\cdot.\cdot\cdot.\cdot$

.

$v_{p-1}^{*}(e_{n^{\wedge x}}..)v_{n}^{*}(e_{n}\mathrm{A}x^{\leq p-2})v_{p}^{*}(e_{n}\Lambda.x\leq p-2)\leq p-2)$

$v_{n}^{*}$ ( $e_{p-1}$ A $x^{\leq\rho-2}$ ) $v_{n}^{*}$ ( $e_{p}$ A $x^{\leq \mathrm{p}-2}$ )

$=\det\{$

0 $v_{p}^{*}$ ( $e_{p}$ A $x^{\leq_{\mathcal{P}}-2}$ ) . . .
$1/x_{p-1}0^{\cdot}.\cdot$ $v_{p-1}^{*}(e_{p}\mathrm{A}x\leq p-2)\mathrm{A}$

$\cdot\cdot.\cdot.$

.

$v_{p-1}^{*}(e_{n}..\mathrm{A}x^{\leq p-2})v_{n}^{*}(e_{n^{\wedge X}})v_{p}^{*}(e_{n}\mathrm{A}.x^{\leq p-2})\leq p-2)$

$v_{n}^{*}$ ( $e_{p}$ A $x^{\leq\nu-2}$ )

where $v_{p-1}=x_{p-1}$ ( $e_{p-1}$ A $x^{\leq-2}$ )$\iota)+\cdots$ . So, the index is

$\prod_{v\in S}||\det$
$(\begin{array}{llllllll}U_{p}^{*}(\mathrm{C}_{I^{J}}/ \Lambda \vdots g\sim)\leq P^{-9} v_{p}^{k}(e_{7l} \Lambda \vdots \prime x^{\leq p-2})v_{7\iota}^{*}(e_{\rho} \Lambda \vdots x^{\leq p-)}\underline{’} v_{n}^{*}(e_{n}^{*} \Lambda \vdots x^{\leq \mathrm{p}-2})\end{array})$ $||_{v}= \prod_{v\in S}||x_{p-1}||_{v}$ .

The volume of $F_{\tau’;i,p}$ A $F_{\mathrm{t})};n-p+1,p(0\leq \mathrm{i}\leq n-p)$ relative to the sublattice of
( $O_{k,S}^{n+1}$ A $x^{\leq p-2}$ ) $\Lambda x^{\leq p-1}$ formed by $e_{p}\Lambda x^{\leq \mathrm{p}-2}$ , $\cdots$ , $e_{n}\Lambda x^{\leq p-2}$ of index $\prod_{v\in S}||x_{p-1}||_{v}$

is

$\prod||$ (( $e_{p}$ A $x^{\leq p_{\mathrm{r}}^{-9}}$ ) A $x^{\leq p-[perp]}$ ) A $\cdots$ A( $(e_{n}$ A $x^{\leq p-2})$ A $x^{\leq p-1}$ ) $)$

$v\in S$

. (( $F_{v;0,p}$ A $F_{v;n-p+1,p}$ ) A $\ldots$ A $(F_{v;n-p,p}$ A $F_{vjn-p+1,p})$ ) $||_{v}^{-1}$

$=[ \prod_{v\in S}||F_{v,n-p+1,p}$ . $x^{\leq p-1}||_{\ell \mathrm{l}}^{n-p}||$ ( $x^{\leq p-1}$ A $(e_{p}$ A $x^{\leq p-2})\Lambda\cdots$ A $(e_{n}$ A $x^{\leq p-2})$ )

. $\langle$ $\Gamma_{\iota’ \mathrm{f}l,p1}^{4}$ A . . . A $F_{\tau\prime.\prime\iota-?^{y},\mathrm{P}}$ A $F_{v,\tau\iota-p+1,p}$ ) $||_{v}]-1$

$>>\ll[\exp((n-p)\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$

. $v \prod_{\in S}(||x_{p-1}||_{v}||x^{\leq p-2}||_{v}^{n-p+1}$

. $||$ ( $e_{p-1}$ A $e_{p}$ A $\ldots$ A $e_{n}$ ) $\cdot$ ( $F_{v;0}$ A $\ldots$ A $F_{v;n-p+1}$ ) $||_{v})]-1$ ,

where the constant implicit in $>>\ll$ is uniform in $S$ . Note that the index $\prod_{v\in S}||x_{p-1}||_{v}$

appears as a factor in the expression of the volume. Therefore this factor disappears
if we consider the absolute volume.

Let $\lambda_{1}$ , $\ldots$ , $\lambda_{n-p+1}$ be the system of successive minima for the length function
determined by thle data (3). By the Bom bieri-Vaaler theory [B-V] on successive
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minima (see also $[\backslash f$ , Theorem 6.1.11]), we have the estimate

$(\lambda_{1}\lambda_{2}\cdots\lambda_{n-p+1})^{[k:\mathbb{Q}]}$

$>><<\exp((n-p)\mathrm{h}\mathrm{t}^{\mathit{1}}(x^{\leq p-1})+(n -p+1)\mathrm{h}\mathrm{t}’(x^{\leq p-2}))$

.
$0 \leq?\leq n-p\prod_{v\in S},A_{v;x,p}$

$\gg<<\frac{1}{\prod_{v\in S}\prod_{i=0}^{\gamma l}-p+1||x\leq p-1.F_{Ui,p}||_{v}}$

uniform in $S$ . Following [$\mathrm{V}$ , p. 108], we apply Davenport’s lemma [$\mathrm{V}$ , Lemma 6.2.1] 12

with $\rho_{i}=\rho/\lambda_{i}$ , where we choose $\rho$ so that pxp2 $\cdots$ $\rho_{n-p+1}=1$ . As a result, we
infer that there exist constants $\rho_{lJ;i}$, $(i=0, \ldots, n-p)$ with the following properties:

(i) Consider the star body $\mathrm{g}^{\backslash }\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{I}1$ by the length function $f’(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p)}))$

determined by the same $L_{v_{\backslash }\mathrm{i},p}$. as in (3) but with a new $A_{v;i,p}$ which differs from
(3) by the factor $\beta v_{\backslash }i$ . i.e.,

$f’$ ( $x^{\leq p-1}\Lambda$ ( $x^{\leq p-2}$ A $‘\tau^{(p)})$ )
$= \prod_{l’\in s_{arrow}}0\leq \mathrm{n}1\mathrm{a}_{L},\mathrm{x}\rho_{l’,?}A_{v,i,p}L_{v;i,p}$

( $x^{\leq p-1}\Lambda(x^{\leq p-2}$ A $x^{(p)})$ )
$i\leq-p$

.

Then the associated successive minima $\lambda_{\mathrm{t}}’$ $(\mathrm{i}=1, \ldots, n-p+1)$ satisfy

$\lambda_{\eta}’>><<$ $[ \prod_{v\in S}\prod_{?=0}^{-p+1}||a\cdot\leq p-177.$
$F_{\iota;i,p})||_{v}]- \frac{1}{(n-p+1)\iota\lambda \mathrm{Q}\mathrm{j}}$

uniform in $S$ .
(ii) Let $N_{v}$ be defined by $N_{\mathrm{t}},$ $=2$ if $v$ is complex, $=1$ if $v$ is real and $=0$ if $v$ is

non-Archimedean.
Using

$\lambda_{1}^{[k^{\wedge}:\mathbb{Q}]}>>\exp(\epsilon \mathrm{h}\mathrm{t}’(x^{\leq p-1}))$

we infer that $\rho_{v.\mathrm{i}}$
$(\mathrm{i}=0, \ldots, 7l -p)$ satisfy

(4)
$\rho_{v;i}\ll(\lambda_{1}’/\lambda_{1})^{N_{\tau r}}$ [for all $v\in S_{\}}\mathrm{i}=0$ , $\ldots)n-p$]

$\ll\{$
$, \prod_{\tau\in 6^{1}0\leq i}\prod_{\leq 7t-?)+1}||\alpha^{\leq 7)-- 1}$

. . $\exp(-\epsilon \mathrm{h}\mathrm{t}’(x-1^{N})\leq p)^{k}P\mathrm{Q}7$

uniform in $S$ .
Now we consider $\Lambda^{7\iota-p}(\tau^{\leq p-1},\Lambda(O_{k,S}^{n+1}\Lambda x^{\leq p-2}))$ (this is of rank $n-p+1$ )

and the successive minima defined by tlle length function deterrmned by the data

12 Davenport’s lemma involves the procedure of scaling by unit, making certain factors indexed

by $S_{\infty}$ into the same order of magnitude This necessarily produces error depending only on $k$

and $S$ . So we must take cat $\mathrm{e}$ of the extra erl or stemming from “scaling by unit”. From geometric

view point, DavcIlpolt $\prime \mathrm{s}$ lemma plays the role of “choosing a good gauge” in differential geometry.

Indeed, “scaling by unit” is analogous to aPPlying a gauge transformation



88

TRUNCATED COUNTING FUNCTION IN SCHMIDT’S SUBSPACE THEOREM

$(L_{v:\hat{m}}, A_{v,\hat{m}})(m=0, \ldots, n -p)$ where $L_{v_{\backslash }\hat{m}}$. is a linear form on $\Lambda^{n-p}(x^{\leq p-1}\Lambda$

$(k^{n+1}\Lambda x^{\leq p-2}))$ $\cong k^{n+1}/\langle x, x^{(1)}, \ldots, x^{(p-1)}\rangle$ defined by

( $F_{v_{\tau}0,p}$. A $F_{v;r\iota-p+1,p}$ ) $\Lambda$ . . . A $(F_{v;m,p}\overline{\Lambda\Gamma_{v_{i}n-p+1,p}\prec})$ A . . . A ( $F_{v\cdot n-p,p}$, A $F_{v.n-p+1,p}$ )

and $A_{v;\hat{m}}$ is defined by

$A_{1)_{\mathrm{t}}\hat{\tau n}}.=A_{v,0}$ . . . $\overline{A_{v_{\mathrm{I}}m}.}\cdot$ . . $A_{v;n-p}$ .

Then [$\mathrm{V}$ , Proposition 6.310] applied to $\Lambda^{n-p}$ ( $x^{\leq p-1}$ A ( $O_{k,S}^{n+1}$
$\mathrm{A}x^{\leq p-2}$ )) implies that

the associated successive minima $\mu_{1}$ , $\ldots$ . $\mu_{n-p\dashv- 1}$ satisfy

$\mu\prime i$ $\gg\ll\prod_{v\in S}\prod_{0\leq \mathrm{i}\leq n-p+1}||x^{\leq p-1}’ F_{vj}i,p||_{v}^{-\frac{n-\mathrm{p}}{\tau n\neg-\mathrm{p}+1\mathrm{f}k\mathrm{Q}\exists}}$

uniform in $S$ . This implies that there exists a full sublattice of $\Lambda^{n-p}(x^{\leq p-1}\Lambda$

( $\mathit{0}_{k,S}^{r\iota+1}$ A $x^{\leq p-2}$ ) $)$ with a basis $v_{\mathrm{I}}$ , $\ldots$ , $v_{n-p+1}$ (depending on $x^{(i)}$ , $\mathrm{i}\leq p-1$ ), such
that, after scaling each $v_{j}$ by an appropriate unit13, we have

$(*)$ $||?J_{j}\cdot$ (( $\Gamma_{\mathrm{t}\prime,0,p}$ A $F_{l_{\backslash }’n-p+1,p}.$ ) A $\cdots$

A $(F_{lJ:\tau n_{\mathit{1}^{J}}},,\overline{\Lambda F_{v_{j}n-?\}+1,p}})$ A . . . A ( $F_{v:n-p,p}$ A $F_{0,n-p+1,p}$ ) $)||_{v}$

$<<$
$\prod_{\circ\leq i\leq n-?)+1}||x^{4}\leq p-1$

.
$F_{\iota r\cdot i,p},||_{\iota\prime}^{\mathrm{z}-\mathit{4}^{r+1}} \prod_{i\neq m}-^{\tau 1}\ovalbox{\tt\small REJECT}-\frac{1}{A_{v\cdot i}\rho_{v,i}}0\leq i\leq n-p$

’

$<<$
$() \leq \mathrm{z}\leq n-\mathit{1})\prod_{+1}||:x^{\leq p-1}.$

. $\Gamma_{?i_{\backslash ?J}}\forall|)_{\}}|_{l}^{-\frac{7t-p}{r\downarrow-\mathit{1})+1}},,\cdot$ $||x^{\leq p-1}||_{v}^{n-p}$

$0 \leq i\leq\tau\iota-\mathrm{J}^{J}\prod_{i\neq?\Gamma \mathrm{A}}||\mathrm{J}^{\cdot}\leq p-1$

. $F_{v;i,p}||_{\tau)}$ . $||x^{\leq p-2}\cdot F_{v_{j}}\geq n-p+2||_{v}$ . $p_{v,\mathrm{i}}^{-1}$

$<<$ $||x^{\leq p-1}||_{?}^{7\mathrm{t}-\}\prime-1},\cdot$
$\frac{\rho_{v,m}}{||x\leq p-1.\Gamma_{vm,p}^{\tau}||_{v}}$

,

$0\leq\dot{2}\mathrm{I}\mathrm{I}_{p+1}||x^{\leq p-1}$

. $F_{\mathrm{t}j7,7^{\gamma}},||^{\frac{1}{v?\iota-p+1}}\cdot||x^{\leq p-2}$ . $\Gamma_{v,\geq n-p+2}^{r}||_{v}^{n-p}$ ,

for each $v\in S$ , as $||x^{\leq p-1}\cdot\Gamma_{v.n-p+1,\iota}^{J},||_{\iota l}>><<||Ji\leq p-1||_{v}$ and $\prod_{i}\rho_{v,x}=1$ hold for all
$v\in S$ . Here, the constants implicit in $\gg\ll$ are uniform in $S$ . However, if we treat

13 Scaling each {$j$ by $\mathrm{r}1$ unit, we make ll)e quantity

$||v_{j}$ . $\{(F_{v_{j^{(\mathit{3},p}}}\wedge F‘" 7\downarrow-I’\{1p)$ $\Lambda\cdot$ . $\Lambda(P_{1’ n?,f},\overline{\mathrm{A}F_{lln-- r+1,\mathrm{p}}^{\neg}})\wedge\sim\cdot$ . . $\Lambda(F_{v_{j}}np.p0\Lambda F,n-p+1,p))||_{v}$

having the magnitude satisfying

$<< \prod_{0\leq i\leq\iota\cdot-\mathrm{p}+1},||x\leq t^{l-- 1}$

. $F_{v.i}$ , $I$)
$||_{U} \prod_{i\neq n\iota}-\frac{n-|)}{\nu\iota\sim p+1}\frac{1}{A_{v_{ji}}\rho_{v,i}}0\leq \mathrm{z}\leq\tau\iota-p$

Some error depending $011k$ and $S$ necessarily arises in this procedure. We choose the unit so that
the error is zninimunz.
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varying $S$ , we have to take care of the extra error produced in the application of
“scaling by unit” technique. On the other hand, $v_{j}\in\Lambda^{n-p}$ ($x^{\leq p-1}$ A $(O_{k,S}^{n+1}\Lambda x^{\leq p-2})$ )
can be written as

$vj= \sum$ ( $x^{\leq p-1}$ A ($x^{\leq p-2}$ A $u_{l,1}$ )) A $\ldots$ A ($x^{\leq p-1}$ A $(x^{\leq p-2}$ A $u_{l,n-p})$ )
$f\in I_{\mathrm{j}}$

with $u_{l,\mathrm{i}}\in O_{k,S}^{n+1}$ $(\mathrm{i}=1, \ldots , n-p)$ . So, the left hand side of the above inequality
is equivalent to

$(**)$

$||v_{j}$ . (( $F_{v;0,p}$ A $F_{v,n-p+1,\}\mathrm{J}}$ ) A . . .

A ( $F_{v;m,p}$ A $F_{v;n-p+1,p}$ ) $\mathrm{A}\cdots$ A $(F_{v;n-p,p}\Lambda F_{0,n-p+1,p}))||_{v}$

$=||x^{\leq p-1}||_{v}^{n-p-1}|| \sum_{l}x^{\leq p-1}$
A($x^{\leq p-2}$ A $u_{l,1}$ ) A $\cdots$ A $(x^{\leq p-2}\Lambda u_{l,-p}\mathcal{T}b)$

. $(F_{v;0,p}\Lambda\cdots\Lambda\overline{F_{v,m,p}\cdot}\Lambda\cdots\Lambda F_{v;n-p+1,p})||_{v}$

$=||x^{\leq p-1}||_{v}^{n-p-1}||x^{\leq p-2}\cdot F_{v_{j}\geq n-p+2}||_{v}^{n-p}$

.
$|| \sum_{l}(x-1)\Lambda$

($pu_{l,1}$ $\mathrm{A}$ . . . A $u_{l,n-p}$ ) . ( $F_{v,0}$ $\mathrm{A}$ . . . A $\overline{F_{v,m}}$
$\mathrm{A}$ . . . A $F_{v,n-p+1}$ ) $||_{v}$ .

Note that

$F_{v,m}^{*}=F_{v,0}\Lambda\cdots$ $\Lambda\overline{F_{v,m}}\Lambda\cdots\Lambda F_{v,n-p+1}\in\Lambda^{n-p+1}((k^{n+1})^{*}/\langle F_{v,n-p+2}, \ldots, F_{v,n}\rangle)$ .

As $n-p+1=\dim((k^{n+1})^{*}/\langle F_{v,n-p+2}, \ldots, F_{v,n}\rangle)-1$ , this space is identified with the
dual of $(k^{n+1})’/\langle F_{v,n-p+2}$ , . . . ’

$F_{v,n}\rangle$ , according to the identification $\Lambda^{\dim V-1}V^{*}\cong$

$V$ defined by $V\ni v\mapsto v\cdot$ $\omega$
$\in\Lambda^{\dim V-1}V^{*}$ , where $\omega$ is a non-zero element of

$\Lambda^{\dim V}V^{*}$ . Therefore $F_{v,m}^{*}$ $(m=0, \ldots, n-p+1)$ form a basis dual to $F_{v,0}$ , . . . , $F_{v,n-p+1}$

(a basis of $(k^{n+1})^{*}/\langle F_{v,n-p+2}$ , $\ldots$ , $F_{v,n}\rangle$ ). Define vectors $u_{j}\in\Lambda^{n-p}O_{k,S}^{n+1}$ by

$u_{j}:= \sum_{l\in I_{\mathrm{j}}}u_{l,1}$
A . . . A $u_{l,n-p}$ .

Then $x^{(p-1)}$ A $u_{j}$ $(j=1, \ldots, n-p+1)$ form a basis of a full sublattice of $\{F\in$

$\Lambda^{p}(O_{k,S}^{n+1})^{*};$ $x^{(p-1)}\cdot F=0\}$ . Comparing (’) and $(^{**})$ , we have

(5) $||$ ( $X\langle p-1\}$ A $u_{j}$ ) . ( $F_{v,0}$ $\mathrm{A}$ . . . A $\overline{F_{v,m}}$
$\mathrm{A}$ . . . A $F_{v,n-p+1}$ ) $||_{v}$

$<< \frac{\rho_{v,m}}{||x\leq p-1.F_{v,m,p}||_{v}}.\prod_{0\leq \mathrm{i}\leq n-p+1}||x^{\leq p-1}\cdot F_{v;i,p}||^{\frac{1}{vn-p+1}}$

for each $v\in S_{\infty}$ and

(6)

$\prod_{v\in S}\prod_{m=0}^{n-p}1\leq j\leq n\mathrm{m}\mathrm{a}\mathrm{x}-p+1||$ ( $X(p-1)$ A $u_{g}$ ) . ( $F_{v,0}$ $\mathrm{A}$ . . . $\Lambda\overline{F_{v,m}}$
$\mathrm{A}$ . . . A $F_{v,n-p+1}$ ) $||_{v}$

$\ll\prod_{v\in S}||x^{\leq p-1}$

. $F_{v_{j}n-p+1,p}||_{v}$
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both uniform in $S$ . Here we used the property $\prod_{m=0}^{n-p}\rho_{v,m}=1$ (see [$\mathrm{V},$ pp,97-98] for

the choice of $\rho_{v,m}$ in the proof of Davenport’s lemma). One might have a strange

impression, because we take the product over the whole $S$ in (6) while the estimate
$(*)$ holds only for Archimedean places. This will disappear, if one recalls that in
Davenport’s lemma all contribution from non-Archimedean places transfered to $S_{\infty}$

by the “gauge transformation” induced by multiplying a suitable S-unit.
On the other hand, under the identification

$(k^{n+1})^{*}/\langle F_{v,n-p+2}$ , . . . , $F_{v,n}\rangle\cong(k^{n+1})^{*}$ A ($F_{v,n-p+2}$ A . . . A $F_{v,n}$),

we define
$F_{v,k}$ . $x^{\leq p-1}=F_{v;k,p}\cdot x^{\leq p-1}$

As $x^{\leq p-2}\cdot F_{v;n-p+2}\neq 0$ and $x^{\leq p-1}$ . $F_{v;n-p+1,p}\neq 0$ , both $\{F_{v,k}^{*}\}_{0\leq k\leq n-p}\cup\{x^{\leq p-1}\}$

and $\{F_{v,k}^{*}\}_{0\leq\kappa\leq n-p}.+1$ form bases of $(k^{n+1})^{*}/\langle F_{v,n-p+2}, \ldots, F_{v,n}\rangle$ . So, $F_{v,n-p+1}^{*}$ is
written as

$F_{v,n-p+1}^{*}=a_{0}x^{\leq p-1}+ \sum_{k=0}^{n-p}F_{v,k}^{*}$

with $a \mathit{0}=\frac{1}{x\leq p-1.F_{v,n-p}}$ and $a_{k}=-_{x-F_{v,n-\mathrm{p}}}^{x.F_{v,k}}\mapsto p-1\leq p-1$ for $k=0$ , $\ldots$ , $n-p$ . Therefore we
have

(7) $F_{1n-p+1}^{*}." \equiv-\sum_{k^{\wedge=}0}^{n-p}\frac{x^{\leq p-1}\cdot F_{v,k}}{x\leq p-1.F_{v,n-p}}F_{v,k}^{*}$ (mod $x^{\leq p-1}$ ).

Plugging (7) into $||$ ($x^{(p-1)}$ A $u_{j}$ ) $\cdot F_{v,n-p+1}^{*}||_{v}$ and using (5), we have

$||$ ( $x^{(p-1)}$ A $u_{j}$ ) . ( $F_{v,0}\Lambda\cdots$ A $F_{v,n-p}$ ) $||_{v}$

$<< \sum_{0\leq k\leq n-p}\frac{||x^{\leq p-1}.F_{v,k}||_{v}}{||_{X}\leq_{\mathrm{P}^{-1}}F_{v,n}||_{v}}.||(x^{(p-1)}\Lambda u_{j})$
. $F_{v,k}^{*}||_{v}$

$\ll\frac{1}{||x\leq p-1.F_{v,n}||_{v}}\cdot\max\rho v,k0\leq k\leq n-p$ .
$\prod_{0\leq i\leq n-p+1}||x^{\leq p-1}$

. $F_{v;i,p}||^{\frac{1}{v^{n-p+1}}}$

uniform in $S$ . Taking the product over $v\in S$ and using (4), we have

(8)
$\mathrm{I}\mathrm{I}$

$1 \leq j\leq n-I)+1\max||$ ( $x^{(p-1)}$ A $u_{j}$ ) . $F_{v,n-p+1}^{*}||_{v}$

$<< \prod_{v\in S}\frac{1}{||x^{\leq p-1}\cdot F_{v,n}||_{v}}\cdot\max||$($x^{(p-1)}1\leq j\leq n-p+1$ A $u_{j}$ ) . $F_{v,k}^{*}||_{v}$

$\ll\prod_{v\in S}\frac{1}{||x\leq p-1.F_{v,n}||_{v}}\cdot\prod_{v\in S}[\prod_{v\in S0\leq i}\prod_{\leq n-p+1}||x^{\leq p-1}\cdot F_{v;i,p}||_{v}]-\frac{N_{v}}{(n-p+1\}1^{k}0\mathit{1}}$

.
$v \prod_{\in S}\exp(-\epsilon \mathrm{h}\mathrm{t}’(x^{\leq p-1}))^{\frac{N_{\tau}}{|k\mathrm{Q}\mathrm{l}}}\cdot\prod_{v\in S}\prod_{0\leq i\leq n-p+1}||x^{\leq p-1}$

. $F_{v_{j}i,p}||^{\frac{1}{vn-p+1}}$

$<< \frac{\exp(-\epsilon 1_{1}\mathrm{t}’(x^{\leq p-1}))}{\prod_{v\in S}||x\leq p-1.F_{vn\}}||_{v}}$
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uniform in $S$ . Taking the product of (6) and (8) we have

$(\dagger)$ $\prod_{v\in S}\prod_{m=0}^{n-p+1}1\leq j\leq n\max||$ (
$-p+1$

$x^{(p-1)}$ A $u_{7}$ ) . $F_{v,m}^{*}||_{v}\ll\exp(-\epsilon \mathrm{h}\mathrm{t}’(x^{\leq p-1}))$

uniform in $S$ . This yields the second condition of [$\mathrm{V}$ , Theorem 6.4,2],
Next we check that the first condition of [$\mathrm{V}$ , Theorem 6.4.2] also holds. Indeed,

(4) implies that there exists a positive constant $c’$ uniform in $S$ such that $\mathrm{p}\mathrm{v};\mathrm{i}$

$(0\leq \mathrm{i}\leq n-p)$ satisfy

$\rho_{v;i}<<\{$

1 (if $v$ is non-Archimedean)
$\exp(c’\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$ (if $v$ is Archimedean)

uniform in $S$ . Plugging this into (5) we see that there exists a positive constant $c$

uniform in $S$ such that

$(\dagger\dagger)$ $||$ ( $x^{(p-1)}$ A $u_{j}$ ) . $F_{v,m}^{*}||<<\exp(c\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$

holds for all $v\in S,\acute{\mathit{1}}=1$ , $\cdots$ , $n-p+1$ and $m(0\leq m\leq n-p)$ which is uniform in
$S$ . This yields the first condition of [ $\mathrm{V}$ , Theorem 8.4.2]. This completes the proof
of Theorem 2.1. $\square$

We suppose that $v\in S$ is non-Archimedean. Then we can get an upper bound
for the intersection multiplicity of (the Zariski closure of) $x^{\leq p-1}$ and $F_{v,i,p}=0$ over
$v$ in terms of $\exp(\mathrm{h}\mathrm{t}’(x^{\leq p-1}))$ in the following way. First we note

$\prod_{w\in S}||x^{\leq p-1}\cdot F_{v,i,p}||_{w}>>1$
.

Indeed, as $x^{\leq p-1}$ is $S$-integral and $F_{v;\tau,p}$ is one of finitely many vectors with k-
coefficients, the product theorem implies this with a lower bound uniform in $S$ .

Also we have
$||x^{\leq p-1}$ . $F_{v;\mathrm{z},p}||_{w}<<||x^{\leq p-1}||_{w}$ ,

if $w\neq v$ . It follows from these two inequalities that

$1<<||x^{\leq p-1}$ .
$F_{v;i,p}||_{v} \prod_{w\neq v}||x^{\leq p-1}\cdot F_{v_{ji,p}}||_{w}$

$\ll||x^{\leq p-1}$ .
$F_{vji,p}||_{v} \prod_{w\neq v}||x^{\leq p-1}||_{w}^{|S|-1}$

$=$ $[x^{\leq p-1}$ . $F_{v;\mathrm{i},p}||_{v} \frac{\exp((|S|-1)\mathrm{h}\mathrm{t}’(x^{\leq p-1}))}{||x\leq p-1||_{v}^{|S|-1}}$ .

This implies
$||x^{\leq p-1} \cdot F_{v_{j}}i_{\mathrm{P}},||_{v}\gg\frac{||x^{\leq p-1}||_{v}^{|S|-1}}{\exp((|S|-1)\mathrm{h}\mathrm{t}(x\leq p-1))},\cdot$

This provides an upper bound for the intersection multiplicity



so
TRUNCATED COUNTING FUNCTION IN SCHM $\mathrm{I}\mathrm{D}\mathrm{T}’ \mathrm{S}$ SUBSPACE THEOREM

As will be shown in \S 4, Schmidt’s Subspace Theorem is proved by the same
pattern as Cartan’s Second Main Theorem (i.e., plugging the “Lemma on loga-

rithmic derivative” into the “Wronskian formalism”). In particular, Theorem 2.1
(the Diophantine analogue of the Lemma on logarithmic derivative) together with
the Diophantine analogue of the Wronskian formalism yield Schmidt’s Subspace

Theorem. In order to introduce the truncated counting function into Schmidt’s
Subspace Theorem, houever, Theorem 2.1 turns out to be not enough.

In the rest of \S 2, we describe necessary modifications. Schmidt’s Subspace The-
orem is concerned with the Diophantine approximation of points $\{x\}$ to a divisor
$D$ consisting of hyperplanes in general $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{14}$ in $\mathrm{P}^{n}(k)$ . In the Nevanlinna the-
$\mathrm{o}\mathrm{r}\mathrm{y}$, we have the concept of the residual counting function $N_{f}^{n_{D}}(r)$ , which counts
the ramification indices of the holomorphic curve $f$ : $\mathbb{C}arrow \mathrm{P}^{n}(’ \mathbb{C})$ at places where
$f$ intersects $D$ with multiplicity $\geq n$ . This is intrinsically defined, based on the
Wronskian $f’$ A $f’\Lambda\cdots$ $\Lambda f^{(n)}$ . Our strategy is to establish the Diophantine ana-
logue of the geometry behind the Nevanlinna theoretic truncated counting function
and to introduce the Diophantine analogue of the truncated counting function into
Schmidt’s Subspace Theorem. Let $D$ be a linear divisor (fixed once for all) in $\mathrm{P}^{n}(k)$

defined by linear forms $F_{i}$ $(\mathrm{i}=0,1, \ldots, n)$ . For a rational point $x$ and fixed $D$ such
that $x\not\in$ Supp (D), we consider the intersection of the Zariski closures of $x$ and $D$

in the arithmetic scheme $\mathrm{P}^{n}(O_{k})$ over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(O_{k})$ (i.e., consider Fi(x) as a ‘(func-

tion” on $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ (Ok) and consider its zeros counted with multiplicities). Let $S_{x}^{n}$ be
the set of non-Archimedean places over which the Zariski closures of $x$ and some
component of $D$ intersect with multiplicity $\geq n$ . Then we consider, instead of a
single rational point $x$ , a pair $(\mathrm{x}\mathrm{t}S_{x}^{r\iota})$ of $x$ and the canonically associated finite set
of non-Archimedean places $S_{x}^{n}$ , and develop Diophantine approximation for these
pairs (this framework is established once we fix a linear divisor $D$ ). This is our new
framework in Diophantine approximation, which we imported from the Nevanlinna
theory.

We are going to modify Theorem 2.1 so that the result of the same type holds for
pairs $(x, S:)$ . We here list the difference of Theorem 2.1 and its variant modified
into the form useful in the proof of the Schmidt Subspace Theorem with residual
counting function:
(i) In Theorem 2.1, the finite set of places $S$ is fixed. However, in its modification,
$S$ should be $S(x)$ $=S_{\infty}\cup Sj$ , which does depend on $x$ . In particular, the length
functions should be defined as a sum over the places in $S(x)$ .
(ii) We apply the geometry of numbers (the succssive minima) to the lattice of all
algebraic integers $O_{k}^{n+1}.$ . In other words, in Theorem 2.1, all $x$ ’s were $\mathrm{S}$-integraL
However, in its modification, all $x’ \mathrm{s}$ should be $S_{\infty}$-integral (i.e., the notion of the
integrality should not depend on $x$ ).

In particular, (i) and (ii) imply that we apply the successive minima to the lattice
$O_{k}^{n+1}$ of ordinary algebraic integers, but the length function should be defined as a
sum over all places in $S(x)$ (not only Archimedean places).

For the above purpose we examine whether the arguments in the proof of The-
orem 2.1 remain true if we replace the fixed $S$ by the varying $S(x)$ $=S_{\infty}\cup S_{x}^{n}$ and
try to aPPly the same strategy with respect to $S(x)$ instead of $S$ . It turns out that
there are three places in the proof of Theorem 2.1 which requires special care.

14 We call such a divisor a linear divisor
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(i) The first place. The first is the place where Lemma 2.2 is applied to individual
members of $S$ to conclude (2). If $S$ is varying, we have to take care of the error. As $k$

is fixed , there is no problem on Archimedean places. The problem may happen only
from the varying non-Archimedean part. However, since the $F_{i}’ \mathrm{s}$ are given linear
forms, there exists the finite set $S_{F}$ (determined by $F_{i}’ \mathrm{s}$ ) of non-Archimedean places
with the property that, in the proof of Theorem 2.1 non-trivial constants occur
only when $S_{x}^{n}$ touches $S_{F}$ . Therefore, even if $S$ varies, only the part of $S$ which
touches the fixed $S_{F}$ may cause the problem. But, since $S_{F}$ is finite and fixed, no
problem occurs from non-Archimedean places, too.

(ii) The second place. The second is the place where the “scaling by unit”
technique (based on the Dirichlet Unit Theorem) is used (e.g., the part where we
applied Davenport’s lemma$)^{15}$ and we should be careful about the error emerging
in this procedure, too.

Scaling by unit has the effect making all factors in $\prod_{v\in S}||\cdots||_{v}$ having the
desired (e.g., the same) order of magnitude. For instance, after making all factors
having the same order of magnitude, we take the geometric mean of all factors
(indexed by $S_{\infty}\cup S_{x}^{n}$ ) under consideration. In any case, this procedure necessarily
produces error which depends only on the number field $k$ and the finite set of non-
Archimedean places under consideration $(\mathrm{i}.\mathrm{e}., S_{x}^{n})^{16}$ . In general, $S(x)=S_{\infty}\cup S_{x}^{n}$

is varying. Let us estimate the magnitude of the error. The arguments in the proof
of Theorem 2.1 are in the product form which is transform ed into the sum form
by taking the logarithm. Interchanging the arithmetic mean and the logarithm
transforms the product form into the sum form with the $\zeta$“error” depending on
$S_{x}^{n}$ . However, in the proof of Theorem 2.1, “scaling by unit” technique was used
only on the set $S_{\infty}$ of Archimedean places of the given number field $k$ . Therefore
Dirichlet’s Unit Theorem implies that the maximum of the absolute values of the

$\zeta$“average” and the result of the “scaling by unit” over each $v\in S_{\infty}$ is bounded
above by a constant depending only on the given &. After scaling by unit, we make
all factors $a_{v}$ having the same order of magnitude $A\cross i$ (something uniform) , A being
the average. Therefore the error under consideration

$| \frac{1}{[k\cdot \mathbb{Q}]}.\sum_{?J\in S_{\infty}}\log a_{v}-\log\frac{1}{[k\cdot \mathbb{Q}]}.\sum_{v\in S_{\infty}}a_{v}|$

is at most of order

$|$ $\frac{1}{[k\cdot \mathbb{Q}]}.[k:\mathbb{Q}]$ ( $\log A+$ (something uniform))-log(A $\mathrm{x}$ (something uniform)) $|$ ,

which is clearly uniform.
(iii) The third place. The third place is not explicit in the proof of Theorem

2.1. It concerns directly with the non-uniformity of the contribution from the non-
Archimedean places. For instance, if we would like to get the same conclusion even
when there is no control on $|S_{x}^{n}|$ , we must control the error stemming from the places

15 All parts in the proof of Theorem 2.1 where “scaling by unit” technique is used are so
indicated in the corresponding footnotes

16 If $S_{x}$ happens to be fixed (as in the situation of Theorem 2.1), then the error is of course
uniform.
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in $S_{x}^{n}$ in the proof of Theorem 2.1. Otherwise we cannot get uniform estimates. We
note that if the contribution from non-Archimedean places dominates that from

the Archimedean places in the $S(x)$-proximity function, it will have a nature of the

usual counting function restricted to places belonging to $S_{x}^{n}$ . So we must control
the behavior of the counting function. Now, let $D$ be a linear divisor defined
by the linear forms $F_{0}$ , $\ldots$ , $F_{N}$ in general position just as in Theorem 2.1, Let
$x\in \mathrm{P}^{n}(k.)-$ Supp (D). We consider the association $x\mapsto S_{x}^{n}$ where $S_{x}^{n}$ is the finite
set of non-Archimedean places of $\mathrm{k}$ over which the Zariski closures (over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(O_{k})$ )

of $x$ and $D$ intersect with multiplicity $m$ greater than or equal to $n$ . The condition
$m\geq n$ imposed on $S_{x}^{n}$ makes the arguments of the proof of Theorem 2.1 applicable
to the situation of varying $S=S(x)$ . If the non-Archimedean places dominates the
Archimedean ones in the $S(x)$ -proximity function, the inductive application of the
first successive minimum indexed by $p$ $(=1, \ldots, n)$ yields the conclusion of Theorem
2.1 if and only if the non-Archimedean part in the inductive first successive minima
behaves exactly as lattice theory predicts, and this is possible if and only if $m\geq n$ .

Let us formulate this more carefully. To get uniform estimates, we have to control
the contribution from the non-Archimedean places in $S_{x}^{n}$ and for this purpose,
we first need to modify the “weights” $A_{v,i,p}$ in the length function (3) used in
the “inductive first successive minima” indexed by $p=\tilde{[perp]}$ , 2, $\ldots$ , $n$ in the proof of
Theorem 2.1. The modification should be done respecting the “geometric effect”
of the weights. We recall that the weights $A_{v;i,p}$ have a geometric effect on the

$\zeta$“shape” of the symmetric star bodies defined by (3), Namely, if the weight in front
of $L_{v;i,p}$ is “very $\mathrm{l}\mathrm{a}\mathrm{l}\cdot \mathrm{g}\mathrm{e}"$ , this “collapses” to that consisting of the star bodies which
are “widely spread” in the direction of the hyperplane defined by $Fv;i$ . $x^{(p)}=0$ (for
$p=1$ , $\ldots$ , $n$ ). So, it is most probable that the first successive minimum associated
to this system of star bodies will pick up such $x^{(p)}$ which is parallel to the hyperplane
$F_{v,i}=0$ to the extent determined by the degree of parallelness of $x^{(p-1)}$ to $F_{v;i}=0$

in the $v$-adic sense (we define that degree of parallelness of $x^{(\mathrm{p}-1)}$ to $F_{v;\mathrm{i}}=0$ is
large, if $\mathrm{o}\mathrm{r}\mathrm{d}_{v}(\Gamma_{v;i}\prec\cdot x^{(p-1\rangle})$ is large). In summary, if $v$ is a non-Archimedean place,
$A_{v,i,p}$ being very large implies $F_{v;?}$ . $x^{(p)}$ being divisible by accordingly high power
of the prime $v$ .

With this $” \mathrm{g}\mathrm{e}\mathrm{o}$ metric effect” understood, we modify the weights as follows. The
general idea is that, at each step of the inductive first successive minima introduced
in the proof of Theorem 2.1, we replace the usual counting functions involved in
the definition of the weights by the residual counting functions at level 1 $(p=$

$1$ , $\ldots$ , $n)^{17}$ . For the first step (i.e., $p=1$ ; the case considered in [$\mathrm{V}$ , Theorem
6.4,3]), we modify the weighs by replacing $||x\cdot F_{vj}i,1||_{v}$ by its residual version” at
level 1 $(v\in S(x)-S_{\infty})^{18}$ . Here, by the residual version at level $t$ of $||x\cdot$ $F_{v;\mathrm{i},1}||_{v}$ ,
we mean the version which is defined by replacing $\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x\cdot F_{vj}i,1)$ in the definition
of $||x$ . $F_{v;i,1}||_{v}$ by its level $t$ residual version $\max\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x\cdot F_{v_{ji,1}})-t, 0\}$ . In a similar
way, we introduce this modification using the residual counting function at level
1 at every p-th step for $p=1$ , $\ldots$ , $n$ . Namely, we replace $||x^{\leq p-1}\cdot$ $F_{vj}i,p||_{v}$ by
its residual version at level 1, i.e., replace $\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x^{\leq p-1}\cdot F_{v,\mathrm{i},p})$ in the definition of
$||x^{\leq p-1}\cdot F_{v\cdot \mathrm{i},p},||_{v}$ by its level 1 residual version $\max\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x^{\leq p-1}\cdot F_{v_{j}i,p})-1,0\}$ .

With this modification on thhe weights, we repeat the arguments of the proof of
Theorem 2.1. The effect of the modification of weights is that we are able to get

17 This modification changes only $\mathrm{n}\mathrm{o}\iota 2$ -Archimedean weights.
18 We call this the modification of type I.
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uniform estimates even if we have no control on $S_{x}^{n}$ .
We proceed as follows. For each non-Archimedean places $v$ in $S(x)$ , we construct

the “ladder”

$H_{v}^{(0)}\subset H_{v}^{(1)}\subset\cdots$ $H_{v}^{(p)}\subset\cdots\subseteq H_{v}^{\langle n)}$ $(p=0, 1, \ldots, n)$

of sublattices of $x$ A $O_{k}^{n+1}$. (the natural lattice structure of algebraic integers of
$x$ A $k^{n+1}$ ) in the following way:

$H_{v}^{(0\rangle}=$ { $x$ A $x^{(0)}\in x$ A $O_{k-}^{7\iota+1}| \min_{0\leq i<n}\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x^{(0)}))-\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x))\}\geq 0$} ,

$H_{v}^{(1)}=$ { $x$ A $x^{(1)}\in x$ A $O_{k}^{7l+1}.| \min_{0\leq l<n}\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x^{(1)}))-\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x))\}\geq-1$} ,

$H_{v}^{(t)}=$ { $x$ A $x^{(t)}\in x$ A $O_{k}^{n+1}| \min_{0\leq i<n}\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v_{j}}\mathrm{i}(x^{(t)}))-\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x))\}\geq-t$ },

$H_{v}^{(n\rangle}=$ { $x$ A $x^{(n)}\in x$ A $O_{k}^{n+1}| \min_{0\leq \mathrm{i}<n}\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v;i}(x^{(n)}))-\mathrm{o}\mathrm{r}\mathrm{d}_{v}(F_{v_{j}i}(x))\}\geq-n$} .

Then we have

$\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(p\}})=\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(p)}/H_{\tau}^{(p-1)},)\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(p-1)}/H_{v}^{(p-2)})\cdots \mathrm{V}\mathrm{o}1_{v}(H_{v}^{(1\rangle}/H_{v}^{(0)})\mathrm{V}\mathrm{o}1_{v}(H^{(0)})$

for each $v\in S(x)$ $-S_{\infty}$ .
On the other hand, we modify the usual length function on $x$ A $k^{n+1}$ so that

the associated successive minima is compatible with the inductive first successive
minima on the system of the modified length functions (3). Namely we modify
the length function by

(9)
$L(x\Lambda x’)=$ ( $x$ A $x’$ ) . ( $F_{v,i}$ A $\Gamma_{v;n}^{4}$ ), $(0\leq \mathrm{i}<n)$ ;

$A_{vjl}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}=\{$

$A_{v_{j}i}$ (if $v$ is Archimedean) ,

the weight given by the level $n$ residual version of $\frac{1}{||x\cdot F_{v,i}||_{v}}$

.

(if $v$ is non-Archimedean) ,

where $x\in O_{\lambda}^{n+1}$. is given and $x’$ is an unknown vector also in $O_{k}^{n+1}$ . Under this

modification, we can prove that the inductive first successive minima $\lambda_{1}^{(1)}$ , . . . , $\lambda_{1}^{(n)}$

with respect to the length function (3) with the above modified $\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{s}^{20}$ are uni-
formly equivalent to the usual successive minima $\lambda_{1}$ , . . . ’

$\lambda_{n}$ with respect to the
above modified usual length function (9) on $x$ A $k^{n+1}$ , in the sense that

$\lambda_{1}^{(1)}\gg<<\lambda_{1}$ , $\ldots$ , $\lambda_{1}^{(n\rangle}\gg<<\lambda_{n}$

19 we call this the modification of type $\mathrm{I}\mathrm{I}$ .
20 Here, we use the modification of tyPe I.
21 Here we use the modification of tyPe $\mathrm{I}\mathrm{I}$ .



84

TRUNCATED COUNTING FUNCTION IN SCHM $\mathrm{I}\mathrm{D}\mathrm{T}’ \mathrm{S}$ SUBSPACE THEOREM

holds. To prove this, we recall Bombieri-Vaaler’s version [$\mathrm{V}$ , Theorem 6.1.11] of the
Minkowski second theorem:

( $\lambda_{1}\lambda_{2}\cdot$ . . k) $[k:\mathbb{Q}]$

$>><< \exp((n-1)\mathrm{h}\mathrm{t}’(x))\prod_{v\in S(x)}(\det(F_{v;0}, \ldots, F_{v;n-1})\prod_{0\leq i<n}A_{v_{ji}}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d})}$

where $A_{vj}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}i$ is as introduced above, i.e., the level $n$ residual version of the old

weight $A_{v_{ji}}$ (the modification of type $\mathrm{I}\mathrm{I}$ ). The ladder $H_{v}^{(p\rangle}$ of sublattices is defined
only relative to $v\in S(x)-S_{\infty}$ . However, for notational convenience, we introduce
an “arbitrary flag” for each $v\in S_{\infty}$ this has no substantial meaning). Under this
notational convention, the right hand side of the above expression is

$>><< \prod_{v\in S(x)}(\mathrm{V}\mathrm{o}1_{\tau},(H_{v}^{(n)}))^{-1}$

$=( \prod_{v\in S(x)}\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(n)}/H_{vJ}^{(n-1)\}}\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(n-1)}/H_{v}^{(n-2)})$

$\ldots$
$\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(1)}/H_{v}^{(0)})\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(0)}))^{-1}$ ,

which implies that the vectors $\overline{x}^{(1)}$ , $\ldots$ , $\overline{x}^{(n)}$ obtained by the successive minima
associated to the length function (9) form a basis of $H_{v}^{(n)}$ (in particular $\tilde{x}^{(p)}\in H_{v}^{(n)}$

for all $p=1$ , $\ldots$ , $n$ ) for each $v$ . i.e., the part

$(_{v\in S(x)-S_{\mathrm{m}}} \prod \mathrm{V}\mathrm{o}1_{v}(H_{1}^{(n)},/H_{v}^{(n-1)})\mathrm{V}\mathrm{o}1_{?)}(H_{v}’n-1)/H_{v}^{(n-2)})\cdots$

$\mathrm{V}\mathrm{o}1_{v}(H_{v}^{(1)}/H_{v}^{(0)}))^{-1}$

in the above expression is the $\mathrm{i}$;-power which the inverse $v$-voiume of the part
lelepiped generated by $\overline{x}^{(1)}$ , . . . , $\overline{x}^{(n)}$ gai $\mathrm{n}\mathrm{s}$ as an effect of the modification of the
weights. On the other hand, we have

($\prod_{v\in S(x\}}\mathrm{V}\mathrm{o}1_{v}$

(parallelepiped generated by $x^{(1)}$ , $\ldots$ , $x^{(n)}$ ) $)^{-1}\gg\ll(\lambda_{1}^{(1)}\cdots \lambda_{1}^{(n)})^{[k:\mathbb{Q}]}$

and the choice of the weights in the modified inductive first successive minima
implies that $x^{(1)}$ , . . . , $x^{(n)}$ generates a sublattice of $H_{v}^{(n)}$ and therefore we have

$\mathrm{V}\mathrm{o}1_{v}$ $($ parallelepiped generated by $x^{(1)}$ , $\ldots$ , $x^{(n)})^{-1}\leq \mathrm{V}\mathrm{o}\mathrm{l}(H_{v}^{(n\rangle})^{-1}$

for each $v$ . This implies

$( \lambda_{1}^{(1)}\cdots\lambda_{1}^{(n)})^{[k\mathbb{Q}]}.\gg<<(\prod_{v\in S(x)}\mathrm{V}\mathrm{o}1_{v}$(parallelepiped generated by $x^{(1)}$ , $\ldots$ , $x^{(n)}$ ) $)^{-1}$

$\leq(\lambda_{1}\cdots\lambda_{n})^{\zeta k\cdot \mathbb{Q}]}$
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The procedure of the successive minima $\{\lambda_{p}\}_{p=1}^{n}$ based on the length function (9)
(using the level $n$ residual version) chooses lattice points from wider possibilities
compared to those $\{\lambda_{1}^{(p)}\}_{l)=1}^{n}$ based on (3) modified (using the level 1 residual version
at each step). We therefore have

$\lambda_{1}^{(p)}>>\lambda_{p}$ .

This implies that the inverse $v$-volume of the parallelepiped generated by $x^{(1)}$ , $\ldots$ , $x^{(n)}$

in fact gain at least the same amount of the $v$-powers as the inverse $v$-volume of
the parallelepiped generated by $\tilde{x}^{(1)}$ , $\ldots$ , $\tilde{x}^{(n)}$ does after the modification $A_{v;?}$. $rightarrow$

$A_{v_{j}i}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}$ . These two estimates imply the uniform equivalence of $\lambda_{1}^{(p)}$ and $\lambda_{p}$

$(p=1, \ldots , n)$ . We therefore have
$(\lambda_{[perp]}^{(1)}\cdots \lambda_{1}^{(n)})^{[k:\mathbb{Q}]}>>\ll(\lambda_{1}\cdots\lambda_{n})^{[k:\mathbb{Q}]}$

As the “ladder” of the $v$-divisibility of $\det(F_{v,0}.$ , . . . ’
$F_{vjn-1})A_{vi}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}$ corresponds

to the “ladder” of the sublattices $H_{v}^{(0)}\subseteq H_{v}^{(1)}\subset\cdots\subset H_{v}^{(n)}$ if $x\in H^{(0)}$ , the above
estimate and the volume form ula forces (up to error uniform in $S(x)$ ) the vectors
$x^{(1\rangle}$ , . . . , $x^{(n)}$ of $O_{k}^{n+1}$ in the modified inductive first successive minima to lie in the
above defined “ladder” in the sense that

(10) $x^{(1)}\in H_{v\rangle}^{([perp])}$ . . . , $x^{(n\rangle}\in H_{v}^{(n)}$

holds, if $x\in H_{1}^{(0)}$, holds22. In particular, we must assume that $m$ (the multiplicity
of the intersection of of $x$ and $D$ over the place $v$ ) to be not smaller than $n$ , for the
above process to make sense.

We have thus proved that although the association $x\mapsto S_{x}^{n}$ is itself not uni-
form, the behavior of $x^{(1)}$ , . . , ’

$x^{(n)}$ are perfectly controlled in the sense of (10). In
particular we have

$N_{(X}^{n^{\gamma}}$ , $F_{i})\leq N_{S_{\infty}}$ ( $x^{(1)}$ A . . . A $x^{(n)}$ , $S_{0}$ ) $-N_{S(x)}$ ( $x^{(1)}$ A . . . A $x^{(n)}$ , $S_{0}$ )

where the counting functions in the right hand side measures the $v$-adic approxima-
than of $x^{(1)}$ A $\ldots$ A $x^{(7l\rangle}$ to zero. This provides a kind of uniform estimates over the
non-Archimedean places in $S_{x}^{n}$ . Here, for finite set of places $S$ including $S_{\infty}$ , the
counting dunction $N_{s}$ counts the approximation relative to the non-Archimedean
places outside of $S$ .

Finally, we need to show that (\dagger ) and $(|\cdot \mathfrak{j})$ obtained in the modified situation
violate the Param etric Subspace Theorem [$\mathrm{V}$ , Theorem 6.4,2]. In the Parametric
Subspace Theorem, the set of places involved must be fixed. However, in the mod-
ified situation, we used $\mathrm{t}1_{1}\mathrm{e}$ successive minima with respect to the length functions
involving all places in $S(x)$ . Therefore, all places in $S(x)$ are involved in $(\mathfrak{j})$ and
(\dagger \dagger ). This means that, although we want to build the situation violating the Para-
metric Subspace Theorem, the inequalities in (\dagger ) and (\dagger \dagger ) in the modified situation
are “disturbed” by the $x$-dependent non-Archimedean places in $S(x)$ . However, we
are done, if we can show that the inequalities in (f) and (\dagger \dagger ) reduce to those with
respect to the piaces in $S_{\infty}$ (this expectation is natural, because the intersection of
all $S(x)’ \mathrm{s}$ for various $x’ \mathrm{s}$ is just $S_{\infty}$ ).

We show that Theorem 2.1 is modified under the assumption that $S_{x}^{n}$ consists of
non-Archimedean places over which the Zariski closure of $x$ and some component
of $D$ intersect with multiplicity $\geq n$ :

22 The conclusion (10) rnay not always hold. However, the error stemming from “not always

hold” is uniform irz $S(x)$
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Theorem 2.3. Let $\Gamma_{0}^{4}$ , $\ldots$ , $F_{N}$ be a set of linear forms in $k^{n+1}$ in general position.
Let $\epsilon>0$ . Then there exists a finite set $S$ of proper linear subspaces of $k^{n+1}$ with the
following property. If $x\in k^{\tau\tau+1}$ is not a vector in the union of the linear subspaces

in $S$ , then we can inductively construct a sequence $x^{(1\}}$ , . . . , $x^{(n)}\in O_{k}^{n+1}$ of vectors
with the following properties:
(i) $x$ , $x^{(1)}$ , $\ldots$ , $x^{(n)}$ are linearly independ $ent$ :

$x$ A $x^{(1\rangle}\Lambda\cdots\Lambda x^{(n)}\neq 0$ .

(ii) $\mathrm{o}\mathrm{r}\mathrm{d}_{v}$
$(x^{(t^{\mathrm{t}}}’\cdot \Gamma_{i}\prec)$ decreases 1 as $t$ increases 1, $\mathrm{i}$ . $e_{t}$. if $\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x\cdot F_{i})\geq n$ , we have

$\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x^{\{t)}\cdot F_{\dot{2}})=\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x. F_{\mathrm{i}})-t$

for $t=1,2$ , . . . , $n$ .
(iii) If we set $x^{\leq p-1}=x$ A $x^{(1)}\Lambda\cdots$ $\Lambda x^{(p-1)}$ and $F_{i,p}=F_{i}\Lambda F_{n-\mathrm{P}}+2\Lambda\cdots$ $\Lambda F_{n}$ for
$p=1$ , $\ldots$ , $n$ , we have the following inequality: after suitably $re$-ordering the $F$ ’s,
we have

$\sum_{v\in S(x)}\log\frac{||(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p)})^{1}\cdot F_{i,p}||_{v}}{||x\leq p-1||_{v}||x\leq p-1.F_{\iota,p}||_{v}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}},<\epsilon$

$\mathrm{h}\mathrm{t}’(x)$

for all $\mathrm{i}=0$ , $\ldots$ , $N$ and for all $x$ such that $x^{\leq p-1}\cdot$ $F_{\mathrm{i},p}\neq 0$ . If $x^{\leq p-1}\cdot$ $F_{\mathrm{i},p}=0$

then ( $x^{\leq p-2}$ A $x^{(p)}$ ) . $\Gamma_{i,p}^{t}=0$ . ffere, $||x^{\leq p-1}\cdot F_{i,p}||_{v}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}$ means that if $v\in S_{x}^{n}$ we
replace $\mathrm{o}\mathrm{r}\mathrm{d}_{v}$ $(x^{\leq p-1}\cdot\Gamma_{i,p}\prec)$ in the original definition by its level 1 residual version
$\max\{\mathrm{o}\mathrm{r}\mathrm{d}_{v}(x^{\leq p-} ’ \cdot Fi|P)-1,0\}$, and if

$\cdot$

$v\in S_{\infty}$ , we need no modification.

Proof. The conclusions (i) and (ii) follow from the above arguments after the proof
of Theorem 2.1. To show (iii), we need to establish its relation to the Paramet-
ric Subspace Theorem [$\mathrm{V}$ , Theorem 6.4.2]. However, (ii) implies that the non-
Archimedean places in $S(x)$ have no contribution to the left hand side of the in-
equality in (iii). This implies that the sum over the $S(x)$ reduces to the sum over
$S_{\infty}$ . Therefore, if (iii) does not hold for infinite number of $x^{\leq p-1}$ , we arrive at the
situation which violates the Parametric Subspace Theorem [$\mathrm{V}$ , Theorem 6.4.2] (on
the lattice $O_{k}^{n+1}$ with $S_{\infty}$ as the fixed set places). $\square$
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3. Nevanlinna-Cartan theory.
In this section we describe the geometry (Nevanlinna-Cartan theory) which con-

nects the Lemma on logarithm ic derivative to the approximation inequality of holo-
morphic curves to a linear divisor in $\mathrm{P}^{n}(\mathbb{C})$ . Yamanoi [Y] was able to characterize
the nature of this geometry in general setting: Let $X$ be a complex smooth pro-
jective variety and $D$ any effective divisor. Then the existence of a holomorphic
map $W$ from a jet space $X^{(j)}$ to a certain line bundle $Larrow X(S_{0}$ being its zero-
section) satisfying the condition $D^{(j)}\subset W^{*}(S_{0})$ (in the scheme theoretical sense)
characterizes the geom etry behind Nevanlinna-Cartan theory. The holomorphic
map $W$ : $X^{(j)}arrow L$ and the condition $D^{(j)}\subset W^{*}(S_{0})$ are respectively the abstract
version of the Wronskian and the “linearity condition” in the original Nevanlinna-
Cartan theory.

Let’s return to our situation. Let $D$ be a linear divisor of $\mathrm{P}^{n}(\mathbb{C})$ defined by the
linear forms $F_{0}$ , $\ldots$ , $\Gamma_{N}^{i}$ in general position. Let $f$ : $\mathbb{C}arrow \mathrm{P}^{n}(\mathbb{C})$ be a holomor-
phic curve such that $f(\mathbb{C})\not\subset$ Supp (D). Then Nevanlinna’s lemma on logarithmic
derivative (Theorem 1.1) states that

(9) $\{$

$m_{fD},(r)\leq m_{I}(k),D(k.)(r)+S_{f}(r)//$

$m_{J^{(k)}\infty},(r)\leq S_{f}(r)//$

hold for any nonnegative integer $k$ . Here, $f^{(k)}$ : $\mathbb{C}arrow \mathrm{P}^{n}(\mathbb{C})^{(k)}$ is the fc-th jet lift of
$f$ and

$D^{(k)}.= \bigcup_{j=0}^{N}V(F_{j}, dF_{j\}}\ldots, d^{k}F_{j})$

is the union of the k-th jet space of individual hyperplanes defined by $F_{j}=0$ .
Note that we are insisting on the linearity and use the individual defining equation
$F_{j}=0$ instead of the product $F_{0}\cdots F_{N}=0$ to define the jet space $D^{(k)}$ . Theorem
1.1 still holds in this situation (see, for instance, $[\mathrm{K}1,2]$ ).

We choose ( $\zeta_{0}$ : $(1$ : $\ldots$ : $\zeta_{n})$ a system of homogeneous coordinates of $\mathrm{P}^{n}(\mathbb{C})$ .
Then $z_{\mathrm{i}}=\zeta_{l}/\zeta_{\mathrm{J}}$‘ form a system of affine coordinates of $\mathbb{C}^{n}=\mathrm{P}^{n}(\mathbb{C})-\{z\mathit{0}=0\}$ .
The Wronskian $\det(d^{j}z_{\mathrm{i}})_{\mathrm{z},j=1}^{n}$ of affine coordinates $z_{1}$ , $\ldots$ , $z_{n}$ defines a holomorphic
map

$W$ : $\mathrm{P}^{n}(\mathbb{C})^{(n)}arrow K_{\mathrm{P}^{n}(\mathbb{C})}^{-1}$ .

Set $f_{i}(z)=z_{i}\circ f(z)$ . Then $f$
. : $\mathbb{C}arrow \mathrm{P}^{n}(\mathbb{C})$ is expressed as $f(z)=(f1(z), \ldots, f_{n}(z))$

in terms of the above affine coordinate system $(z_{1}, \ldots, z_{n})$ . Using jet lifts $f^{(j)}$

$(j=1, \ldots, n)$ of $f.$ , we can make up a holomorphic curve

$W_{f}:=$ VV $\circ f$

. : $\mathbb{C}arrow K_{\mathit{1}\mathrm{P}^{n}(\mathbb{C})}^{-1}$
. $\mathbb{C}\ni$ $z\mapsto W_{f}(z)=\det(d^{j}f_{i}(z))_{i,j=1}^{n}\in K_{\mathrm{P}^{n}(\mathbb{C})}^{-1}$ .

The Lemma on logarithmic derivative (9) implies that, up to error of order $s_{f}(r)=$

$O(\log^{+}(rT_{f}(r)))1$ a holomorphic curve $f$ : $\mathbb{C}arrow \mathrm{P}\mathrm{n}(\mathrm{C})$ approximates $D$ if and only
if $f^{(j)}$ : $\mathbb{C}arrow \mathrm{P}^{n}(\mathbb{C})^{(j)}$ approximates $D^{(j)}$ for any nonnegative integer $j$ . On the
other hand, as the Wronskian is defined in terms of linear coordinates $z_{1}$ , $\ldots$ , $z_{n}$ ,
the n-th jet space of any hyperplane is sent to the zero-section of $K_{\mathrm{P}^{n}(\mathbb{C})}^{-1}$ via the

Wronskian map If : $\mathrm{P}^{n}(\mathbb{C})^{(n)}arrow$ Pn(C). Let $D_{j}$ be a hyperplane defined by
$F_{j}=0$ and $S_{\zeta)}$ (resp. $S_{\infty}$ ) the 0-section (resp. $\infty$-section) of the anticanonical
bundle $K_{\mathrm{P}^{r\iota}(\mathbb{C})}^{-1}arrow \mathrm{P}^{n}(\mathbb{C})$ . Then we hawe the “linearity condition”

$D^{(n)}\subset W^{*}(S_{0})$
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in the scheme theoretical sense. Combining this with the first inequality in (9) gives

$m_{\int_{\backslash }D}(r)\leq m_{W_{f\prime}S_{0}}(r)+S_{f}(r)//$ .

On the other hand, there is a linear equivalence

$S_{0}+\pi^{*}I\mathrm{f}_{\mathrm{P}^{\tau\iota}(\mathbb{C})}=S_{\infty}$ ( $\pi$ being the projection $K_{\mathrm{P}^{n}(\mathbb{C})}^{-1}arrow \mathrm{P}^{n}(\mathbb{C})$ ).

which was implicitly used by Nevanlinna [N] in the case of $n=1$ and by Cartan
[C] in the case of general $n$ . The above inequality together with this linear equiv-
alence yield the approximation inequality (Cartan’s Second Main Theorem) in the
following way:

$m_{JD},(r)+N_{W_{f},S_{0}}(r)$ $+T_{],K_{4}pn_{\langle \mathrm{C})}}(r)//$

$\leq m_{\mathrm{L}V_{f}},s_{0}(r)+N_{W_{J},S_{()}}(r)+T_{f,K_{\sim}rn_{(\mathbb{C})}}(r)+S_{f}(r)//$

$\leq T_{W_{f}}$ . $S_{0}+\pi^{*}Kv’\iota_{(\mathbb{C})}(r)+S_{f}(r)//$

$\leq T_{W_{f\prime}S_{\mathrm{e}\mathrm{x}}}(r)+S_{J}(r)//$ .

We now use the second inequality in (9) to conclude the approximation inequality

mflD $(\mathrm{r})+Nw_{f},s_{\langle)}(r)\leq(n+1)Tf(r)+S_{f}(r)//$

where $T_{f}(r)$ is the height function relative to the hyperplane bundle $O_{\mathrm{P}^{n}(\mathbb{C})}(1)$ .
Next we look at only such “non-Archimedean” places in $\mathbb{C}(r)=\{z\in \mathbb{C};|z|<r\}$

such that $\Gamma_{j}^{\mathrm{t}}(f(z)\grave{)}=0$ for some $j$ . Let us fix one particular $j$ and suppose that
$F_{j}(f(z))=0$ . As Fj is linear, there exists an affine coordinate system $w_{1}$ , $\cdots$ , $w_{n}$

such that $F_{j}=0$ is equivalent to $w_{n}=0$ . If $z$ is a multiple root of $F_{J}(f(z))=0$

with multiplicity $m$ , then
$d^{j}(w_{n}\mathrm{o}f)=O(z^{m-j})$

for $j\leq m-1$ . If $m>n$ , then the Wronskian matrix of $(w_{1}\circ f, . . . ’ w_{n} \circ f)$ is of
the form

$(\begin{array}{lllll}d^{2}(w_{1}\mathrm{o}f..)d(w_{1}\mathrm{o}f) d^{2}(w_{2}of..)d(w_{2}\mathrm{o}f) \vdots d^{2}(w_{n-1}\mathrm{o}f)d(w_{n-1}\mathrm{o}f) O(z^{m-1})O(z^{m-2})\vdots \vdots \vdots \vdots d^{n-1}(u_{1}\prime \mathrm{o}.f)d^{n}(w_{1}\mathrm{o}f) d^{r\iota-1}(w_{2}\mathrm{o}f^{l})d^{n}(w_{2}\mathrm{o}f) \vdots d^{n-1}(w_{n-1}\mathrm{o}f)d^{n}(w_{n-1}\mathrm{o}f) O(z^{m-n+1})O(z^{m-n})\end{array})$

This implies that if $m>n$ then the intersection multiplicity of $W_{f}$ and $S_{0}$ dominates
the intersection multiplicity of $f$

. and $D$ (at $z$ ) minus $n$ . Let $N_{n,fD_{j}},(r)$ denote the
truncated counting function at level $n$ . We introduce the residual counting function
$N_{f}^{n_{D_{j}}},(r)$ at level $n$ by

$N_{f,D_{\mathrm{j}}}^{7L}(r)=N_{f,D_{j}}(r)-N_{n,f,D_{\mathrm{j}}}(r)$

$= \sum_{0<|a|<\tau}\max\{\mathrm{o}\mathrm{r}\mathrm{d}_{a}(F_{j}\mathrm{o}f)-n, 0\}\log|\frac{r}{a}|$

$+ \max\{\mathrm{o}\mathrm{r}\mathrm{d}_{0}(F_{j}\circ f)-n, 0\}\log r$ .
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Then the above observation implies

$N_{f^{D}}^{n},(r)\leq N_{1i_{f}’,S_{0}}(r)$ .

Therefore we have Cartan’s Second Main Theorem for the approximation to linear
divisors of holomorphic curves into $\mathrm{P}^{7?}(\mathbb{C})$ with residual counting function at level
$n$ :

$m_{f_{r}\mathit{1}\supset}(r)+N_{f,D}^{n}(r)\leq(n+1)T_{f}(r)+Sf(r)//$ .

Of course the above argument makes sense only if the Wronskian $W_{f}$ is not identi-
cally zero. On the other hand, $W_{f}\equiv 0$ if and only if $f(\mathbb{C})$ is contained in a proper
linear subspace. By induction on the dimension of the linear closure of $f$ , we infer
that there exists a union $Z$ of finitely many proper subspaces such that if $f(\mathbb{C})$ is
not contained in $Z$ the above inequality holds (with $n$ replaced by the dimension
of the linear closure of $f$ ).

4. A Diophantine analogue of Nevanlinna-Cartan theory.

In \S 2 (in the proof of Theorem 2,3) we established the Diophantine analogue
$\mathrm{S}(\mathrm{x})=S_{\infty}\mathrm{U}S_{x}^{n}$ of the notion of the “Nevanlinna theoretic non-Archimedean places”
(depending on holomorphic curve and divisor under consideration). Because of its
importance, we here repeat the construction. By taking the Zariski closure over
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(O_{k})$ , a rational point $x$ of $\mathrm{P}^{n}(k.)$ is identified with a section of $\mathrm{P}^{n}(O_{k})arrow$

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(O_{k})$ . Therefore, in this setting, a rational point (resp. a divisor) of $\mathrm{P}^{n}(k)$

becomes a curve (resp. a divisor) of the arithmetic scheme $\mathrm{P}^{n}(O_{k})$ . The intersection
of $x$ and a linear divisor $D$ in $\mathrm{P}^{n}(k)$ is thus defined. Therefore for each rational point
$x$ not contained in Supp (D), we can define the finite set $S_{x}^{n}$ of non-Archimedean
places over which $ and $D$ intersect with multiplicity $\geq n$ . We consider this $S_{x}^{n}$ as
the Diophantine analogue of the $‘\zeta \mathrm{N}\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{a}$ theoretic non-Archimedean places”.

In this section, we combine Theorem 2.3 and the Wronskian formalism in \S 3.

This is to compare infinite set of rational points of $\mathrm{P}^{n}(k)$ and a holomorphic curve
in $\mathrm{P}^{n}(\mathbb{C})$ from a view point of their intersection with a given linear divisor. We

have already established in \S 2 two versions of the Diophantine analogue of the

Lemma on logarithmic derivative, which culminated in Theorem 2.1 and 2.3. Here,

we first prove the Schmidt Subspace Theorem by combining Theorem 2.1 and the

Wronskian technique (in \S 3). We regard this proof as the simplest “model case”

which should be suitably modified (although the necessary modification will be far

from simple) according to the nature of problems we want to solve.

Let $\overline{v}$ denote the image in $T[x]\mathrm{P}^{n}(k)$ of $v\in k^{n+1}$ under the identification $k^{n+1}\Lambda$

$x\cong k^{n+1}/\langle x\rangle\cong T_{[x]}\mathrm{P}^{n}(k)\mathfrak{G}$ $O(-1)_{[x]}$ (see the discussion just before Theorem 2.1).

Theorem 4.1. Let $D$ be a linear divisor of $\mathrm{P}^{n}(k)$ in general position. Let $D^{(p)}$

denote the union of the p-th jet space of all irreducible components of D. Let $S$ be

a fixed finite set of places of $k$ containing all Archimedean ones. Then there exists

a finite union $S$ of proper linear subspaces of $\mathrm{P}^{n}(k)$ such that if $x\not\in S$ there there

exist $\overline{x}^{(1)}$ , . . . , $\overline{x}^{(n)}\in Tfx$ ] $\mathrm{P}^{n}(O_{k,S})$ such that

$\{$

$ms(x, D)\leq ms(\overline{x}^{\langle p)}, D^{(p)}\}+\epsilon \mathrm{h}\mathrm{t}(x)$

m5 $(\overline{x}^{(p)}, \infty)\leq\in$ ht (r)
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for all $p=1$ , $\ldots$ , $n$ , there the $S$ -proximity functions $m_{S}(\cdot, \cdot)$ are defined as in \S 2

using th $ev$ -adic distances and oo represents the divisor at infinity of the projective
completion of $T\mathrm{P}^{n}(k)$ .

Proof. Let $x^{(1)}$ , $\ldots$ , $x^{(n)}$ be as in Theorem 2.3 and let $\overline{x}^{(1)}$ , $\ldots$ , $\overline{x}^{(n)}$ be the image

in $T_{[x]}\mathrm{P}^{n}(k)$ under the above identification. We show that these $\overline{x}^{\langle j)}$ ’s satisfy the

desired inequalities. In the proof of Lemma 2.2 we have shown that the assumption

$|$ ( $x^{\leq p-1}\Lambda(x^{\leq p-2}$ A $x^{(p)})$ ) . $F_{i,p}|>A|x^{\leq p-1}||x^{\leq p-1}\cdot F_{i,p}|$
$\exists \mathrm{i}$

is equivalent to

$1 \mathrm{n}\mathrm{a}\mathrm{x}\{\frac{|(x^{\leq p-2}\Lambda x^{(p\rangle})\cdot F_{i,p}|}{|x\leq p-1.F_{\tau,\mathrm{p}}|}\}\frac{|x^{\leq p-2}\Lambda x^{\{p)}|}{|x\leq p-1|}\}\gg A$ .

We can view the totality of $x$ , $x^{(1)}$ , . . . ’
$x^{(n)}$ as a point of the ra-th jet space

$\mathrm{P}^{n}(k)^{(n\rangle}$ of $\mathrm{P}_{n}(k)$ . The Wronskian
$W$ : $\mathrm{P}^{r\iota}(k)^{(7\iota)}arrow K_{\mathfrak{l}\mathrm{P}^{n}(k)}^{-1}$

is a morphism. The image of $(x, x^{(1)}, . , . , x^{(n\rangle})$ under the Wronskian $W$ coincides
with $x^{(1)}$ A $\ldots$ A $x^{(n)}$ and the Wronskian morphism $W$ sends $D^{(n)}$ to $S_{0}$ (the zero-
section of $K_{\mathrm{J}\mathrm{P}^{\tau\iota}(k)}^{-1}$). Moreover we have a linear equivalence

$S_{0}+\pi^{*}K_{\mathrm{P}^{n}(k)}=S_{\infty}$

where $S_{\infty}$ represents the divisor at infinity of the projective completion of $K_{\mathrm{P}^{n}(k)}^{-1}$ .
Therefore we have

$m(x, D)+N$ ( $x^{(1)}$ A $\ldots$ A $x^{(n)}$ , $S_{0}$ ) $+h(x, K_{\mathrm{P}^{n}(k)})$

$\leq m$ ( $x^{(1)}$ A $\cdots$ A $x^{(n)}$ , $S_{0}$ ) $+N$ ( $x^{(1\rangle}\Lambda\cdot 0$ . A $x^{(n)}$ , $S_{0}$ ) $+h(x, K_{\mathrm{P}^{n}(k)})+\epsilon \mathrm{h}\mathrm{t}(x)$

[by the first inequality in Theorem 4.1]

$\leq h$ ( $x^{(1)}\Lambda\cdots$ A $x^{(n)}$ , $S_{0}+\pi^{*}K_{\mathrm{P}^{n}(k)}$ ) $+\epsilon$ ht (r)

$\leq h$ ( $x^{(1\rangle}$ A $\cdots$ $\Lambda x^{(n\rangle},$ $S_{\infty}$ ) $+’.\mathrm{h}\mathrm{t}(x)$

[by the above linear equivalence]
$\leq\epsilon$ ht (r)

[by the second inequality in Theorem 4.1] .
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This is the Schmidt Subspace Theorem. We remark here that the counting function
$N$ ( $x^{(1)}$ A $\ldots$ A $x^{\langle_{7}\iota)}$ , $S_{0}$ ) essentially has no contribution (as we see from the definition
of the successive ininim $\mathrm{a}$ ).

Next, we introduce the residual counting function to the Schmidt Subspace The-
orem by the same argument as the model case with only exception that Theorem
2.1 is replaced by Theorem 2.3. The point here is to execute the successive minima
with respect to the point (x)-dependent finite set $S(x)=S_{\infty}\cup S_{x}^{n}$ of places instead
of the fixed $S$ . By the above procedure, we are able to show that these $\overline{x}^{(j)}$ ’s behave,
over the non-Archimedean places in $S_{x}^{n}$ , just like the derivatives $f^{(1)}(z)$ , $\ldots$ , $f^{(n)}(z)$

of the holomorphic curve $f$
. do when $f$ intersects $D$ with multiplicity $m\geq n$ .

Theorem 2.3 together with the corresponding Lemma 2.2 imply the follow ing:

Theorem 4.2. Let $D$ be a linear divisor of $\mathrm{P}^{n}(k)$ in general position. Let $D^{(p)}$

denote the union of the p-th jet space of all irreducible components of D. Then
there exists a finite union $S$ of proper linear subspaces of $\mathrm{P}^{n}(k)$ such that, if $x\not\in S$ ,
then there exist $\overline{x}^{(1)}$ , , , . , $\overline{x}^{(n)}\in T[x\rfloor \mathrm{P}^{\tau\iota}(O_{k})$ which satisfy the inequalities

(11) $ms_{\mathrm{m}}(\prime x, D)\leq 7n_{S_{\mathrm{m}}}(_{\backslash }\overline{x}^{(p)}, D^{(p)})+\epsilon$ $\mathrm{h}\mathrm{t}(x)$

(12) $m_{6_{\mathrm{r}}^{\mathrm{c}}},(s^{1}-(?J), \infty)\leq\epsilon$ ht (x)

and the $cond\mathrm{i}t\iota \mathit{0}n$

(13) $x^{(p)}\in H_{v}^{(l^{J})}$ $\forall v\in S_{x}$

for all $p=1,2$ , $\ldots$ , $n$ . Here, $S(x)$ is the finite set of places of $k$ defined by
$S(x)=S_{\infty}\cup S_{x}^{n}$ where $S_{\alpha}^{n}$ is the set of non-Archimedean places of $k$ over which the
section $x$ : $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{O}\mathrm{k})arrow \mathrm{F}\mathrm{n}(\mathrm{O}\mathrm{k})$ and the linear divisor $D$ in $\mathrm{P}^{n}(O_{k})$ intersect with
multiplicity $m\geq n$ .

The condition (13) $\mathrm{i}_{1}\mathrm{n}\mathrm{p}1\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}$

(11) $N^{n}(x, D)\leq N_{S_{\infty}\mathrm{t}}(x, D)$ ( $x^{(1)}$ A $\ldots$ A $x^{(n)}$ , $S_{0}$ ) $-N_{S(x)}$ ( $x^{(1)}\Lambda\cdots$ A $x^{(n)}$ , $S_{0}$ ) .

This inequ ality exactly plays the role of the Diophantine analogue of the Wronskian
formalism in Nevanlinna theory in the proof of the Main Theorem. The point here
is that Theore1114.2 (i.e., tl$\mathrm{l}\mathrm{e}$ Diophantine analogue of the Lemma on logarithmic
derivative for varying $S(x))$ splits into two statements: One is (11) and (12) for
the Archimedean places which has a typical form of the Lemma on logarithmic
derivative, and the other is (13) (or (14)) for the non-Archimedean places in $S_{x}^{n}$

which is the Diophantine analogue of the Wronskian formalism.
To show that (13) implies (14), we suppose that one of the components of $D$ and

$x$ intersects over $v\in S_{x}^{n}$ with multiplicity $m$ and assume that $m\geq n$ . Then, by the
theory of successive minima relative to $S(x)$ , the order of the $v$-divisibility of the
“Wronskian” $x^{(1)}$ A $\ldots$ A $x^{(n)}$ at $v$ is by definition that of the determinant of the
“Wronskian matrix”

$\{$

$x_{1}^{(\downarrow)}$ $x_{2}^{(1)}$

$x_{1}^{(2)}$ $x_{1}^{(2)}$

$x_{1}^{\langle n-3)}.\cdot$

.
$x_{2}^{(n-1)}.\cdot$

.

$x_{1}^{(n)}$ $x_{2}^{(n)}$

.$\cdot$

.
$x_{n-1}^{(n-1\rangle}x_{n-1}^{(n)}x_{n1}^{(2}x_{n.’.\cdot\frac{)}{-)}1}^{(1}$

,
$x_{n}^{(n-1)}x_{n}^{(n)}x_{n}^{(...1)}x_{n}^{(2)}\ovalbox{\tt\small REJECT}$
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It follow $\mathrm{s}$ from the proof of Theorem 2.3 (arguments before it) that we may assume
that

$o\mathfrak{x}\cdot \mathrm{d}_{v}(x_{n}^{(j)})=m-j$ .

This is the Diophantine analogue of $d^{j}(w_{n}\circ f)$ $=O(z^{m-j})$ in the Wronskian matrix
for holomorphic curves into $\mathrm{P}^{n}(\mathbb{C})$ discussed in \S 3. We thus have the Diophantine
analogue (14) of the Wronskian fo rmalism in Nevanlinna theory.

We are now ready to execute the same procedure as in the Schmidt Subspace
Theorem with Theorem 4.1 replaced by Theorem 4.2. Applying the Diophantine
analogue of the Wronskian formalism (14), we have:

$m_{S_{\infty}}(x, D)+N_{S_{\varpi}}^{n}(x, D)+h(x, K_{\mathrm{P}^{\mathrm{n}}(k)})$

$\leq m_{S_{\infty}}(x, D)+N_{S_{\infty}\backslash }$ ( $x^{(1)}$ A $\cdots$ $\Lambda x^{(n)},$ $S_{0}$ ) $-N_{S(x)}$ ( $x^{(1)}$ A $\cdots\Lambda x^{(n)},$ $S_{0}$ )

$+h(x, K_{\mathbb{I}^{\mathrm{n}_{7L}}(k)})+\epsilon$ $\mathrm{h}\mathrm{t}’(x)$

Next, we proceed applying the Diophantine analogue ((11) and (12) in Theorem
4.2) of the Lemma on logarithmic derivative:

$ms_{\lambda}(x, D)+N^{n}(x, D)+h(x, K_{\mathrm{P}^{n}(k)})$

$\leq m_{S_{\mathrm{R}}}$ ( $x^{(1)}$ A $\cdots$ A $x^{(n)}$ , $S_{0}$ ) $+N_{S_{\varpi}}$ ( $x^{(^{1})}\mathrm{A}$ A $\ldots$ A $x^{(n)}$ , $S_{0}$ )

$-N_{S(\prime\iota)}$.($x^{(1)}$ A $\ldots$ A $x^{(n)}$ , $S_{0}$ ) $+h(x, K_{\mathrm{P}^{n}(k)})+\epsilon$
$\mathrm{h}\mathrm{t}$ $(x)$

[by thle inequality (11) in Theorem 4.2]

$\leq/\iota$ ( $x^{(1)}\Lambda\cdots$ A $x^{(n)}$ , $S_{0}+\pi^{*}K_{\mathrm{P}^{\mathrm{n}}(k)}$ ) $+\epsilon$ $\mathrm{h}\mathrm{t}(x)$

$\leq h$ ( $x^{(1)}\Lambda\cdots$ A $x^{(n)}$ , $S_{\infty}$ ) $+\in$ $\mathrm{h}\mathrm{t}(x)$

[by the linear equivalence $S_{0}+\pi^{*}K_{\mathrm{P}^{n}(k)}=S_{\infty}$]
$\leq\epsilon \mathrm{h}\mathrm{t}(x)$

[by the inequality (12) in Theorem 4.2] .

We have thus get the Main Theorem stated in the introduction:

Theorem 4.3 (Schmidt Subspace Theorem with Residual Counting Func-
tion). Let F $=\{\Gamma_{i}^{\prec}\}_{i=0}^{N}$ be a set of linear forms in $\mathrm{P}^{n}(k)$ in general position. Let
$\epsilon>0$ . Then there eists a finite union of linear subspaces $E(F, \epsilon)$ and a constant
$C(F, \epsilon)$ such that for all $x\in$ IF” $(k)\backslash E(F_{\mathrm{t}}\epsilon)$ the approximation inequality

$\sum_{\mathrm{i}=0}^{N}m(x, \Gamma_{i}^{\tau_{r}})+\sum_{j=0}^{N}N^{n}(x, \Gamma_{i}^{\mathrm{r}})\leq(n+1+\epsilon)\mathrm{h}\mathrm{t}(x)+C(F, \epsilon)$

holds
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5. Conjectures toward effectiveness.
In Theorem 2.3, we have shown the following: For $x\in O_{k}^{n+1}$ , possibly with

exceptions consisting of finitely many proper linear subspaces of dimension $\leq p-$

$1$ , we can inductively construct a sequence $x^{(1\rangle}$ , $\ldots$ , $x^{(p)}$ in 0 $kn+1$ such that the
inequality

(15) $\sum_{lf\in S(x)}\log\frac{||(x^{\leq p-1}\Lambda(x^{\leq p-2}\Lambda x^{(p)}))\cdot F_{i,p}||_{v}}{||x^{(p\rangle}||_{\mathrm{t}\prime}||x^{\backslash \leq p-1}F_{i,p}||_{v}^{\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}}}<\epsilon \mathrm{h}\mathrm{t}’(x)$

holds. In the proof of Theorem 2.3, we have shown that this existence theorem
(for $x^{(p)}$ ’s) is nearly equivalent to the Parametric Subspace Theorem. On the other
hand, the only known proof of the Parametric Subspace Theorem is the proof by
contradiction via the application of the Roth lemma. This proof does not give any
information on the bound of tlle height of the exceptional proper linear subspaces.

However, as we have shown in the proof of Theorem 2.3 and Theorem 4.2, the
inequality of type (15) plays the role of the Diophantine analogue of the Lemma
on logarithmic derivative and the Wronskian formalism in Nevanlinna theory. In
fact, this splits into two statements one of which is on the Archimedean places
and the other on the non-Archimedean places, respecting the non-uniform non-
Archimedean places involved in the argument. This enabled us to have uniform
estimates in Theorem 4.2. The former one is

(16) $\{$

$m_{S_{arrow}}(x, D)\leq m_{S\infty}(\overline{x}^{(p)}, D^{(p)})+\epsilon$ $\mathrm{h}\mathrm{t}(x)$

$m_{S_{\infty}}(\overline{x}^{(p)}\infty)\}\leq\epsilon$ $\mathrm{h}\mathrm{t}(x)$

which is strongly analogous to the Lem ma on logarithmic derivative (Theorem
1.1) in Nevanlinna theory. We then consider $x’ \mathrm{s}$ which do not obey the system of
inequalities (16) (for $\mathrm{a}\mathrm{n}\backslash$ ’ choice of $x^{(p)}$ ) Ths advantage of doing so lies on the
expectation that bounding such $d^{\mathrm{z}}$ ’s would be significantly simpler. The reason is
that the condition

(17)
$ms_{\infty}(x, D)>m_{S\infty}(\overline{x}^{(p)}, D^{(p)})+\epsilon$ ht (x) or $ms_{\infty}(\overline{x}^{(p)}, \infty)>\epsilon$ $\mathrm{h}\mathrm{t}(x)$

$\forall\overline{x}^{(p)}\in T_{[x]}\mathrm{P}^{?l}(O_{\lambda})$

would be significantly easier to handle compared to (15) (which is almost equivalent
to the Parametric Subspace Theorem$\cdot$).

The structure of the analogy between Schmidt’s Subspace Theorem and the
Nevanlinna-Cartan Theory is logically complicated. In particular, we must first
prove the ineffective Schmidt’s Subspace Theorem and then introduce a geometric
idea for the consideration on the effectiveness. To explain this complexity, we
introduce two kinds of Diophantine analogues of Lemma on logarithmic derivative
in Nevanlinna theory. One is that of TyPe A and the other is that of Type B. The
analogue of Type A is the inequality in Theorem 2.3. That of Type $\mathrm{B}$ consists of
the system of the inequalities in Theorem 4.2 (together with the condition (13)).
We have no direct proof for the Type $\mathrm{B}$ analogue, namely, at this stage, we can
prove the Type $\mathrm{B}$ analogue only “via proving that of Type $\mathrm{A}"$ . We proved the
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Type A analogue by reducing it to the Parametric Subspace Theorem [$\mathrm{V}$ , Theorem
6.4.2]. The essential part is to define the Diophantine analogue of the derivatives
by applying Minkowski’s geometry of numbers (successive minima) with certain
length functions (the Type A analogue is based on the length function to which the
successive minima is applied to define $x’$ , . . . , $x^{(n)}$ and this is the reason why we
cannot avoid the Type A analogue). On the other hand, the Parametric Subspace
Theorem redu ces to the Roth lemma23 and therefore the result is not effective.
However, the Type A analogue implies the Type $\mathrm{B}$ analogue together with the
ineffective $\mathrm{f}$ miteness statement. Then the TyPe $\mathrm{B}$ analogue turns out to split into
the inequalities over $S_{\infty}$ and the conditions (13) over the non-Archimedean places
in $S(x)$ .

Our conjecture is that we are able to effectively bound the solutions of these
inequalities over $S_{\infty}$ .

This discussion is summarized in the following table, where LLD (resp. $\mathrm{W}\mathrm{F}$ ,
PSST and SST) is the abbreviation of Lemma on logarithmic derivative (resp.
Wronsakian formalism, Parametric Schmidt’s Subspace Theorem and Schmidt’s
Subspace Theorem). Type A stands for the Type A Diophantine analogue of LLD
(Theorem 2.1) and Type $\mathrm{B}$ does theType $\mathrm{B}$ Diophantine analogue of LLD (Theorem
4.2). Note that there are im plications PSST $\Rightarrow$ Type A (Theorem 2.1) and Type A
$\Rightarrow$ Type $\mathrm{B}$ in tlle situation modified with varying $S(x)$ (Theorem 4.2). Note that
Type $\mathrm{B}$ is proved only via proving Type A.

Proving a Diophantine inequality is equivalent to proving the smallness of the
set of solutions of the opposite inequality. The residual counting function in the
Schmidt Subspace Theorem implies a stronger Diophantine inequality and therefore
there might be more exceptions. This means that bounding the height of the
solutions of the opposite inequality will become more nontrivial and harder.

The easiest case is the follow $\mathrm{i}\mathrm{n}\mathrm{g}$ . Suppose that all linear forms $F_{\mathrm{i}}(i=0, \ldots, N)$

are defined over a fixed number field $k$ . We consider the approximation to hyper-
places by $k$-rational points. The approximation inequality

$\sum_{i=0}^{N}(m_{S}(x, F_{i})+N^{n}(x, F_{\mathrm{i}}))\leq(n+1+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon)$

becomes “trivial” for small N., i.e., $N\leq n$ . Indeed, the “First Main Theorem”

ht $(x)=ms(x, F_{i})+Ns(x, F_{\tau})+O(1)$

23 The proof of the Roth lemma is the origin of the ineffectiveness of the Roth and Schm idt
Theorems. The Roth lemma is the most difficult part of the proof of the Roth theorem and also
plays the central role in the Schmidt Subspace Theorem.
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implies that the opposite approximation inequality reduces to

$(N+1) \mathrm{h}\mathrm{t}(x)+O(1)\geq\sum_{i=0}^{N}(m(x, F_{i})+N$ ( $x$ , Fi)

$\geq\sum_{i=0}^{N}(ms(x_{2}F_{i})+N^{n}$ ( $x$ , Fi)

$>(n+1+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon)$ .

If $N\leq n$ this reduces to

$(n-N+\epsilon)$ ht (r) $<C’(\epsilon)$

which implies an effective bound on the height of all solutions of the opposite
inequality. However, even for small $N$ , if $F’ \mathrm{s}$ are defined in an extension $K$ of $k$ , the
approximation inequality is as nontrivial as that in the case of general $N$ . Therefore,
if we believe the existence of the geometry which unifies Diophantine approximation
and Nevanlinna theory, the above argument (using the “First Main Theorem” ) has
no essential meaning and we should find more geometric way explaining the bound
of the height of the solutions of the opposite inequality even in the above easiest
situation. Later we examine the simplest case and show that the condition (17)
(split from (15)) in fact implies the effectiveness.

We suppose next that the linear forms are defined in the extension $K$ of $k$ and
we consider tlle approxim ation to hyperplanes by $k$-rational points, just as in the
classical Roth theore111 (we assume that the valuations of $k$ is extended to those of
$K$ appropriately). The behavior of the Weil height under the field extension implies
that the above mentioned argument does not work. However, the arguments in the
proof of Theorems 2,1 and 2.3 still work with respect to the extended valuations.

The above consideration suggests us to “‘assume” (as a working hypothesis) that
the structure of the proof of Theorems 2.1, 2.3, 4.1 and 4.2 contain something
essential for the existence of an effective bound of the height of the solutions of the
opposite approximation inequality.

We begin with the simplest case. Set $n=1$ , $k=\mathbb{Q}$ and $F=x_{0}$ where $(x_{0}, x_{1})$ are
coordinates of $\mathbb{Q}^{2}$ and $F=0$ represents the point $\infty$ of $\mathrm{P}^{1}(\mathbb{Q})$ . This simplest case
is most important in the attempt toward the effectiveness. In fact, the following
simple argument turns out to be the non-trivial first step. We would like to show
that for any given positive number $\epsilon$ , there exists an effective bound for the solutions
to the Diophantine problem (17):

$m_{S_{\infty}}$
$(\overline{x}^{(1)}, S_{0})$ $<m_{\mathrm{t}i_{\mathrm{m}}}\zeta(x, F)-\epsilon$ ht (x) or $m_{S_{\infty}}(\overline{x}^{(1)}, \infty)>\epsilon$ ht (r)

$\forall\overline{x}^{(1)}\in T\mathrm{P}^{\mathrm{I}}(\mathbb{Z})$ .

In this case, it is equivalent to the following:

(18)
dist $\mathrm{E}\mathrm{u}\mathrm{c}(x^{(1)}, S\circ)^{-1}<\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}$ Euc $(x, F)^{-1}H(x)^{-\epsilon}$ or dist Euc $(x^{(1)}, \infty)^{-1}>H(x)^{\epsilon}$

$\forall x^{(1)}\in \mathbb{Z}^{2}$ ,
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where $S_{0}$ represents the zero in the first jet space ( $=$ tangent space) of $\mathrm{P}^{1}(\mathbb{Q})$ and
dist $\mathrm{E}\mathrm{u}\mathrm{c}$ means to measure the Euclidean distance. Each quantity in the above
inequalities has the following geometric meaning:

dist E$\mathrm{u}\mathrm{c}(x, F)^{-1}=|\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}|$ ,

dist $\mathrm{E}_{\mathrm{J}\mathrm{C}},(x^{(1)}, S_{0})^{-1}=\min\{|\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|^{-1}, |\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}|\}$ ,

dist $\mathrm{E}_{11C}(x^{(1)}, \infty)^{-1}=|\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|$ .

Here, $|\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}|$ represents the maximum of the absolute value of the usual slope in $\mathbb{R}^{2}$

of the line determined by the point $x\in \mathbb{Z}^{2}$ and 1. Moreover, $|\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|^{-1}$ represents
the maximum of the inverse of the Fubini-Study length of the vector $x^{(1\rangle}$ (measured
as a tangent vector in $T\mathrm{f},{}_{]}\mathrm{P}^{1}(\mathbb{C}))$ and 1. Finally, $|\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|$ represents the maximum
of the Fubini-Study length of the vector $‘ c^{(1)}$ and 1. As the Fubini-Study metric of
$\mathbb{P}^{1}(\mathbb{C})$ is given by $\frac{|dz|}{1+|z|^{\underline{\eta}}}$ . we have

$| \mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|:=\max\{\frac{||x^{(1)}||_{\mathrm{E}\mathrm{u}\mathrm{c}}}{H(x)^{2}}$ , $1\}$ ,

$| \mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|^{-1}:=\max\{H(x)$ . $\frac{H(x)}{||x^{(1)}||_{\mathrm{E}\mathrm{u}\mathrm{c}}}$ , $1\}$ ,

for $x$ with $H(x)$ $\geq 100$ (for instance).

We then conjecture that the $x$ ’s satisfying the second inequality of (18) have
an effective bound.

As for the first inequality in (18), the necessary condition satisfied by $x$ is
$|\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}|^{-1}\leq|\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}|$. It is explicitly written as

(19) $\max\{\frac{H(x)^{2}}{||x^{(1)}||_{\mathrm{E}\iota\iota \mathrm{c}}}$ , $1 \}\leq\frac{H(x)}{|x_{0}|}$
$\forall x^{(1)}\in \mathbb{Z}^{2}$

We conjecture that such $x$ ’s have an effective bound.

We thus have the following effective Roth-type conjecture:

Conjecture 5.1. Let Fq, $\ldots$ , $F_{N}$ be distinct linear forms on $\mathrm{P}^{1}(\mathbb{Q})$ . Then for any
$\epsilon$ , there exists an effectively computable constant $C(\epsilon, F)$ such that

$\sum_{i=0}^{N}\mathrm{H}(\mathrm{x}|F_{i})+N^{1}(x, F_{i})\leq(2+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon, F)$ $\forall x\in \mathrm{P}^{1}(\mathbb{Q})$ .

Using the definition of the residual counting function $N(x, F_{i})-N_{1}(x, F_{\mathrm{i}})=$

$N^{1}(x, F_{?}.)$ and the “First Main Theorem” $m(x, F_{i})+N(x, F_{\dot{f}})=$ ht (x), we can
rewrite Conjecture 5.1 as

$\mathrm{h}\mathrm{t}(x)\leq(1+\underline{r}).\sum_{?=0}^{2}N_{1}(x, F_{i})+C(\epsilon)$ .

Now we take $\mathrm{F}\mathrm{o}=x_{0}$ , $\Gamma_{1}\prec=x_{1}$ and $F_{2}=-x_{1}-x_{2}$ . Then Conjecture 5.1 in the
product form becomes the statement of the effective version of the abc-conjecture
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Conjecture 5.2 ( $\mathrm{a}\mathrm{b}\mathrm{c}$-conjecture). For cvrvy $\epsilon$ $<0$ , there exists an effectively
computable constant $C(\epsilon)$ such that for all mutually prime integers $a$ , $b$ and $c$ sat-
isfying $a+b+c=0$ , the inequality

$\max\{|a|, |b|, |c|\}\leq C(\epsilon)(_{p}$
$p. \cdot|abc\prod_{\mathrm{p}\mathrm{r}i\mathrm{m}\mathrm{e}},p)^{1+\epsilon}$

holds.

The case $n=1$ and $k$ being any number field is the same except we must consider
$\mathbb{R}^{2r_{1}}\mathrm{x}$ $\mathbb{C}^{2?_{2}^{\backslash }}$ into which 0: has a $\mathrm{c}\mathrm{o}$-compact embedding, where $r_{1}$ and $r_{2}$ are the
number of real and (conjugate pair of) complex places of $k(r_{1}+2r_{2}=[k : \mathbb{Q}])$ .
Indeed, let $(x_{1}, x_{2})\in k^{2}$ and $(x_{1}^{(\iota\rangle}, x_{2}^{(\iota)})$ the point of $\mathbb{R}^{2}$ or $\mathbb{C}^{2}$ corresponding to
the real or complex embedding of $k$ . Let $L(x)=\mathrm{a}11+a_{2}x_{2}$ be a linear form
defined over $k$ and $L^{(\iota)}$ the linear form in $\mathbb{R}^{2}$ or $\mathbb{C}^{2}$ corresponding to the real or
complex embedding of $\mathrm{k}$ . Then, considering the linear equation $L(x)=0$ in $k^{2}$ is
equivalent to considering the system of linear equations $L^{(\iota}$ ) $(x^{(\iota)})=0$ . For each
1 we think of $L^{(l)}(x^{(\iota)})=0$ ab an equation defined in $\mathbb{R}^{r_{1}}\mathrm{x}$ $\mathbb{C}^{2\tau_{2}}$ . We can thus
argue quantitatively the analogue of (18) over the $\mathrm{c}\mathrm{o}$ -compact lattice of algebraic
integers.

Next we consider the case $n$ being general and $\mathrm{k}$ being any number field. Let
$F_{0}$ , $\ldots$ , $F_{N}$ be linear forms with $k$ coefficients in general position. In multiple di-
mensionai case we cannot separate $F’ \mathrm{s}$ because these define hyperplanes having
nonempty intersections. Let $r_{1}$ and $7^{\cdot}2$ be the number of real and (conjugate pair
of) complex places. The Diophantine problem (17) is described as

$\sum_{\mathrm{i}=0}^{N}m(\overline{x},$$\Gamma_{f}^{4}(p)(1))<\sum_{\dot{x}=0}^{N}m(x, F_{i})-\epsilon$ ht (z) or $m(\overline{x}^{(p)}, \infty)>\epsilon$ ht (z)

$\forall\overline{x}^{(p)}\in T_{[x]}\mathrm{P}^{n}(O_{k})$ .

Here, $\overline{x}^{(p)}\in T[J{}_{]}\mathrm{P}^{7b}(k.)$ is well defined (and $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}\dot{\mathrm{o}}\mathrm{r}\mathrm{e}$ the approximation to $F_{i}^{(1)}$ is
also well-defined). Indeed, let $f$

. : $\mathbb{C}\neg X$ be aholomorphic curve into any complex
manifold $X$ and let $(z_{1}, \ldots, z_{n}))$ $(w_{1}, \ldots, w_{n})$ be two systems of holomorphic local
coordinates around $f.(z)$ . Write $z_{i}$ and $w_{j}$ simply for the compositions $z_{i}\circ f$ and
$w_{j}$ of. Then we have $\frac{c\mathit{4}z}{\mathrm{r}l_{\sim}’},=\sum’j=1\frac{\partial z_{\mathrm{i}}}{\partial w_{j}}\iota d_{1lJ}\vec{dz’}$ . Differentiating this $(p-1)$ times gives

$\frac{d^{p}z}{dz^{p}}\equiv\sum_{j=1}^{r\iota}\frac{\partial z_{i}}{\partial w_{j}}\frac{\mathrm{c}l^{7^{J}}\mathfrak{l}\mathit{4}l_{j}}{d\underline{\vee}\})}$ modulo differentials up to order $p-1$ . So $\frac{d^{\mathrm{p}}z_{i}}{dzl^{\mathrm{J}}}$ for any system
of holomorphic local coordinates behaves like a tangent vector.

The above Diophantine problem is equivalent to the problem of bounding the
height of $x’ \mathrm{s}$ satisfying the $\mathrm{f}\mathrm{o}11\mathrm{o}\mathrm{w}\mathrm{i}_{\mathrm{l}}\mathrm{g}^{\neg}$ inequalities on $O_{k}^{n+1}$ which is a co-compact
lattice in $\mathbb{R}^{(n+1)r_{1}}\mathrm{x}$ $\mathbb{C}^{(7L+1)r_{2}}$ :

(20)
$v \in S_{\varpi}\prod_{0\leq i\leq N}$

dist $v(x^{(p\}}, \Gamma_{i}^{(1)}\forall)^{-1}<$

$v \in S_{\infty}\prod_{0\leq i\leq N}$

,

dist $v(x, F_{i})^{-1}H(x)^{-\epsilon}$

or
$\mathit{0}\in S_{\infty}\prod_{0\leq i\leq N}$

dist $v(\chi_{\wedge}^{\{p)}\infty)^{-1}>H(x)^{\epsilon}$ ,

$\forall x^{(p)}\in O_{k}^{?\acute{\iota}+1}$
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The reason why we conjectured that we able to bound the solutions to (17) in
the case of $n=1$ was that in (19) we find $H(x)$ twice in the left hand side while
only once in the right hand side.

As the first inequality of (20) suggests, the inequality of type (19) still holds if
$x$ locates in “general” position (note that the linear embedding $\mathrm{P}^{1}(\mathbb{C})\mathrm{c}_{-\mathrm{P}^{n}(\mathbb{C})}$’ is
isometric and totally geodesic with respect to the Fubini-Study metric of projective
spaces). However, this $” \mathrm{h}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{y}^{\backslash }$

’ situation on the first inequality no longer holds, if
$x$ locates at some special position relative to the hyperplanes determined by $F’ \mathrm{s}$ .

On the other hand, the second inequality of (17) has nothing to do with $F’ \mathrm{s}$ and so
it causes no difficulty in multi-dimensional situation. Therefore, we are exclusively
interested in the first inequality of (17).

Since Theorems 2.1/4.1 and 2.3/4.2 hold outside of a collection of finitely many
proper linear subspaces and once the effectiveness of the simplest situation of $n=1$

were proved, the induction process on $n$ would proceed. So, What we must do now
is to determine which linear subspaces are “special” in the sense that the “haPPy”
situation of (19) no longer holds.

The criterion is simple. Given a proper linear subspace, we just count how many
$\mathrm{H}\{\mathrm{x}$ ) $\%$ which appears in both sides and compare them. If we find more $H(x)’ \mathrm{s}$

in the left, we are able to have an effective bound. Otherwise, we have no hope
to get effective bound only from the Archimedean places and therefore we have
to take the non-Archimedean ones in $S_{\alpha}$ into account. In doing so, we can argue
inductively on the dimension of linear spaces, because, in Conjecture 5.1 we have
already established the effective version of the Roth theorem.

How to reduce to lower dimensional case $\mathrm{s}$ is explained as follows. Given a proper
linear subspace we consider the restrictions of $F’ \mathrm{s}$ . If $F’ \mathrm{s}$ are still in general position,
we can reduce the dimen sion. Suppose that the restricted $F’ \mathrm{s}$ are no longer in
general position. If this happens, we need case by case consideration.

This happens, if, for instance, we choose $F$ ’s to be a configuration of four lines in
general position in $\mathrm{P}^{2}$ and take any diagonal line $L$ connecting $P$ and $Q$ which are
two of six intersection points. Let $\{x\}$ be an infinite sequence of $k$-rational points
contained in $L$ . Assume that the sequence approximates $P$ in the Archimedean
places. In this case, $H(x)’ \mathrm{s}$ appear twice in both sides of (19) and considering
only Archim edean places is not enough. In fact, this sequence will approximates
$Q$ in the non-Archimedean places and We must argue synthetically taking both
approximations into account. Now let tls suppose that $L$ is not exceptional. Then
we have

$\sum_{i=0}^{3}\mathrm{m}(\mathrm{x}, F_{i})+N^{2}(x, F_{i})\leq(3+\epsilon)$ ht $(x)+C(\epsilon)$

and as $x$ lies in $L$ , this inequality reduces to the following inequality for a point in
$L$ :

$2(m(x, P)+m(x, Q)+N^{1}(x, P)+N^{1}(x, Q))\leq(3+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon)$ .

However, If we forget the ambient space and consider the sequence as that in $L$

$(\cong \mathrm{P}^{1}(k.))$ , we have the Roth theorem

$m(x, P)+m(x, Q)$ $+N^{1}(x, P)+N^{1}(x, Q)\leq(2+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon)$
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and it is well-known that this inequality is best possible which means that no
improvement on $2+\epsilon$ is possible. So, the conclusion of the same inequality as the
Schmidt Subspace Theorem for points of $\mathrm{L}$ violates the Roth theorem. Therefore
$L$ must be an exceptional subspace.

Next we show that any line $L$ passing through just one intersection point $P$ is not
exceptional. Let $Q$ and $R$ be other two intersections of $L$ and the line configuration.
Suppose that $L$ is not exceptional. Then

$2m(x, P)+m(x, Q)+m(x, R)+\cdots\leq(3+\epsilon)\mathrm{h}\mathrm{t}(x)+C(\epsilon)$ .

On the other hand, the Roth theorem and the “First Main Theorem” imply

$2m(x, P)+m(x. Q)+\cdots\leq \mathrm{h}\mathrm{t}(a\cdot)+(7n(X_{\}}P)+m(x, Q)+\cdot$ . .)
$\leq$ ht $(x)+(\underline{?}+\epsilon)$ ht (z) $+C(\epsilon)=(3+\epsilon)$ ht (r) $+C(\epsilon)$

and therefore we have no contradiction. This means that $L$ is not exceptional.

The reason why the above combinatorial argument (based on the Roth theorem)
synthesizes Archimedean and non-Archim edean places lies in the fact that under
the assumption $m_{S_{\infty}}$

$(x^{(p)}, \infty)<\epsilon$ ht (z), the inequality in Theorem 2.3 (this is a
version of Parametric Subspace Theorem) and the Roth-Schmidt approximation
inequality is alnost equivalent24 .

It is now clear how to determine the exceptional linear subspaces in the general
case ($n$ being general, $k$ being any number field and $F’ \mathrm{s}$ linear forms defined over
$k$ in general position). First of all we say that a given linear subspace $V$ is excep-
tional if the conclusion of the Schmidt Subspace Theorem on IF”(k) translated to

an approximation inequality on $V$ contradicts the $(\dim V)$ -version of the Schmidt
Subspace Theorem To check this, we have only to argue just we did to check lines
when $n=2$ and $F’[succeq]\cdot$, are four lines in general position. Although the argument
becomes combinatoriatjy more complicated as $n$ becomes larger, we are able to
algorithm ically organize it

The conclusion is that the set of all maximal exceptional subspaces are deter-
mined by combinatorial argument based on the inductive use of the (lower dimen-
sional) Schmidt Su bspace Theorem.

We say that an exceptional subspace is maximal if this is maximal among all
exceptional subspaces with respect tc the inclusion.

Conjecture 5.3 (Effective Schmidt Subspace Theorem). Let $F=\{F_{i}\}_{\mathrm{i}=0}^{N}$

be a set of linear forms in $\mathrm{P}^{\tau\iota}(k)$ in general position. Let $\epsilon$ $>0$ . Then there exists
an effectively computable finite union of linear subspaces $E(F, \epsilon)$ (we call them
exceptional subspaces) and an effectively computable constant $C(F, \epsilon)$ such that for
all $x\in \mathrm{P}^{n}(k)\backslash E(F, \epsilon)$ the a.pproximation inequality

$\sum_{i=()}^{N}m(x, F_{i},)+\sum_{\iota=()}^{N}N^{n}(x_{\backslash }\Gamma_{i}\prec)\leq(n+1+\epsilon)\mathrm{h}\mathrm{t}(x)+C(F, \epsilon)$

24 This is evident fro$\iota \mathrm{n}$ tlle proof of the Schmidt Subspace Theorem given in \S 4 and the proof

of Theorem 4.3
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holds. Moreover, for given $\epsilon$ and $F$ ’s, we have a combinatorial algorithm to de-
termine all maximal exceptional subspaces. In particular, there exists an effective
bound for the height of exceptional subspaces.

We execute the above algorithm in the simplest case, i.e., $n$ being general, $k=\mathbb{Q}$

and $F$ ’s being $F_{i}=x_{\mathrm{t}}$ for $\mathrm{i}=0,1$ , $\ldots$ }
$n$, and $F_{n+1}=-x_{0}-x_{1}-\cdots-x_{n}$ . In this

case it is easy to determine all maximal exceptional subspaces. These are diagonals,
i.e., those hyperplanes which are defined by the $\zeta$“sub-sum” $\sum_{i\in I}x_{\mathrm{z}}=0$ over any
proper subset $I\subset\{0,1, \ldots, n\}$ such that $|I|\geq 2$ (the case of $|I|=1$ is excluded
from the begining because we are arguing in the setting of the Schmidt Subspace
Theorem with respect to the linear forms $F’ \mathrm{s}$ ).

We check this in the case of $n=3$ . Set $F_{\mathrm{c}}=x_{i}$ for $\mathrm{i}=0$ , . . ., 3 and $F_{4}=-(x_{0}+$

$\ldots$ +x%). First we consider $\mathrm{P}^{1}$ over which $F’ \mathrm{s}$ restricts in general position. By the
effective $\mathrm{R},\mathrm{o}\mathrm{t}\mathrm{h}$ . any such $\mathrm{P}^{1}$ is not exceptional. Next, suppose that $F’ \mathrm{s}$ do not restrict
in general position. If complementary two and three of five intersection points
coincide, the left hand side of the Schmidt Subspace Theorem becomes $3m(x, P)+$

$2m(x, Q)$ plus residual counting function terms, which (as a total) is not larger
than 5 ht (x) by the ’.

$‘ \mathrm{F}\mathrm{i}1_{\mathrm{r}}\mathrm{s}\mathrm{t}$ Main Theorem ” and indeed this estimate is best possible
for some infinite sequence. This violates the Schmidt Subspace Theorem for $n=$

3. So, such $\mathrm{P}^{1}$ is exceptional. If just three coincide, the left hand side becomes
$3m(x, P)+\mathrm{m}\{\mathrm{x},$ $Q$ ) $+m$ $(x_{?}R)$ plus residual counting function terms, which is not
larger than $(4+\epsilon)\mathrm{h}\mathrm{t}(x)\dagger_{\mathrm{J}_{\mathrm{t}}}.\mathrm{y}$ tlle effective Roth and the “First Main Theorem” . This
does not violate the Schmidt Subspace Theorem for $n=3$ . We can argue similarly
in the case that just two pairs coincide. Thus we have shown that the exceptional
$\mathrm{P}^{1}$ ’s are characterized by the condition that two and three of five intersection points
coincide. We can not bound the height of such $\mathrm{P}^{1}$ ’s. However, these $\mathrm{P}^{1}$ ’s turn
out to be not maximal. These are classified into a finite number of l-parameter
family and each family is contained in some $\mathrm{P}^{2}$ defined by certain subsum $=0$ ,
which, as we show below, $\mathrm{i}_{\mathrm{b}}$ exceptional. Next, we consider a $\mathrm{P}^{2}$ on which the
restriction of $\Gamma^{\mathrm{r}}’ \mathrm{b}^{\backslash }$ are in general position. This case is rechtced to the Schmidt
Subspace Theorem on $\mathrm{P}^{2}$ with four lines in general position. In this case the
only exceptions are diagonal lines. However as we saw above, the left hand side
of the Schm idt Subspace Theorem is 2 $(m(x, P)$ $+m(x, Q))$ plus residual counting
function terms and is not larger than 4 ht (x). This violates the Schmidt Subspace
Theorem for $n$ $=2$ but does not for rr $=3$ . So any $\mathrm{P}^{2}$ in general position with
$F$ ’s is not exceptional. If $\mathrm{P}^{2}$

$\mathrm{i}_{\llcorner}‘$, determined by the line $L=\{F_{0}=F_{1}=0\}$ and a
point $P$ on $F_{2}=\Gamma_{3}\prec=0$ , the right hand side of the Schmidt Subspace Theorem
becomes $2m(x, L)+93\mathrm{m}(\mathrm{x}$ , ? $)$ plus residual counting function terms, which is not
larger than 4 $\mathrm{h}\mathrm{t}(x)$ by the First Main Theorem”. So, this does not violate the
Schmidt Subspace Theorem and any such $\mathrm{P}^{2}$ is not exceptional. If $\mathrm{P}^{2}$ is determined
by the line $L=\{\Gamma_{0}^{\prec}=\Gamma_{1}^{\prec}=0\}$ and the point $P=\{F_{2}=F_{3}=F_{4}=0\}$ , the
left hand side of the Schmidt Subspace Theorem becomes $3m(x, L)+2m(x, P)$ plus
residual counting function terms which is not larger than 5 ht (x) by the First Main
Theorem” . This violates the Schmidt Subspace Theorem and this case corresponds
to the subsum $x_{0}+x_{1}=0$ . Similarly $\mathrm{P}^{\underline{9}}$ determined by the line $L=\{F_{3}=F_{4}=0\}$

and the point $P$ $=\{\Gamma_{0}^{\prec}=F_{1}=\Gamma_{2}^{\tau}=0\}$ corresponds to the subsum $x_{0}+x_{1}+x_{2}=0$ .
We thus conjecture the following:

Conjecture 5,4 (generalized $\mathrm{a}\mathrm{b}\mathrm{c}$-conjecture). For any $\epsilon<0$ there exists an
effectively computable constant $C(c.)$ such that the following holds if $a_{0}$ , $a_{1}$ , $\ldots$ , $a_{n}$ , $a_{n+1}$
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are mutually prime integers satisfying the condition $a_{0}+a_{1}+\cdots+a_{n}+a_{n+1}=0$

and $\sum_{i\in I}a_{i}\neq 0$ for any proper subset $I\subset\{0,1, \ldots, n\}$ , then

$\max\{|a_{0}|, |a_{1}|, \cdot. , |a_{n+1}|\}\leq C(\epsilon)($ $\prod$
$p^{\min\{\mathrm{o}\mathrm{r}\mathrm{d}_{p}(a_{\mathrm{O}}a_{1}\cdots a_{n+1}),n\})^{1+\epsilon}}$

$p$ prime
$p|a_{0}a_{1}\cdots\alpha_{71+1}$

holds.
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