ooooooooon 14510 20050 72-111

12

AN ATTEMPT TOWARD DIOPHANTINE ANALOGUE OF

RAMIFICATION COUNTING IN NEVANLINNA THEORY

: TRUNCATED COUNTING FUNCTION IN SCHMIDT’S
SUBSPACE THEOREM (PRELIMINARY VERSION)
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Graduate School of Mathematics, Nagoya University

ABSTRACT. We establish a new framework of Diophantine geometry which intro-
duces truncated counting function to Schmidt Subspace Theorem. This is a Dio-
phantine analogue of the ramification counting function in Nevanlinna theory. This
framework canonically splits the Diophantine inequality in the Parametric Subspace
Theorem into Archimedean and non-Archimedean parts, Using this framewark, we
will propose sotne conjectures on the effective version of the Roth theorem with
truncated counting function. :

0. Introduction.

In [V, Chapt.6], Vojta described systematically the similarities between the
proofs of the Cartan-Ahlfors-Weyl Theorem' and the Schmidt Subspace Theorem?.

In this article, we push this direction further. As in Vojta [V], our strategy is to
bridge Nevanlinna theory and Diophantine approximation. What is novel in this
article is to bridge the Nevanlinna-Cartan theory on Wronskian and the theory of
successive minima in geometry of numbers by means of establishing a Diophantine
analogue of the truncated counting functions in Nevanlinna-Cartan theory (INL,IC)).
We establish this analogue via a new Diophantine analogue of Nevanlinna’s lemma
on logarithmic derivative.

It was Vojta who first formulated and proved a Diophantine analogue of Nevan-
linna’s lemma on logarithmic derivative (see [V, Theorem 6.4.3] and [V, Theorem
6.6.1]). In this article, we introduce a new geometric framework in Diophantine
approximation and prove the higher jet version of [V, Theorem 6.4.3] in our frame-
work.

Let us fix a number field k. Let a finite set of linear forms in general position be
given and D the linear divisor defined by these linear forms. Then, for each point
¢ € P*(k)\D, we can canonically associate the finite set S7 of non-Archimedean
places of k by selecting those places over which the Zariski closures of z and some
component of D over the ring of integers Oy intersect with multiplicity > n. Our
new view point is to combine the association z — S? with Bombieri-Vaaler’s theory

1 This is on approximation to hyperplanes in P™*(C) by holomorphic curves.
2 This is on approximation to hyperplanes in P (k) by rational points.
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on geometry of numbers [B-V], by which we are able to establish a new Diophantine
analogue of Nevanlinna’s lemma on logarithmic derivative. This leads to a strong
version of Schmidt’s Subspace Theorem with the truncated counting function, i.e.,
a strict Diophantine analogue of the Nevanlinna-Cartan theory.

The proximity function m(z, F}) (resp. the counting function N(z, F;)) measures
the Archimedean (resp. non-Archimedean) approximation of z to the hyperplane
F; = 0. By truncating N{z, F;) at level n, we get the truncated counting function
N™(z, F;). More generally, given a finite set S of places including all Archimedean
ones, the S-proximity function mg(z, F;) measures the approximation relative to
the places in S and the S-counting function Ng(z, F;) does the same relative to the
places outside of S. Let’s return to the original situation. By truncating N(z, F;)
at level n, we get the truncated counting function N,(z, F;} and we define the
residual counting function

N™(z, F;) := N(z, F;) — Np(z, F) .

This counts only intersections having the multiplicity (= m) not smaller than n
with weight m — n. The absolute logarithmic height function ht(z) measures the
total arithmetic complexity of z € P*(k).

The main result of this article is formulated as follows.

Main Theorem (Theorem 4.3). Let F = {F;}¥, be a set of linear forms in
P™(k) in general position. Let € > 0. Then there exists a finite union of linear
subspaces E(F,€) and a constant C(F,e) such that for all z € P*(k)\E(F,¢) the
approzimation inequality

N N
Y mz, F)+ Y NY(z,F) < (n+1+¢) ht(z) + C(F,e)

=0 i=0

holds.

The presence of the residual counting function in the left hand side strengthens
the Schmidt Subspace Theorem. We hope that this will be useful in the attempt
toward the effective version Schmidt’s Subspace Theorem.

The plan of this article is as follows. Because our method is based on the
analogy between Diophantine approximation and Nevanlinna theory, we included
a brief introduction to Nevanlinna theory in §1 and §3. We then establish their
Diophantine analogue in §2 and in §4.

In the course of the proof of the Main Theorem, we establish a new framework
in Diophantine geometry. Let & be any number field and S any fixed finite set of
places of k containing all Archimedean ones. The basic Diophantine functions (i.e.,
the proximity and counting function) are defined with respect to the fixed S and the
set S is fixed in the whole story. In our new framework, we introduce the varying
S and generalize Vojta's Theorem [V, Theorem 6.4.3]% in this setting. The varying
S means the following. We consider P*(k) together with a linear divisor D defined
over k. To each z € P*(k) — D, we select all non-Archimedean places v of k with

3 The role of Vojta’s Theorem [V, Theorem 6.4.3] is two-fold in the geometry of Diophantus-
Nevanlinna analogy. One is that as the Diophantine analogue of the Lemma on logarithmid
deribvative. The other is that as a re-formulation of the Parametric Subspace Theorem.
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the property that the Zariski closures of z and D (over the ring Ok of integers)
intersect with multiplicity > n over the place v. We define S the collection of
such non-Archimedean places v and define an association z — 87. The varying S
just means S(z) = Seo U S;. Here we encounter the difficulty stemming from a
non-uniform number of non-Archimedean places. In §2, we overcome this difficulty
by geometry of numbers with an appropriate choice of the weights in the length
function (the associated star-body should have a good “shape” with respect to the
non-Archimedean places involved).

In §4, we push the analogy further and formulate this in the shape, Theorem 4.2,
completely analogous to the Lemma on logarithmic derivative. Theorem 4.2 appears
as a new version of the Parametric Subspace Theorem (because this generalizes [V,
Theorem 6.4.3]) from which we deduce the Main Theorem. As is clear from the
statement of Theorem 4.2, the new version of Parametric Subspace Theorem splits
into the Archimedean and non-Archimedean parts.

The use of the Roth lemma in the proof of the Roth and Schmidt Subspace
Theorem is the origin of the ineffectiveness of these theorems. In §5, we propose
some conjectures toward the effectiveness from the new framework introduced in
§2. The Diophantus-Nevanlinna analogue we establish in this article is based on the
Nevanlinna-Cartan theory which consists of the Lemma on logarithmic derivative
and the Wronskian formalism (see §3). In the most primitive sense, Parametric
Subspace Theorem is the Diophantine analogue of the Lemma on logarithmic de-
rivative and Schmidt’s proof of “PSST = SST” is the Diophantine analogue of the
Wronskian formalism?. Vojta refined this analogue by establishing the “Type A
analogue” of the Lemma on logarithmic derivative® (cf. Theorem 2.1) by showing
«pSST = Type A”. Then Vojta’s proof of “Type A = SST” turns out to be the
Diophantine analogue of the Wronskian formalism at this stage. §5 is an attempt
toward pushing this direction further. Reformulating Vojta’s proof of “PSST =
Type A” in our new framework, we get the “Type B” analogue of the Lemma on
logarithmic derivative (see Theorem 4.2). The “Type B” analogue (in Theorem 4.2)
splits into the inequalities (16) over S and certain conditions over S7. Here it is
remarkable that we can propose a Diophantine inequality which seems to be much
simpler compared to the original Roth type inequality which, we conjecture, would
effectively bound the exceptions to the inequality (16). However, since logically
“Type A statement = Type B”, we cannot avoid establishing “Type A statement”
(< PSST <« Roth Theorem). In short, we need ineffective “Type A statement”
to conclude that the effective bound on the exceptions to (16) gives the effective
bound to the “Type A statement”. Since the “Type B” analogue of the Lemma
on logarithmic derivative obeys the same geometric pattern as in the Nevanlinna
theory, we can establish the Diophantine analogue of the Wronskian formalism to-
gether with the Diophantine analogue of the Wronskian itself. In the Roth case
(n = 1), the Archimedean part of the above splitting reduces to a simple Diophan-
tine inequality for Z? embedded in R?. We conjecture that there exists an effective
bound for the height of solutions to the opposite inequality (see §5, (17) and (18)).
Once we were able to prove this conjecture, we would argue inductively on n and
finally get the effective Schmidt Subspace Theorem with residual counting function,

4 PSST (resp. SST) is an abbreviation of the Parametric Subspace Theorem (resp. the Sub-
space Theorem).
8 This is [V, Theorem 6.4.3} on which this article is based.
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which implies the effective version of the abc-conjecture and its generalization.

1. Lemma on logarithmic derivative.

We refer to [Y], [K1,2] for technical details of this section.

We will freely use standard notation in Nevanlinna theory which we briefly re-
view here. Let X be a smooth projective variety and D any effective divisor.
Nevanlinna theory provides a natural framework for the study of approximation to
hypersurfaces by transcendental holomorphic curves.

Let f: C — X be a holomorphic curve whose image is not entirely contained in
Supp (D).

The proximity function

df

27
mf,D(r)-:/O —IogdistEuc(f(re"e),D)-é;

measures the Euclidean approximation of f to D. Here the Euclidean distance is
measured by using a smooth Hermitian norm of Ox (D) and a defining equation of
D.

The counting function

Nip(r)= > orda(a(f))log

0<|aj<r

gl + ordg(o(f)) logr

measures the approximation of f to D by counting the number of roots of o (f(2)) =
0. The Poisson-Jensen formula implies that the height function

Ty.p(r) = myp(r) + Nsp(r)

depends (up to bounded functions) only on the linear equivalence class of D (First
Main Theorem in Nevanlinna theory).

Let X be a smooth projective variety and D any effective divisor. We will
use the superscript ) to indicate the j-th jet object. For a holomorphic curve
f: A — X, we define the j-th canonical jet lift FO . C — X by fU(z) =
(F(2), f'(2),..., f9)). Two germs of holomorphic curves f; : &; — X (i = 1,2)
passing through z € X (i.e., fi(0) = z) are said to be j-equivalent if and only if f1
and f> have the same Taylor series at z = 0 up to order j. The j-th jet space X &)
is by definition the set of all j-equivalence classes of germs of holomorphic curves in
X. We write 709 : XU) — X for the canonical projection. Let s be a holomorphic
function defined on an open set U C X and let f: A — X be a representative of
an element of (7(7))~1U. Then the association

47
(&0 3| UG

canonically defines a holomorphic function d/s on (7\9)7*U. Let a proper sub-
scheme Z of X be locally given in terms of the generators of the defining ideal by
Z=V(s1,...,8). By Vieg we mean the regular part of V and we set

ZY) = the Zariski closure of Vieg(81,...,5¢,d81,. .., d5¢, .., dsy,...,d%s)

and call it the j-th jet space of Z. Let oo be the divisor at infinity of (any) projective

completion X () of the jet space X ).
We are now ready to state a modern version of Nevanlinna’s lemma on logarith-
mic derivative ([Y],{K1,2]).
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Theorem 1.1. Let (X, D) be as above. Let f : C — X be a holomorphic curve
such that f(C) ¢ Supp (D). Let j be any positive integer. Then we have

my,z(r) < mpm zo(r) +Ss(r) ]
M 00(r) < Se(r)f -

Here the symbol Sy(r) indicates a small order error function
S¢(r) = O(log™ (rTs,a(r)))

in the asymptotic sense as 7 — co. The symbol // means that the said inequality
holds outside a Borel set of finite Lebesgue measure.

The Lemma on logarithmic derivative is important in the following two points:
(i) [On approximation.] Suppose that a holomorphic curve f : € — X approximates
a proper subscheme Z. Then the first inequality of Theorem 1.1 implies that any
j-jet of the holomorphic curve f likely approximates the j-jet space of Z in X0,
Moreover the second inequality implies that any j-jet of f does not approximate
the divisor at infinity of any projective completion of X G,

(ii) [Non sensitivity on targets and subschemes.] The inequalities of Theorem 1.1
are of the same form for any holomorphic curve in any target and with respect to
approximation to any proper subscheme.

In the next section, we will discuss what Diophantine analogue is possible about
the Lemma on logarithmic derivative from the view point of (i) and (ii).

2. A Diophantine analogue of the Lemma on logarithmic derivative.

In this section we closely follow [V, Chapt. 6] to prove a Diophantine analogue
of Nevanlinna’s lemma on logarithmic derivative for points of P"(k) approximating
hyperplanes®.

We first introduce basic definitions in Diophantine approximation on projective
varieties.

Let k be a fixed number field and X a smooth projective variety defined over
k and D a divisor. Let v be any place (finite or infinite) of k. To define the
Diophantine analogue of proximity/counting/height functions, we need to extend
X to an arithmetic variety & over Spec (Of) having X (k) as a fiber over a generic
point. The Weil function associated to v is defined by

Apw : X =D —Ryg; 2z Apu{z):= —logdist,(z,D) .

By using Weil functions, we introduce fundamental functions in Diophantine
approximation.

Let S be a finite set of places of k containing all infinite ones. For v € My we
set dy = [ky : Qpl/[k : Q] (where v divides p). Let x € X(k).
(i) The S-proximity function is defined by

ms(D,z) =Y dyApo(@) -
veES

8 The Diophantine analogue we prove in this article works only on the approximation to
hyperplanes in projective spaces. We will prove in a future paper a more general analogue on
the approximation to general subschemes of general projective varieties.
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This measure the approximation to D with respect to places in S.
(ii) The S-counting function is defined by

Ns(D,z) =Y durpa(z) -
v€S

This measures the approximation to D with respect to places outside of S.
Let ¢ = 0 be a defining equation of D over k and let p be the prime corresponding
to the restriction of v to Q. Then

Ns(D,z) = ﬁ@— gjsdegv(o(z)) log N(v) = ;S Q%—de(g‘—’—(p—” logp .

The proximity and counting functions may change drastically if we change D
in its linear equivalence class. The quantity invariant under linear change of D
will define a complete intersection theory of points and divisors in Diophantine
approximation.

The absolute logarithmic height function is defined by the sum of all Weil func-
tions”:

htp(z) = ms(D,z) + Ns(D,z) .

The product formula implies that the absolute logarithmic height function ht(z) (up
to bounded functions) depends only on the linear equivalence class of the divisor
D (this is the Diophantine analogue of the First Main Theorem in Nevanlinna
Theory).

The asymptotic behavior of these functions is defined for infinite set of k-rational
points of X. Therefore,

the collection of the images of flg( : Clr) — X for unbounded set {r}

2Ry on infinite set {z} € X (k)

where C(r) = {z € C;|2| < r} and f : C — X is an entire holomorphic curve. The
prime structure is intrinsic in Diophantine geometry, while its Nevanlinna analogue
is to distinguish the “map” f:C — X from its “image” F(C):

(C(r), point measure) P10 finite places of k ,

{aC(r ,—gﬁ) 2208 i finite places of & .
3 .

Note that there is no “canonical” Diophantine notion of the “Nevanlinna theoretic
non-Archimedean places”. The above defined analogue depends on the holomorphic
curve f and the divisor D = (o) (a € C(r) is a “non-Archimedean place” if and only
if ordg (o(f)) is positive). The main idea of this article is to reverse the orientation
of considering analogies and to consider the “Diophantine analogue” of the non-
existence of the “canonical definition” of the “Nevanlinna theoretic finite places”.

7 The absolute logarithmic hight function does not depend on the choice of the field K over
which z is defined.
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To formulate a Diophantine analogue of the Lemma on logarithmic derivative,
we need a Diophantine analogue of the derivative for points of P"(k) (note that
the derivative is defined intrinsically for holomorphic curves but not for rational
points). |

For this purpose, we identify T}, ([z] € Pn(k) where z € (92:;1 — {0} without
common non S-unit factor) with &t Az = k" /(z) >= k™ up to O(—1), so that
we can work in linear algebra®. This space inherits a canonical lattice structure
OZ? Az C k"L A

To proceed, we consider two families of lines in Pn11(k) (= the projective comple-
tion of k"*1). One is the family F; of lines in P(k™t1) passing through [z] € Py (k)
(the hyperplane at infinity). The other family F; consists of those lines passing
through the origin of k"*! (naturally parameterized by the hyperplane P.(k) at
infinity). For any point p of Py, (k) we pick a point y € k™1 in the corresponding

line in 3 in such a way that y € G?E} without common non S-unit factor.
Let z,vg,..., V41 be a basis of (’)Z“g1 and set ¥y = 1T + YaVa + T Yn41Unt1-

The S-unit factor is undetermined for the above choice of y. However, the absolute
logarithmic height

By na) o= (g DIk + @ollog, gmex Tul
' vES -

is independent of the undetermined S-unit factor. The set of all points in P.(k)
with the same yAz € Oﬁi'ql Az forms an infinite set having the following properties:
(a) This infinite set accumulates at the “center of gravity” [z] € P (k).

(b) This infinite set lies on the line of P, (k) which is the intersection of P, (k) and
the 2-plane in Pp4.1(k) determined by = and y.

We interpret this infinite set as an analogue of a holomorphic curve ¢ : C — P,(C)
with f(0) = [z] and yAz € C’)ff;l Az C TiPr(k) an analogue of the derivative c(0).
More explicitly, we associate to y Az € k" Az (y being as above) a holomorphic
curve c(z) in the following way. The line in P, (k) determined by the set of all points

in P, (k) having the same y Az € OZ;;I is parameterized as z v c(z) := [z + 2y]
(z and y being linearly independent). This is what we want to have. Indeed, we
introduce a system of homogeneous coordinates so that z = (zg : -+ : ) and
y=(yo: - :yn) and assume that zg +yo # 0. Then, for z with |z| small, we have
c(z)=(zo+zyo: -t Tn+ 2yn)
= [1: (2 + zy1)z5 (L + z:‘;—orl Do (@n + 2yn)zg N1+ z%’l)-l]
0 n
z ToYr — T ToYn — T
S Rt i L TP L L Bk L A TP
o Zo Lo

In a similar way, given 3V and @ in (92:;1, we can associate a holomorphic curve

¢(z) with the property that ¢(0) = [z] and ¥ A z (resp. @ A z) as an analogue
of ¢(0) (resp. ¢"(0)) by setting

® 2,2 y
clz) = |lz+2y" + 27y — =—
Zg

8 The Euler exact sequence implies the isomorphism k™! /{z) T P™ ® O(—1)g)-
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Indeed, we have

(1) (1) (2) 2)
@ —_ "
o) = |1 5Ly BN~ Tib 2T T Tl
ZTo Ty g

) 1) (2) 2
. Tn n Zxoyn - mnyé 152 LoYn "~ — xnyé )
To Zg Zo

Thus, given ) Az and y® Az in OZ:’SI Az € TiPn(k), we can associate a
holomorphic curve in P, (C) in a canonical way. Under this correspondence, h(yAz)
being large is an analogue of |f'(0)| being large. Under the above situation we
have %%(0) corresponds to y® (k = 1,2). Moreover, we can generalize the
above argument to any given yV,...,y¥ (j = 1,...,n). This suggests that a
Diophantine analogue of the sequence of jets of a holomorphic curve is defined by
successively taking linearly independent sequence of vectors in the lattice (9,’:1;1 Az,
Minkowski’s geometry of numbers {the theory of successive minima) together with
the appropriate choice of convex bodies provide us a geometric framework for the
Diophantine analogue of the derivatives. It is Vojta’s observation in [V, Chapt 6]
that the Diophantine analogue of the derivatives should be built modelled after the
Lemma on logarithmic derivative in the Nevanlinna theory. Indeed, the Lemma on
logarithmic derivative (Theorem 1.1) suggests the best choice of the convex bodies
in the theory of successive minima.

The following theorem is a generalization of [V, Theorem 6.4.3]. We fix any

finite set S of places of k containing all Archimedean ones. For k-rational point

z, we introduce a temporary notion of the relative logarithmic height by setting
ht'(z) = [k : Q) ht(z) (ht(z) being the absolute logarithmic height}.

Theorem 2.1. Let Fy, ..., Fn be a set of linear forms in k+1 in general position.
Let £ > 0. Then there ezists o finite set S of proper linear subspaces of k"1 such
that if x € k™! 4s not a vector in the union of the linear subspaces in S, then there
erists a sequence M2 e (Difi;l of vectors such that x AzD A Az £0
and for each p = 1,...,n, the following inequality holds: Forp =1,...,n, we set
201 = g Az A Az®D and Fip, = Fi A Fu_pya Ao+ A Fn. Then, after
suitably re-ordering the F'’s, we have

eSP=1 A (5P 2 A 2P Byl ,
5 tos ! ngp_iﬁyumgﬁ_l.13,3@”1; < entto

foralli=0,...,N and for all x such that 2P LR, # 0. IfzSP1.F,, =0 then
(xSP72A @) F, =0.

As 250 = 7 and 2571 A 28 = 2, [V, Theorem 6.4.3] corresponds to putting
p = 1 in Theorem 2.1. The following lemma is a “higher jet analogue” of {V, Lemma
6.4.4].

Lemma 2.2. Let k be a field with absolute value |- |. Let Fo,...,Fn be N +1
linear forms in general position. If for some index ¢,

|(@SP A (@502 A2®)) - Figl > AlgSPH oS gl
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then there exists a constant ¢ > 0 (the constant ¢ depends only on the F ’s) such that
after re-ordering the F’s (the re-ordering depends on the I'’s and also on =P71)

@~ A @S2 A ) - (Fyp A Faprrp)] > cA eS0T oS00 Fyl

holds for some indez j (the index j depends on the F's, £57~1 gnd also on £SP7IA
z® ).

Proof We introduce the lexicographical order to the set of all ¢ = (1,5 0p)
satisfying 0 <4y < -+ < ip < N and write [ = Fiy AN NEF . After re-ordering
the F’s, we may assume that [xSP~1. F;| is ordered lexicographically:

2P~ Ry 1] S0 <SP Enepi,n]
In particular we may assume that
2Pt Fopl <40 < Emgpwl Fopripl

Noting that k"t A (z Az A+ Az@=2) 2 k41 /(3,20 2(P~2)) we see that
Fopr- -+ Frpi1,p form a basis of (*1/(z,z), ... , 2PN Let Fg - o _pi1p
be its dual basis. Let a < b indicate that there exists a constant ¢ such that a < cb.
We use this abbreviation if the constant depends on the arguments in a uniform
way. Otherwise we will take special care. For instance, if there are two uniform
constants ¢; and ¢g such that ¢1b < a < c2b, we write ¢ >< b. Hereafter the
constant implicit in <, etc. depends only on the F's uniformly. We then have
12571 > 25771 . Fy_pp1,p]. As the lemma dose not change if we add a scalar
multiple of 2P~ to z®), we may assume (zSP2AzP)) . Fr_pr1p = 0.

We now claim that the assumption of Lemma 2.2 implies

- Fjpl
2 A
0<j<n—p+1 lzsP=1 - Fy ol

To prove this, we introduce a unit vector u proportional to zSP~1, Then the
vectors F,, -+, Fg nep and u form a new basis of AR O I At O N
follows from the rule of re-ordering F’s that the transition matrix associated to
this base change has bounded coefficients. The same is true for its inverse. The
coordinates of (zSP71 A (z5P~2 A z{P)) . F; ,, relative to this basis are computed by
evaluating its dual basis. The j-th coordinate for 0 < j <n—pis

bRy (697 NG0).
0 (xgp-Z A m(P))?

= (2P F ) (@ SP A x(p))j

as all j-th coordinates (for 7 < n — p) of & vanish. Here (z<P~2 A z(); is the j-th
coordinate of z57~2 Az(®) relative to this basis. On the other hand, its (n—p+1)-st
coordinate is

g<P-1.F, (2SP2 Az®). Fip

<o) ; = ~(#™* A2®) Fig) a5
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as zSP~2 Az!P) is a linear combination of F},’s for 0 < ¢ < n— p (this implies that
its (n — p+ 1)-st coordinate vanishes). Therefore we have

{(Q:Sp—l A (a:gp“z A 7:(7"))) - Fipl
>« max{|z=Pt. pH?J”p 2 Az [( {z SP—2 A ZL‘(p)) . F@-,pHxSp'll} )

<p—1 |

Dividing this by |z= F; p||z=P~1|, we see that the assumption of Lemma 2.2

becomes

max{ [(@SP 2 Aa®) - Byl 2522 A z(®)|

A .
Py W I P }>>

If the first term is larger, we have the claim. Suppose that the second term is larger.
As (25272 A 2P} . F, 41, = 0, there exists some j such that

Z5P=2 AP Bl > 5P A 2P| > Az

On the other hand, [#5P7Y| > [zSP~! . F; | for this j. Re-ordering F’s again if
necessary, we have the claim.
We now return to the original basis {F7,} (0 < i < n—p+1). Let j be the
index such that
[(SP7LA (25P2 A z®)) - Fyp|
1$<p-1

> A

J,P[
holds as in the claim. We then have

[(z<P~1 A (2572 A z®))) (Fjp A Frepi1,p)]

==|det A (zSP=2 A 2@y Fip
- =P~ Fy, —p+1,p z<P2 A glP) Foptip

>>1($Sp—2 f\x(p)) ' *j,p”x_p—” (as (z P2 A glP) ) Foprip=0)

> AP Fplla=r

We have thus proved Lemma 2.2. 03

Proof of Theorem 2.1 : We consider the following sequence of statements indexed
byp=1,...,n

Statement (Sp): “Let Iy, -+, Fn be a set of linear forms on k™+! in general
position. Let € > 0. Then there ex1sts a finite set S, of points in APE™H! such that
if a sequence z, 21, .. m(?’ 1) satisfies the condltlon that zSP~1 is not a scalar
multiple of a vector in S then there exists a z(P) € (’)k1L1 such that z Az A~ A

z{P) £ 0 and the inequality

(&=P1A (2 SP2A x(p))) Fipll /
(1) Zlog e[ |[zS7 1 - Fypllo <eht'(z)
holds for alli = 0, ..., N and for all z such that z<P~1 - F; , £ 0. B z=P~1. F; , =0

then (zSP~2 A2®) . F,, =0."

We proceed by induction on p. The case p = n is Theorem 2.1 which we want
to prove.
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The statement (S;) coincides with [V, Theorem 6.4.3]. Suppose that the state-
ment (Sg) is true up to ¢ = p — 1. What we have to prove is that the statement
(Sp) holds. For this we closely follow the arguments in [V, pp.107-111]. Assume
that the statement (S,) is false. Then there exists an infinite sequence of {mﬁj}g’;f
for each of which there exists no () which satisfies the inequality (1). In the case
p =1, Vojta [V, p.107] considered an infinite sequence of z with no suitable z’. Our
{z%7 }g;} replaces Vojta’s z in [V, p.107]. We will show that the non-existence of
a suitable 2P is equivalent to the statement that a certain first successive minima
is large. Then we will use Davenport’s lemma [V, Lemma 6.2.1] and some multilin-
ear algebra to arrive at the infinite sequence of {x=I }g;ll which contradicts to the
Parametric Subspace Theorem [V, Theorem 6.4.2].

For each v € § and {z= }?;i in the sequence, we consider k with absolute value
[|-1]» and re-order the F’s as in the proof of Lemma 2.2°. We use the subscript v to
indicate that the re-ordering of the F's is with respect to the place v. For instance,
we write F; (resp. F; ) in this situation as Fy.; (resp. Fy;ip). So we have

ngp—l ’ Fu;O,p”v <0< Hxép—l 'Fv;n—p-i-l,pHv :
In particular we have

lo >< exp(ht/(z=P71)) .

H Hxqu Fon—ptip
vES

As F’s are given and «'s are integral, this estimate is uniform in S. Moreover, we
may assume that

H 125772 Fumnopially >< exp(ht'(z=F7%))
vES

uniformly in S. Here Fy>n-pr2 = Fonopra Ao A Fy.n. By passing to an appro-
priate infinite subsequence, we may assume that Fyip (i=0,...,n—p+1) domnot
depend on {wff}f;} in the sequence. Since the inequality (1) is false, Lemma 2.2

implies that there exist indices i (depending on v, zP~2 and z=F~") such that

@ $tog H(@SP=1 A (25772 A z®)) - (Foyip A Fom—pt1,0)]lo > eht! (5P 1)

S Lo Fugglly

holds!®. We want to interpret this inequality in terms of Bombieri-Vaaler’s adelic
version of successive minima ([B-V], see also [V, pp.90-96)). On K™+ A zSP~1, we
consider the system of successive minima with respect to the lattice structure in-
duced from that of (’)2}1 and the star body given by the length function determined

9 Re-ordering F's separately for different v's in S has its Nevanlinna analogue. That is, given
a holomorphic curve f : € — P?(C), dividing the circle 8C(r) into sub-arcs Cj, so that fle;
approximates different portion of the divisor defined by the linear forms Fo,..., Fn.

10 If § varies in non-uniform way, the passage from Lemma 2.2 to (2) will need special care.
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by the following datal’:

(3) Lv;i,p(xé”"i AzSP2 A )
_ (xgp——-l A (mSp“Q A $(P))) . ((Fv;n—p+l A Fv;Zn—p+‘2) A Fv;i,p) .
Au;i,p = o1 <p—1 : <p-2
”.’L’—-Pm Hq;“m——p* . Fv;i,p“vux—p_ : Fv?Z""P*}“QHU

fori=0,...,n—p (Note that Fyn—pr1p = Fon—pt1 A Fy;>n-pt2). The inequality
(2) implies that the first successive minimum is large:

A[lk::Q} > expleht/(z5P71) |

Our strategy is to compare this inequality with the estimates of the successive
minima derived from the Bombieri-Vaaler theory [B-V] (see [V, Theorem 6.1.11])
and to derive a situation which violates the Parametric Subspace Theorem [V,
Theorem 6.4.2]. In order to do this, we need to measure the relative volume of
Foip A Fonpirip (01 <0 — p) relative to the lattice

(O;}‘-gl A zSPm2) A SPL C (B A 2SPR) A <Pl
> (kA gSPTR) ) (25PT 1)

o k”“/(m,:c(l),«-- ’m(p-1)> )

To compute the relative volume, we consider the standard basis {ei}? o and the
associated coordinate functions {z;}7,. We assume that (egA- - Aep2)(=P7%) #
Oand (eg A - A ep—1)(xzSP71) # 0. Then

{ep A 5P A 2P (e A TSP A gt

form a basis for a sublattice of (O}jfgl A z5P~2) A 2SP~1. We need to know its
index. To compute the index, let vp—1 = 5P~ vy, ..., v, form a basis of the
lattice OF % A 25P~2, Then the index is

(0 A1) Ao A (0 AT—0))
(((en A2 Ay 1) A= A ((en AT 2) Avpr))
vy (€p A P72 yp(en A zSP~2)
= det _ N ;
vi(ep AzSPTE) o wh(en ATSPT?)
11 The set up for the successive minima on k™ relative to S is the following. For eachv € S let

Ly,is« .-+ Lyn be n linearly independent linear forms with coefficients in k and let Ayi1,..., Avin
be positive real numbers. Given such data, we define the length function by

&:QF . : ;

For details, see [V, p.90-96] for this length function, especially the associated star body and its
relation to the Bombieri-Vaaler theory.
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On the other hand, op-1 AzSP2 e, AzSP72 . e, AzSPT? also form a basis of the
lattice On“ A P72 Writing v,—1 as a hnear combination of e,—1 A P72, e, A
P2 en A £<p—2 and applying vp_y, ..., v*, we have
Uy aepms ATSPD) ts(ep AT 0y (en ATSP)
e AT ualep e e uien AE)
1 = det
\ vur(€p—1 /\ ST wi(ep A :ESP“?) o vi(en ATSPTE)
/l/acp_l vgﬁl(ep/\mSp%) SR (en A $P-2)
0 ’U;(ep A g;SP—A?) A (6 A w<p—2)
= det
\ 0 vilep ATSPTE) o wt(en /\:L'<p 3
where vp_1 = Zp_1(ep-1 AT 2y +.... So, the index is
‘U; (633, A ISP_?) T v, (en A £<“p 2)
I aec _ = [T llzp-alls -
|
ves (e, AZSP2) oo wk(en ApSPZ) )Y vES

The volume of Fiip A Fon—pt1p (0 < ¢ < n — p) relative to the sublattice of
(OFE Az SP=2)Az=P~! formed by epAz=P72, - ,enATSP2 of index [],cq l|Zp-1llo
is

[T 1iep A2=7"2) AGSP ) Ao A (o0 ATSP72) AZ<P7))
veES

' ((Fv;O,p A FU?TL"P+11P) A A (Fv:n—p,p A Fv;n—p-i—l,p))l!;l

={HllFu;n—p+1,p'i’»'sp”lllﬁ_pli(ﬂisp_l/\(P NPT A A (eq AZPTE))
vES

-1
: (Fu;(i,p JARREIAN ‘Fv;n-—p,p A Fv;n»p+1,p)“‘u]
> [exp((n — p)ht!/ (25F71))

' H <H%~1Hv ||z SP=2||n-pH

vES

l(ep-1 Aep A-Aen) s (Fug A- /\Fv;n—P-i-l)“v)]—-ls

where the constant implieit in 3>< is uniform in S. Note that the index [],cg [|Zp-1llo
appears as a factor in the expression of the volume. Therefore this factor disappears
if we consider the absolute volume.

Let A1,..., Ap—p41 be the system of successive minima for the length function
determined by the data (3). By the Bombieri-Vaaler theory [B-V] on successive
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minima (see also [V, Theorem 6.1.11]}, we have the estimate

(Mdz - Anprn)l¥C
> exp((n — p)ht' (P71 + (n — p + Dht'(z=P72)) - H Apiip
veES
0<i<n—p
1

>K
TPFL )<
Hves H?:(f H;;;Sp L Fv;i,;u”'u

uniform in S. Following [V, p.108], we apply Davenport’s lemma [V, Lemma 6.2.1]*?
with p; = p/X:, where we choose p so that pipa-- Pr—pt1 = 1. As a result, we
infer that there exist constants p,.; (i = 0,...,n —p) with the following properties:

(i) Consider the star body given by the length function f’ (zSP=1 A (25P2 A 2P)))
determined by the same L., as in (3) but with a new Ay p which differs from
(3) by the factor py, 1.e..

#(gSPt /\<m£p-—2/\m(p))) — H max p,“viAv;i’va;i’p(w_<_;o—1 A(zSP? Az®)) .

<ikn—
UESDL.O“L_,L e
Then the associated successive minima Aj (i =1,...,n —p+ 1) satisfy
, nptl - ~ T
)\,,- >K H H Hl"#z : Fu;i,p”v
veS =0 4

uniform in S.
(i) Let N, be defined by N, = 2 if v is complex, = 1 if v is real and = 0 if v is
non-Archimedean.
Using
AW s, exp(e bt/ (25P71))

we infer that py. (i =0,...,1n — p) satisty

(4) »
o K ()\'1/)\1)N" [forallve s, i=0,...,n -
< {H H H‘TSP“I ' Fl,!;‘z',p”q) ’ ‘ exp(—sht’(xép"l))l%@

pES <in—nt1

uniform in S.
Now we consider A" #(xSP~1 A (OpE! A 2=P~?)) (this is of rank n —p + 1)
and the successive minima defined by the length function determined by the data

12 Pavenport’s lemrma involves the procedure of scaling by unit, making certain factors indexed
by Sx into the same order of magnitude. This necessarily produces error depending only on k
and S. So we must take care of the extra error stemming from “scaling by unit”. From geometric
view point, Davenport’s lemma plays the role of “chaosing a good gauge” in differential geometry.
Indeed, “scaling by unit” is analogous to applying a gauge transformation.
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(Lo, Aviin) (m = 0,...,n — p) where Ly is a linear form on AP (zSPE A
(k™ A zSP2)) = /e, 20, 2P~ D) defined by

(Fv:U,p A Fv;n—-p—f-l,p) A A (Fv;m,p A Fv;n—p+1,p) FARRRA (Fv;n—p,p A Fu.n—p—}—l,p)
and A, is defined by
A'U;'ﬁ:. = A'U;O o 'A'u:'m te 'Av;n——p .

Then [V, Proposition 6.3.10] applied to A" P(z=P~1 A (Op%! Az=<P~2)) implies that
the associated successive minima fi1, ..., hp—pt1 satisfy

Hy 2> H H Hl'sp'lva,p||;?“‘—M%‘_@

veS <i<n—p+1

uniform in S. This implies that there exists a full sublattice of A" P(z<P~1 A
((’32:51 A z<P~2)) with a basis v1, ..., Un—ps+1 {depending on £, i < p—1), such
that, after scaling each v; by an appropriate unit!3, we have

(*) H’U(f ' ((FU:O,;D A Ri;n—-p-}-],p) AR
A <F'”‘mﬂ’ A FU;T’-"P"—LP) AR (Fv;n—p,P A FO,n—ZH—LP))Hv
n=p 1
< H H“’ESP“l 'F'v;'i,’yH'U e H -
N<ign—p+1 0<i<n—p viiPu,i
iFm
—_ "=y
< T1 1St Fuaplle ™7 - laSPH 5P

O<e<n—p+1

1

i&‘fgp—l : Fv:‘iaPHv . ngp_z ’ F”;Zn_p+2”v ' p;i

»

0gi<n—p
i#m
e Pv,m
< (|aSPtyperl. ’
| Hu H:ESP_l . Fu;m,p”’“
_ 1
H HZESP‘l . Fq,a;i,)?“'ziwp-i-l ’ H-"ESP_Q . Fv;Zﬂ*?’“WHZ—p ’
0<i<n—p+1

for each v € 8, as [|[25F 71 Fypu it pllo >< |25~ 1|, and ], pu,« = 1 hold for all
v € S. Here, the constants implicit in 3>« are uniform in §. However, if we treat

13 Scaling each v; by a unit, we make the quantity

”yj . ((Fvgo,p A Fi!,"nva:‘*'l,‘[)) A A (Fi;:m,yy A Fu:n~~p+l,73) A A (Fv;n ~D.p A FO,n—p-}-l,p))Hv

having the magnitude satistying

< 1 __n=p 1
-~ 2 n—~p41
< H Ha=P"% Foupllo H T
0<i<n—pt1 a<i<n—p viiPu,i
iEm

Some error depending on k and § necessarily arises in this procedure. We choose the unit so that
the error is minimum. :
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varying 5, we have to take care of the extra error produced in the application of
“scaling by unit” technique. On the other hand, v; € A™~P(zSP~IA(OFE AzSP—2))
can be written as

v = 3 (@A @2 Au)) A A @SPTA @7 Augasy))
lel;

with u;; € (’)"""1 (i =1,...,n—p). So, the left hand side of the above inequality
is equivalent £0

(%x)
llv; - (( oo N Fom—ptip) N ,
A (Fv;m,p A Fv;n—p+1,p) ARRRNA (Fv;nup,p A FG,n—p—H,p))”v
=[jz=P PP Y e A (@=PR A ) A A @SPTE A )

) (Fv;ﬁ,p ARERRA Fv;m,p ASERRA Fv;ﬂ-pﬂ@)”v

:]tmspalllg“p_l“msp—2 ‘ Fv;2n~p+2H3_p

A @Y Awg A Atpnep) - (Foo A A Fym A A By pit)lo -

Note that
Frpm=F,oh A Fom A AFyn_per € AV PY (R /(B pray o Fyn)) -

Asn—p+1 = dim((k"*1)* /(Fyn—pt2, - - -» Fu,n))—1, this space is identified with the
dual of (k"*1)* /(Fy n—pt2; - - - Fon), according to the identification Adm V=17
V defined by V 3 v = v-w € AY™V-1V* where w is a non-zero element of
Adm VY Therefore Fym(m=0,... ,n—p+1) form a basis dual to F, g, ..., Fyn—p+1
(a basis of (K"t1)*/(Fyn—ps2, -, Fon)). Define vectors u; € A" POpE! by

Ui 1= Zul;l A ANpn—p
lEI_-,'

Then @Y Aw; (j =1,...,m—p+ 1) form a basis of a full sublattice of {F €
AP(OFEN*; =D . F = 0}. Comparing (*) and (**), we have

(5) H@® D Awg) (Fug A AFym A A Fynoprt)llo
NPy [[ 1S Pl

[le<P=1+ Foimplly 0<i<n~p+1

for each v € S, and
(6)

I l I l max :z:(p DA (Fooh AFym A AFyn_pri)llv
1<J<n—p+1
vesS m=0

<<HH33<P—1 Fun—p1,pllv
vES
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both uniform in . Here we used the property [T/ % pu,m = 1 (see [V, pp.97-98] for
the choice of py,m in the proof of Davenport’s lemma). One might have a strange
impression, because we take the product over the whole S in (6) while the estimate
(*) holds only for Archimedean places. This will disappear, if one recalls that in
Davenport’s lemma all contribution from non-Archimedean places transfered to S
by the “gauge transformation” induced by multiplying a suitable S-unit.

On the other hand, under the identification

(kﬁ+1)*/(Fv,n—p+27 ey F’u,n} = (kn-‘-l)* A (Fv,n—p+2 AR Fv,n) )

we define
<p— <p—
Fyp -z 1 = Fyp - 25971
<p-—-2 <p—1 <p—
As 5P 2. Fup pio #0and z5P7 1 Fp pi1 p # 0, both {F:,k}osksn—pU{m-P 1
and {F} ,}o<k<n—p+1 form bases of ("*)* /{Fyn—pt2s-- > Fun)e S0, Fyp_pi1 18
written as
n—p
* — <p-1 *
EU,”“P-i-l = Qg + Z F'u,k
k=0
. 1 xsp‘l.Fv &
with ag = PO and ai = R for k=0,...,n —p. Therefore we
have
n—y <p-1
* = e ) F'U,k‘ * <p—1
(7) Fypept1 = — Z S R T (mod z=P7%) .
Je=0 v,—p

Plugging (7) into ||(z®~ D Auy) - Fy,,_,41lly and using (5), we have

@ ® M) (Fop A+ A Fonp)ll

HxSp-d "Fv k:Hv -1
< Z <P = @PTD Aug) - Fy il
o<iThop 1BSPTH Funlle

1 —1
< © o max  Pyk e | l [|2SP~Y . Fyuplle 7
_<_p—1 R — Y, vinLpHY
|z Fynlle 0<k<n—p o< il ,

uniform in S. Taking the product over v € S and using (4), we have

(8)
[T, max |i@® Y Aw): Fyapialle

veslﬁjﬁ'ﬂ—p-{—l
1
< . max (P—l)/\ . F*
iJIGIS HmSp—-l ’ Fv,n“v 1<j<n—p+1 H(iL’ uj) 'U,kHU
! ~ G DT
<p-1
«Iemrrg T[0T 127 Rl
veS ’ vES tueS 0Li<n—p+1
11 exp(—e ht! (=P ~1)) 8 . [I TI 1125777 Fup w—ﬁ
vES veS 0<Li<n—p+1

exp(—e ht/(zSP~1))
[Toes llzsP 1 Fynlly
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uniform in S. Taking the product of (6) and (8) we have

n—p+1

>=1) Ao B /(g <P
(1) %_HS WLIO e (@D A Bl < exp(—eht! (@)

uniform in S. This yields the second condition of [V, Theorem 6.4,2].

Next we check that the first condition of [V, Theorem 6.4.2] also holds. Indeed,
(4) implies that there exists a positive constant ¢/ uniform in S such that py
(0 <1 < n—p) satisty

1 (if v is non-Archimedean)
i K
Pus exp(cht’ (zSP71))  (if v is Archimedean)

uniform in S. Plugging this into (5) we see that there exists a positive constant c
uniform in § such that

() (P Auy) - Fill < exp(eht'(z5P71))

holds forallv € S, j=1,---,n—p+1and m (0 <m < n—p) which is uniform in
S. This yields the first condition of [V, Theorem 6.4.2]. This completes the proof
of Theorem 2.1. U

We suppose that v € § is non-Archimedean. Then we can get an upper bound
for the intersection multiplicity of (the Zariski closure of) c<P~Yand F, ;, = 0 over
v in terms of exp(ht'(z<P~1)) in the following way. First we note

[T =" Fuupllw > 1.
weS

Indeed, as <P~ is S-integral and Fy;p is one of finitely many vectors with k-
coefficients, the product theorem implies this with a lower bound uniform in S.

Also we have
ngp-—l 'Fv;i,pr < ngpaluw )

if w # v. It follows from these two inequalities that

I “:ng—l ’ Fv;i,pHv H Elep—l 'Fv;im”w
w3V
< Hf’;sp_l 'FV;i,pHv H HmSP—lmfl—l
wHEY
exp((}S] = 1)ht'(z=P~1))
o=t

= ngp—l * Foipllo

This implies
[l

exp((]S] — Dht'(z=P=1)) -

This provides an upper bound for the intersection mulsiplicity.

H$5p_1 ‘Fv;i,p”v >
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As will be shown in §4, Schmidt’s Subspace Theorem is proved by the same
pattern as Cartan’s Second Main Theorem (i.e., plugging the “Lemma on loga-
rithmic derivative” into the “Wronskian formalism”). In particular, Theorem 2.1
(the Diophantine analogue of the Lemma on logarithmic derivative) together with
the Diophantine analogue of the Wronskian formalism yield Schmidt’s Subspace
Theorem. In order to introduce the truncated counting function into Schmidt’s
Subspace Theorem, houever, Theorem 2.1 turns out to be not enough.

In the rest of §2, we describe necessary modifications. Schmidt’s Subspace The-
orem is concerned with the Diophantine approximation of points {z} to a divisor
D consisting of hyperplanes in general position** in P”(k). In the Nevanlinna the-
ory, we have the concept of the residual counting function N p{r), which counts
the ramification indices of the holomorphic curve f : C — P*(C) at places where
f intersects D with multiplicity > n. This is intrinsically defined, based on the
Wronskian f' A f” A--- A f(™. Our strategy is to establish the Diophantine ana-
logue of the geometry behind the Nevanlinna theoretic truncated counting function
and to introduce the Diophantine analogue of the truncated counting function into
Schmidt’s Subspace Theorem. Let D be a linear divisor (fixed once for all) in P" (k)
defined by linear forms Fy (i = 0,1,...,n). For a rational point z and fixed D such
that z & Supp (D), we consider the intersection of the Zariski closures of z and D
in the arithmetic scheme P"(OQy) over Spec(Ok) (i.e., consider F;(z) as a “func-
tion” on Spec () and consider its zeros counted with multiplicities). Let S be
the set of non-Archimedean places over which the Zariski closures of z and some
component of D intersect with multiplicity > n. Then we consider, instead of a
single rational point z, a pair (z, S%) of = and the canonically associated finite set
of non-Archimedean places S7, and develop Diophantine approximation for these
pairs (this framework is established once we fix a linear divisor D). This is our new
framework in Diophantine approximation, which we imported from the Nevanlinna
theory.

We are going to modify Theorem 2.1 so that the result of the same type holds for
pairs (z,S87). We here list the difference of Theorem 2.1 and its variant modified
into the form useful in the proof of the Schmidt Subspace Theorem with residual
counting function:

(i) In Theorem 2.1, the finite set of places S is fixed. However, in its modification,
S should be S(z) = So U ST, which does depend on z. In particular, the length
functions should be defined as a sum over the places in S(z).

(ii) We apply the geometry of numbers (the succssive minima) to the lattice of all
algebraic integers OZ“. In other words, in Theorem 2.1, all z’s were S-integral.
However, in its modification, all z’s should be S..-integral (i.e., the notion of the
integrality should not depend on z).

In particular, (i) and (ii) imply that we apply the successive minima to the lattice
OEH of ordinary algebraic integers, but the length function should be defined as a
sum over all places in S(z) (not only Archimedean places).

For the above purpose we examine whether the arguments in the proof of The-
orem 2.1 remain true if we replace the fixed S by the varying S{z) = S US7 and
try to apply the same strategy with respect to S(z) instead of S. It turns out that
there are three places in the proof of Theorem 2.1 which requires special care.

14 We call such a divisor a linear divisor.
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(i) The first place. The first is the place where Lemma 2.2 is applied to individual
members of § to conclude (2). If S is varying, we have to take care of the error. Ask
is fixed, there is no problem on Archimedean places. The problem may happen only
from the varying non-Archimedean part. However, since the F;’s are given linear
forms, there exists the finite set S (determined by F;’s) of non-Archimedean places
with the property that, in the proof of Theorem 2.1, non-trivial constants occur
only when S? touches Sgp. Therefore, even if S varies, only the part of § which
touches the fixed Sr may cause the problem. But, since Sr is finite and fixed, no
problem occurs from non-Archimedean places, too.

(ii) The second place. The second is the place where the “scaling by unit”
technique (based on the Dirichlet Unit Theorem) is used (e.g., the part where we
applied Davenport’s lemma)!® and we should be careful about the error emerging
in this procedure, tco.

Scaling by unit has the effect making all factors in [[, gl -|lv having the
desired (e.g., the same) order of magnitude. For instance, after making all factors
having the same order of magnitude, we take the geometric mean of all factors
(indexed by Soo U ST) under consideration. In any case, this procedure necessarily
produces error which depends only on the number field £ and the finite set of non-
Archimedean places under consideration (i.e., S7)15. In general, S{z) = Soo U ST
is varying. Let us estimate the magnitude of the error. The arguments in the proof
of Theorem 2.1 are in the product form which is transformed into the sum form
by taking the logarithm. Interchanging the arithmetic mean and the logarithm
transforms the. product form into the sum form with the “error” depending on

S7. However, in the proof of Theorem 2.1, “scaling by unit” technique was used -

only on the set S of Archimedean places of the given number field k. Therefore
Dirichlet’s Unit Theorem implies that the maximum of the absolute values of the

“average” and the result of the “scaling by unit” over each v € S is bounded

above by a constant depending only on the given k. After scaling by unit, we make
all factors a, having the same order of magnitude A x (something uniform), A being
the average. Therefore the error under consideration

1 | 1 ]
![k:@] > logay ~log gy ) o

VES e €S

is at most of order

—-L[k : Q](log A + (something uniform)) — log(A X (something uniform))| ,

k:Q

which is clearly uniform.

(iii) The third place. The third place is not explicit in the proof of Theorem
2.1. It concerns directly with the non-uniformity of the contribution from the non-
Archimedean places. For instance, if we would like to get the same conclusion even
when there is no control on |S?|, we must control the error stemming from the places

15 All parts in the proof of Theorem 2.1 where “scaling by unit” technique is used are so

indicated in the corresponding footnotes.
16 If S, happens to be fixed (as in the situation of Theorem 2.1), then the error is of course

uniform.

a1
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in S? in the proof of Theorem 2.1. Otherwise we cannot get uniform estimates. We
note that if the contribution from non-Archimedean places dominates that from
the Archimedean places in the S(z)-proximity function, it will have a nature of the
usual counting function restricted to places belonging to S7. So we must control
the behavior of the counting function. Now, let D be a linear divisor defined
by the linear forms Fy,..., Fv in general position just as in Theorem 2.1. Let
x € P*(k) — Supp (D). We consider the association  — S7 where S7 is the finite
set of non-Archimedean places of k over which the Zariski closures (over Spec (Ok))
of z and D intersect with multiplicity m greater than or equal to n. The condition
m > n imposed on S” makes the arguments of the proof of Theorem 2.1 applicable
to the situation of varying S = S{z). If the non-Archimedean places dominates the
Archimedean ones in the S(z)-proximity function, the inductive application of the
first successive minimum indexed by p (= 1,...,n) yields the conclusion of Theorem
2.1 if and only if the non-Archimedean part in the inductive first successive minima
behaves exactly as lattice theory predicts, and this is possible if and only ifm > n.

Let us formulate this more carefully. To get uniform estimates, we have to control
the contribution from the non-Archimedean places in S7 and for this purpose,
we first need to modify the “weights” A,.;, in the length function (3) used in
the “inductive first successive minima” indexed by p = 1,2,...,n in the proof of
Theorem 2.1. The modification should be done respecting the “geometric effect”
of the weights. We recall that the weights A, have a geometric effect on the
“shape” of the symmetric star bodies defined by (3). Namely, if the weight in front
of Ly.;p is “very large”, this “collapses” to that consisting of the star bodies which
are “widely spread” in the direction of the hyperplane defined by Fy;; - z®) =0 (for
p=1,...,n). So, it is most probable that the first successive minimum associated
to this system of star bodies will pick up such 2(®) which is parallel to the hyperplane
F,; = 0 to the extent determined by the degree of parallelness of 2P~ to Foi=0
in the v-adic sense (we define that degree of parallelness of P~ to Fy; = 01is
large, if ord,(F,; - 2~ %)) is large). In summary, if v is a non-Archimedean place,
Ay.i,p being very large implies Fy,; - z(?) being divisible by accordingly high power
of the prime v.

With this “geometric effect” understood, we modify the weights as follows. The
general idea is that, at each step of the inductive first successive minima introduced
in the proof of Theorem 2.1, we replace the usual counting functions involved in
the definition of the weights by the residual counting functions at level 1 (p =
1,...,n)}". For the first step (i.e., p = 1; the case considered in [V, Theorem
6.4.3]), we modify the weighs by replacing {|z - Fu.i,1||» by its “residual version” at
level 1 (v € S(z) — Seo)'®. Here, by the residual version at level ¢ of ||z - Fu.inllvs
we mean the version which is defined by replacing ord,(z - Fy;;,1) in the definition
of ||+ Fyui1]lo by its level ¢ residual version max{ordy (- Fy;1) —t,0}. In a similar
way, we introduce this modification using the residual counting function at level
1 at every p-th step for p = 1,...,n. Namely, we replace {|[zSP~! - Fy;pllv by
its residual version at level 1, i.c., replace ord, (z<P~! - F,; ,) in the definition of
||£<P~1 . Fyi plly by its level 1 residual version max{ord,(z<P~1 - Fyyp) — 1,0}

With this modification on the weights, we repeat the arguments of the proof of
Theorem 2.1. The effect of the modification of weights is that we are able to get

17 This modification changes only non-Archimedean weights.
18 We call this the modification of type 1.
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uniform estimates even if we have no control on S7.

We proceed as follows. For each non-Archimedean places v in S{z), we construct
the “ladder”

HOYcHO c...H® c...c H™ (p=0,1,...,n)

of sublattices of z A OEH (the natural lattice structure of algebraic integers of
z A k™t1) in the following way:

HO = {z Az ez A OF? Org'ié'l {ordy(Fuis(z'?)) — ord, (Fys(z))} = 0},

H ={zA2® ez A OFF!| min {ordy(Fuyi(2™M)) - ordo (Fusi())} 2 ~1}
HY ={z Az ez AOF] Gx<n_ié1 {ordy (Fy.s(z®)) — ordy (Fys(z))} > -t} ,

HY = {znz™ ez A OFF Oré;i? {ordy (Fyi(z™)) — ord, (Fyi(z))} > —n} .

Then we have
Vol (HP) = Vol (H® ) HP~)WVol,(HP~D /HE=D) . .. Vol (H{Y JHO Vol (H®)

for each v € S(z) — Sx.

On the other hand, we modify the usual length function on z A k**! so that
the associated successive niinima is compatible with the inductive first successive
minima on the system of the modified length functions (3)!°. Namely we modify
the length function by '

(9)

L{z A :J:’) =(z A z') - (Fui A Fu;ﬂ)v (0<i< n) ;

Ay (if v is Archimedean) ,

o 1
A:}‘.;?d‘fwd = { the weight given by the level n residual version of W
’ MR AN

(if v is non-Archimedean) ,

where z € (92ﬂLl is given and z’ is an unknown vector also in OF*!. Under this

modification, we can prove that the inductive first successive minima AP ,\§”)
with respect to the length function (3) with the above modified weights?® are uni-
formly equivalent to the usual successive minima A1,...,Aq with respect to the
above modified usual length function (9)*! on z A k™, in the sense that

AP > My, A A

19 we call this the modification of type I
20 Here, we use the modification of type I.
21 Here we use the modification of type I
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holds. To prove this, we recall Bombieri-Vaaler’s version [V, Theorem 6.1.11] of the
Minkowski second theorem:

(Athg - - ,\ﬂ)[k:@]
>« exp((n~ 1ht'(2) [] (det(Fu;Os...,Fy;nul) 11 Ag;gdiﬁed)

veS(z) 0<i<n

where AR¢dified is as introduced above, i.e., the level n residual version of the old

weight A,,.; (the modification of type II). The ladder (PY of sublattices is defined
only relative to v € S(z) — Se. However, for notational convenience, we introduce
an “arbitrary flag” for each v € Seo (this has no substantial meaning). Under this
notational convention, the right hand side of the above expression is

>< [ (Volo(HM))™

v€ES(z)

:< H VOly(Hi()n)/H?gnml))Volv(Hi()n—l)/Hi()n_z))
veS(z)

-1
-+ Vol, (HV /H§0>)Volv(H£°>)> ,

which implies that the vectors Z(1),...,Z(™ obtained by the successive minima

associated to the length function (9) form a basis of H™ (in particular Z(® ¢ H

for all p=1,...,n) for each v, i.e., the part
-1
( 1 Vol (=™ /HSD)Vol, (H™ D /H2) - .Volv(Hy)/HgO)))
veES(2)—Sa0

in the above expression is the v-power which the inverse v-volume of the paral-
lelepiped generated by U, ..., 7 gains as an effect of the modification of the
weights. On the other hand, we have

~1
( H Vol, (parallelepiped generated by M, .,x(”))) >KL (,\5” e Ag")){'“@]
veS(z)

and the choice of the weights in the modified inductive first successive minima
implies that z(1), ..., 2(") generates a sublattice of HS™ and therefore we have

Vol, (parallelepiped generated by (M, ... 2™t < Vol( H{™)~1

for each v. This implies

-1
(Agi) . Aﬁ”))[’“@] > ( H Vol, (parallelepiped generated by 0. ,x(”)))
veS ()

< (M ...,\n){k:QJ )
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The procedure of the successive minima {A,};_, based on the length function (9)
(using the level n residual version) chooses lattice points from wider possibilities
compared to those { /\§” ) }p1 based on (3) modified (using the level 1 residual version
at each step). We therefore have

AP >,
This implies that the inverse v-volume of the parallelepiped generated by (1, ..., (™)

in fact gain at least the same amount of the v-powers as the inverse v-volume of
the parallelepiped generated by z(*), ... , 7™ does after the modification A,; =

Aﬁfdiﬁed. These two estimates imply the uniform equivalence of /\gp ) and Ap
(p=1,...,n). We therefore have

()\gl) .. _)\gﬂ))[k:(@] > (A )\n){k!‘@] )
As the “ladder” of the v-divisibility of det{Fy.0, .- .,va_l)A;’;z‘?diﬁed corresponds

to the “ladder” of the sublattices Hz(,o) - Hq(,l} C--C H,Sn) if z € H®), the above
estimate and the volume formula forces (up to error uniform in S(z)) the vectors

D ™ of OZH in the modified inductive first successive minima to lie in the
above defined “ladder” in the sense that
(10) 20 ¢ B pm e g

holds, if z € H{” holds®2. In particular, we must assume that m (the multiplicity
of the intersection of of z and D over the place v) to be not smaller than n, for the
above process to make sense.

We have thus proved that although the association z + S7 is itself not uni-
form, the behavior of z(1), ..., 2™ are perfectly controlled in the sense of (10). In
particular we have

N™a, F2) < No (@ A+ A 5™, ) = Ny (@ A~ Az, )

where the counting functions in the right hand side measures the v-adic approxima-
tion of (M A+ Az™ to zero. This provides a kind of uniform estimates over the
non-Archimedean places in S7?. Here, for finite set of places S including Seo, the
counting dunction Ng counts the approximation relative to the non-Archimedean
places outside of S.

Finally, we need to show that (1) and (ff) obtained in the modified situation
violate the Parametric Subspace Theorem [V, Theorem 6.4.2]. In the Parametric
Subspace Theorem, the set of places involved must be fixed. However, in the mod-
ified situation, we used the successive minima with respect to the length functions
involving all places in S(z). Therefore, all places in S(z) are involved in () and
(11). This means that, although we want to build the situation violating the Para-
metric Subspace Theorem, the inequalities in (1) and (1) in the modified situation
are “disturbed” by the z-dependent non-Archimedean places in S(z). However, we
are done, if we can show that the inequalities in (1) and (it) reduce to those with
respect to the places in So (this expectation is natural, because the intersection of
all §(z)’s for various z’s is just S.o).

We show that Theorem 2.1 is modified under the assumption that S7 consists of
non-Archimedean places over which the Zariski closure of z and some component
of D intersect with multiplicity > n:

22 The conclusion (10) may not always hold. However, the error stemming from “not always
held” is uniform in S(z).



96

TRUNCATED COUNTING FUNCTION IN SCHMIDT’S SUBSPACE THEOREM

Theorem 2.3. Let Fy, ..., Fn be a set of linear forms in k™1 in general position.
Lete > 0. Then there exists a finite set S of proper linear subspaces of Entt with the
following property. If z € k™ is not a vector in the union of the linear subspaces
in 8, then we can inductively construct a sequence 2Bz e (’)}Z'*'1 of vectors

with the following properties:
(i) z, 29, ..., 2™ are linearly independent:

zgAzM A oaz™ £0.
(ii) ord, (z® . F}) decreases 1 as t increases 1, i.e., if ordy(z - F;) > n, we have
ordv(m“) ‘B =ordy{z - F;) —t

fort=1,2,...,n.

(iti) If we set 2<P~ 1 =z Az A AP~ and Fyp = F; AFp_pra A+ AFy for
p=1,...,n, we have the following inequality: aofter suitably re-ordering the F'’s,
we have

S g LA G A Figl,

. < eht’
& e LS Bl < H

for alli=0,...,N and for all © such that <P~ . F;, # 0. If 2SP71. Fj, = 0
then (zSP=2 A z®)) . F, , = 0. Here, |[zSP71 - Fj,||modified means that if v € S7 we
replace ord, (=P~ - F,p) in the original definition by its level 1 residual version
max{ord, (zSP~* - F; ;) — 1,0}, and if v € Ss, we need no modification.

Proof. The conclusions (i) and (ii) follow from the above arguments after the proof
of Theorem 2.1. To show (iii), we need to establish its relation to the Paramet-
ric Subspace Theorem [V, Theorem 6.4.2]. However, (ii) implies that the non-
Archimedean places in S(z) have no contribution to the left hand side of the in-
equality in (iii). This implies that the sum over the S{x) reduces to the sum over
Seo. Therefore, if (iii) does not hold for infinite number of zSP~1, we arrive at the
situation which violates the Parametric Subspace Theorem [V, Theorem 6.4.2] (on
the lattice O ! with S as the fixed set places). O
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3. Nevanlinna-Cartan theory.

In this section we describe the geometry (Nevanlinna-Cartan theory) which con-
nects the Lemma on logarithmic derivative to the approximation inequality of holo-
morphic curves to a linear divisor in P*(C). Yamanoi [Y] was able to characterize
the nature of this geometry in general setting: Let X be a complex smooth pro-
jective variety and D any effective divisor. Then the existence of a holomorphic
map W from a jet space X) to a certain line bundle L — X (Sp being its zero-
section) satisfying the condition DY) ¢ W*(Sg) (in the scheme theoretical sense)
characterizes the geometry behind Nevanlinna-Cartan theory. The holomorphic
map W : XU) — L and the condition DU < W*(S;) are respectively the abstract
version of the Wronskian and the “linearity condition” in the original Nevanlinna-
Cartan theory.

Let’s return to our situation. Let D be a linear divisor of P"*(C) defined by the
linear forms Fy,..., Fy in general position. Let f : C — P™*(C) be a holomor-
phic curve such that f(C) ¢ Supp (D). Then Nevanlinna’s lemma on logarithmic
derivative (Theorem 1.1) states that

() my,p(r) < My poa (r) + Sg(r)
Mf(k),oo(r) < Sf(r)//

hold for any nonnegative integer k. Here, £ : C — P*(C)™® is the k-th jet lift of
f and _
D% = Ul V(F;,dF;, ..., d"F))

is the union of the k-th jet space of individual hyperplanes defined by F; = 0.
Note that we are insisting on the linearity and use the individual defining equation
F; = 0 instead of the product F--- Fiy = 0 to define the jet space D}, Theorem
1.1 still holds in this situation (see, for instance, [K1,2]).

We choose ({p: 1 --+: (n) & system of homogeneous coordinates of P"(C).
Then z; = (/(y form a system of affine coordinates of C* = P"*(C) — {2z = 0}.
The Wronskian dlet(d-jzi)',?hj:1 of affine coordinates zy, ..., 2z, defines a holomorphic
map

W PMCO)™ — Ky

Set fi(2) = z o f(z). Then f: C — P™(C) is expressed as f(z) = (fi(2),..., fn(2))
in terms of the above affine coordinate system (z1,...,2n). Using jet lifts f@
(j =1,...,n) of f, we can make up a holomorphic curve

Wy=Weof:C— Kl €220 Wylz) = det(d fi2))ij= € Kpnic) -

The Lemma on logarithmic derivative (9) implies that, up to error of order Sy(r) =
O(log™ (rT#(r))), a holomorphic curve f : C — P*(C) approximates D if and only

if f0) . C — P*(C)Y) approximates D for any nonnegative integer j. On the

other hand, as the Wronskian is defined in terms of linear coordinates z1,..., zn,
the n-th jet space of any hyperplane is sent to the zero-section of Kﬂ',;l(c) via the

Wronskian map W : P*(C)™ — Kpn(cy. Let D; be a hyperplane defined by
F; = 0 and Sy (resp. Seo) the O-section (resp. oo-section) of the-anticanonical
bundle K];.,,l(c) — P*(C). Then we have the “linearity condition”

D™« W*(Ss)

a7
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in the scheme theoretical sense. Combining this with the first inequality in (9) gives
my.p(r) < mw, s,(r) + Sp(r)] -
On the other hand, there is a linear equivalence
S0+ 7*Kpn(c) = Seo (7 being the projection K_,}(C) — P*(C)) .

which was implicitly used by Nevanlinna {N] in the case of n = 1 and by Cartan
[C] in the case of general n. The above inequality together with this linear equiv-
alence yield the approximation inequality (Cartan’s Second Main Theorem) in the
following way:

myp(r) + Nwy,5,(r) + Tt Kon e, (r/
<maw;,5,(r) + Nw,,50(1) + Tt Kom e, (1) + S5(r) [/
STw; Sotm Koney (T) + Sp(7) ]
<Tw, 5., (r) +S¢(r) ) -

We now use the second inequality in (9) to conclude the approximation inequality
my,p(r) + Nw,,s,(r) < (n + 1)T(r) + S¢(r)

where T(r) is the height function relative to the hyperplane bundle Opn(cy(1).
Next we look at only such “non-Archimedean” places in C(r) = {z € C; |2] <1}
such that F;(f(z)) = 0 for some j. Let us fix one particular j and suppose that
F;(f(z)) = 0. As F; is linear, there exists an affine coordinate system wy, -+, wy
such that F; = 0 is equivalent to w, = 0. If z is a multiple root of Fj(f(2)) =0
with multiplicity m, then
d(wy, 0 f) = O(z™9)

for j < m ~ 1. If m > n, then the Wronskian matrix of (wy o f,...,w, o f) is of
the form
d(wy o f) dlwgo f) -+ dlwp—1of)  O(Z"7)
dP(wiof)y  d*wgof) - d(wa_iof) O
d"—l(’wl o f) d“_l(wg o f) . dn'l(wn_1 o f) O(Zm-n+1)
d"wie f)  d™wgof) -+ d™wp-10f)  O@E™T)

This implies that if m > n then the intersection multiplicity of Wy and Sy dominates
the intersection multiplicity of f and D (at z) minus n. Let Ny ;s p,(r) denote the
truncated counting function at level n. We introduce the residual counting function
NP p, (r) at level n by

Nip,(r)=Nyp,{r) = Ny sp,(r)
= > max{ordu(F; 0 f) —n, 0} log | |

O<lal<r )
+ max{ordg(Fj o f) —n,0} logr .
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Then the above observation implies
N}E’D(T) < Nu/f’sa('t“) .

Therefore we have Cartan’s Second Main Theorem for the approximation to linear
divisors of holomorphic curves into P*(C) with residual counting function at level
n:

myp(r) + Nfp(r) < (n+1)Ts(r) + Se(r) /-

Of course the above argument makes sense only if the Wronskian Wy is not identi-
cally zero. On the other hand, Wy = 0 if and only if f(C) is contained in a proper
linear subspace. By induction on the dimension of the linear closure of f, we infer
that there exists a union Z of finitely many proper subspaces such that if f(C) is
not contained in Z the above inequality holds (with n replaced by the dimension
of the linear closure of f).

4. A Diophantine analogue of Nevanlinna-Cartan theory.

In §2 (in the proof of Theorem 2.3) we established the Diophantine analogue
S(x) = SeoUST of the notion of the “Nevanlinna theoretic non-Archimedean places”
(depending on holomorphic curve and divisor under consideration). Because of its
importance, we here repeat the construction. By taking the Zariski closure over
Spec (O), a rational point z of P"(k) is identified with a section of P*(O) —
Spec (). Therefore, in this setting, a rational point (resp. a divisor) of P*(k)
becomes a curve {resp. a divisor) of the arithmetic scheme P™(Of ). The intersection
of z and a linear divisor D in P*(k) is thus defined. Therefore for each rational point
£ not contained in Supp (D), we can define the finite set S7 of non-Archimedean
places over which z and D intersect with multiplicity > n. We consider this S as
the Diophantine analogue of the “Nevanlinna theoretic non-Archimedean places”.

In this section, we combine Theorem 2.3 and the Wronskian formalism in §3.
This is to compare infinite set of rational points of P"(k) and a holomorphic curve
in P*(C) from a view point of their intersection with a given linear divisor. We
have already established in §2 two versions of the Diophantine analogue of the
Lemnma on logarithmic derivative, which culminated in Theorem 2.1 and 2.3. Here,
we first prove the Schmidt Subspace Theorem by combining Theorem 2.1 and the
Wronskian technique (in §3). We regard this proof as the simplest “model case”
which should be suitably modified (although the necessary modification will be far
from simple) according to the nature of problems we want to solve.

Let T denote the image in TjP™(k) of v € k™! under the identification EPLA
z 2 kM (z) 2 TP (k) ® O(— 1) (see the discussion just before Theorem 2.1).

Theorem 4.1. Let D be a linear divisor of P*(k) in general position. Let D»)
denote the union of the p-th jet space of all irreducible components of D. Let S be
a fized finite set of places of k containing all Archimedean ones. Then there exists
a finite union S of proper linear subspaces of P*(k) such that if z ¢ S then there
exist 7V, ..., FM € Tlx]ﬂ”"((f)k,s) such that

mg(z, D) < ms(E?, D)} + eht (z)
ms(ZP), 00) < eht (z)

a9
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for all p = 1,...,n, where the S-prozimity functions ms(-,+) are defined as in §2
using the v-adic distances and oo represents the divisor at infinity of the projective
completion of TP"(k).

Proof. Let M, ,z(™ be as in Theorem 2.3 and let zM, ... ,'35("). be the image
in TjzP"(k) under the above identification. We show that these ZU)’s satisfy the
desired inequalities. In the proof of Lemma 2.2 we have shown that the assumption

Kmﬁp—l A (mﬁp—z /\m(r)))) . Fi,pl > AI:L‘SP_:LH.’,ESP—:L . Fz‘,pl 34

is equivalent to

[{z P2 Az F |zSp=2 A z®)]
: A
m“’“"{ FEERrE = I
On the other hand, Ti,P™(k) is identified with k™1 A z. Therefore, if p = 1

<=2 p 0 .
in the above inequality, the quantity E‘T;’g;’)—f,—'—l taken the product over v € S is

equivalent to the proximity function m(Z*, 00) to co under the above identification.

Sr=2 54 (2.
On the other hand, the quantity Itz !:_ pff;) T‘”’! taken the similar product over S
Z -

is equivalent to the proximity function to the first jet space D) of the linear divisor
D. By induction on p, we get the desired inequalities. At each step indexed by
p=1,---,n, there arises a finite union of exceptional points (in wedge products).
At the first step there arises a finite exception for z. In the second step, there arises
again a finite exception for z A (1. In terms of z as a vector in k™t it will be a
finite set of proper linear subspaces of dimension < 1. At the p-th step, there arises
a finite exception for /7~ 1). In terms of z as a vector in k" *1, it will be a finite set
of proper linear subspaces of dimension < p — 1. The statement on the exceptional
subspaces S is a consequence of this observation. O

We can view the totality of 7,2V, ..., 2™ as a point of the n-th jet space
P*{(k)™ of P, (k). The Wronskian
W P (k)™ — Ky,
is a morphism. The image of (z, M ,:L‘(m) under the Wronskian W coincides
with 2 A ... A 2™ and the Wronskian morphism W sends D™ to Sy (the zero-
section of Kﬁ;}( k)). Moreover we have a linear equivalence
So + 7 Kpn (i) = Soo
where Sy represents the divisor at infinity of the projective completion of KL;;B(,C).
Therefore we have
m(z, D)+ Nz A Az™, S) + hiz, Kpnxy)
<mzO A AT S)+ NEW A Az o) + h(z, Kpngy) + € ht ()
[by the first inequality in Theorem 4.1]
<h(zM A Azt™ Sy 4 7 Kpn(ry) + eht (z)
<Az A Az™ S ) +eht (z)
[by the above linear equivalence]
<eht (z)
[by the second inequality in Theorem 4.1] .
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This is the Schmidt Subspace Theorem. We remark here that the counting function
N(zW A Az(™] 8,) essentially has no contribution (as we see from the definition
of the successive minima).

Next, we introduce the residual counting function to the Schmidt Subspace The-
orem by the same argument as the model case with only exception that Theorem
2.1 is replaced by Theorem 2.3. The point here is to execute the successive minima
with respect to the point (z)-dependent finite set S(z) = Soo U ST of places instead
of the fixed S. By the above procedure, we are able to show that these )’s behave,
over the non-Archimedean places in S?, just like the derivatives f()(2),..., f(™(2)
of the holomorphic curve f do when f intersects D with multiplicity m > n.

Theorem 2.3 together with the corresponding Lemma 2.2 imply the following:

Theorem 4.2. Let D be a linear divisor of P*(k) in general position. Let D®
denote the union of the p-th jet space of all irreducible components of D. Then
there exists a finite union S of proper linear subspaces of P™(k) such that, if z ¢ S,
then there exist TV, ... 7" ¢ TP (Ok) which satisfy the inequalities

(11) mg. (z, D) < mg (2™, DP) + eht (z)
(12) ms_ (FP), 00) < eht (z)

and the condition

(13) 2P ¢ HP Yye 8,

for all p = 1,2,...,n. Here, S(x) is the finite set of places of k defined by
S{z) = Soo USY where ST is the set of non-Archimedean places of k over which the
section  : Spec (Oy) — PY(Oy,) and the linear divisor D in P"(O}) intersect with
multiplicity m > n.

The condition (13) implies
(14) N™z,D) < Ns_{2, D)z A+ Azl™,85) — Ngy(zM A+ Az™ ) .

This inequality exactly plays the role of the Diophantine analogue of the Wronskian
formalism in Nevanlinna theory in the proof of the Main Theorem. The point here
is that Theorem 4.2 (i.e., the Diophantine analogue of the Lemma on logarithmic
derivative for varying S(z)) splits into two statements: One is (11) and (12) for
the Archimedean places which has a typical form of the Lemma on logarithmic
derivative, and the other is (13) (or (14)) for the non-Archimedean places in S7
which is the Diophantine analogue of the Wronskian formalism.

To show that (13) implies (14), we suppose that one of the components of D and
z intersects over v € S? with multiplicity m and assume that m > n. Then, by the
theory of successive minima relative to S{xz), the order of the v-divisibility of the
“Wronskian” £V A - A z(™ at v is by definition that of the determinant of the

“Wronskian matrix”

A L e

O R N
mgn-—],} wén—-l) . m;n_——ll) mgn*l)

m&n} xéﬂ) . 5175:1)1 $§1n)
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It follows from the proof of Theorem 2.3 (arguments before it) that we may assume
that
ord, (z)) = m — j.

This is the Diophantine analogue of d/ (wy 0 f) = O(2™77) in the Wronskian matrix
for holomorphic curves into P™{C) discussed in §3. We thus have the Diophantine
analogue (14) of the Wronskian formalism in Nevanlinna theory.

We are now ready to execute the same procedure as in the Schmidt Subspace
Theorem with Theorem 4.1 replaced by Theorem 4.2. Applying the Diophantine
analogue of the Wronskian formalism (14), we have:

ms,, (z, D)+ Ng_(z,D) + h(.T,K[Pn(k))
<ms,, (:E D)—i-Ns (= A $(n),SQ) —Ng(m)(m(l) /\'--/\m(n),Sg)
+ h(I,K}pn(k)) + Eht (ZL) .

Next, we proceed applying the Diophantine analogue ((11) and (12) in Theorem
4.2) of the Lemma on logarithmic derivative:

ms, (z,D) + N™(z, D) + h(z, Kpn(y))
<msg_ (DA Az™, 8p) + Ns (D A Azl™, S)
- NS(,,,) (.’E(l) ANREAN :C(n), So) + h(l‘, K]pzn(k)) +eht (:E)

[by the inequality (11) in Theorem 4.2]

< fz(xm FAYRIVAN C(I(n), So + W*Kpn(k)) +eht (.’21')

<h(EW A Az™ S.) +eht(z)
[by the linear equivalence Sg + m* Kpn (k) = Soo

<eht(z)
[by the inequality (12) in Theorem 4.2] .

We have thus get the Main Theorem stated in the introduction:

Theorem 4.3 (Schmidt Subspace Theorem with Residual Counting Func-
tion). Let F' = {F;} be a set of linear forms in P"*(k) in general position. Let
€ > 0. Then there exists a finite union of linear subspaces E(F,e) and a constant
C(F,¢) such that for all z € P*"(k)\E(F\€) the approzimation inequality

N N
S omls, B+ N, F) < (n+1+e€)ht(z) + C(F¢)
=0 =0

holds.
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5. Conjectures toward effectiveness.

In Theorem 2.3, we have shown the following: For z € C’)}:'H, possibly with

exceptions consisting of finitely many proper linear subspaces of dimension < p —

1, we can inductively construct a sequence (), ..., 2® in OF*! such that the
inequality :

. [(2<P=1 A (2<P=2 A 2®)) - Fy Ll ,
(15) Z )log 2@ [, |z ST Fy | |modified < eht'(z)

vES(x

holds. In the proof of Theorem 2.3, we have shown that this existence thecrem
(for z{P)’s) is nearly equivalent to the Parametric Subspace Theorem. On the other
hand, the only known proof of the Parametric Subspace Theorem is the proof by
contradiction via the application of the Roth lemma. This proof does not give any
information on the bound of the height of the exceptional proper linear subspaces.

However, as we have shown in the proof of Theorem 2.3 and Theorem 4.2, the
inequality of type (15) plays the role of the Diophantine analogue of the Lemma
on logarithmic derivative and the Wronskian formalism in Nevanlinna theory. In
fact, this splits into two statements one of which is on the Archimedean places
and the other on the non-Archimedean places, respecting the non-uniform non-
Archimedean places involved in the argument. This enabled us to have uniform
estimates in Theorem 4.2. The former one is

(16) { ms,, (2, D) < Mmgeo(TP, D)) + et (2)

ms, (TP, 00) < eht (z)

which is strongly analogous to the Lemma on logarithmic derivative (Theorem
1.1) in Nevanlinna theory. We then consider z’s which do not obey the system of
inequalities (16) (for any choice of z{”)). Ths advantage of doing so lies on the
expectation that bounding such z’s would be significantly simpler. The reason is
that the condition

(17
ms, (z, D) > Mg (P, D®) 4 eht(z) or ms, (FP,00) > eht(z)
v P € TjyP™(Ok)

would be significantly easier to handle compared to (15) (which is almost equivalent
to the Parametric Subspace Theorem).

The structure of the analogy between Schmidt’s Subspace Theorem and the
Nevanlinna-Cartan Theory is logically complicated. In particular, we must first
prove the ineffective Schmidt’s Subspace Theorem and then introduce a geometric
idea for the consideration on the effectiveness. To explain this complexity, we
introduce two kinds of Diophantine analogues of Lemma on logarithmic derivative
in Nevanlinna theory. One is that of Type A and the other is that of Type B. The
analogue of Type A is the inequality in Theorem 2.3. That of Type B consists of
the system of the inequalities in Theorem 4.2 (together with the condition (13)).
We have no direct proof for the Type B analogue. namely, at this stage, we can
prove the Type B analogue only “via proving that of Type A”. We proved the
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Type A analogue by reducing it to the Parametric Subspace Theorem [V, Theorem
6.4.2]. The essential part is to define the Diophantine analogue of the derivatives
by applying Minkowski’s geometry of numbers (successive minima) with certain
length functions (the Type A analogue is based on the length function to which the
successive minima is applied to define 2/, . .. ,z¢™ and this is the reason why we
cannot avoid the Type A analogue). On the other hand, the Parametric Subspace
Theorem reduces to the Roth lemma?® and therefore the result is not effective.
However, the Type A analogue implies the Type B analogue together with the
ineffective finiteness statement. Then the Type B analogue turns out to split into
the inequalities over Se and the conditions (13) over the non-Archimedean places
in S(z).

Our conjecture is that we are able to effectively bound the solutions of these
inequalities over Soo.

This discussion is summarized in the following table, where LLD (resp. WF,
PSST and SST) is the abbreviation of Lemma on logarithmic derivative (resp.
Wronsakian formalism, Parametric Schmidt’s Subspace Theorem and Schmidt’s
Subspace Theorem). Type A stands for the Type A Diophantine analogue of LLD
(Theorem 2.1) and Type B does theType B Diophantine analogue of LLD (Theorem
4.2). Note that there are implications PSST = Type A (Theorem 2.1) and Type A
= Type B in the situation modified with varying S{z) (Theorem 4.2). Note that
Type B is proved only via proving Type A.

Nevanlinna Theory Diophantine approximation
LLD PSST Type A Type B
WF PSST = SST Type A = SST Diophantine analogue WF

Proving a Diophantine inequality is equivalent to proving the smallness of the
set of solutions of the opposite inequality. The residual counting function in the
Schmidt Subspace Theorem implies a stronger Diophantine inequality and therefore
there might be more exceptions. This means that bounding the height of the
solutions of the opposite inequality will become more nontrivial and harder.

The easiest case is the following. Suppose that all linear forms F; (¢ =0,...,N)
are defined over a fixed number field k. We consider the approximation to hyper-
planes by k-rational points. The approximation inequality

N
Z(mg(m,Fi) + N™z,F)) <{n+1+¢e)ht(z)+ Cle)
=0

becomes “trivial” for small N, i.e., N < n. Indeed, the “First Main Theorem”

ht (z) = mg(z, F;) + Ns(z, Fy) + O(1)

23 The proof of the Roth lemma is the origin of the ineffectiveness of the Roth and Schmidt
Theorems. The Roth lemma is the most difficult part of the proof of the Roth theorem and also
plays the central role in the Schunidt Subspace Theorem.
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implies that the opposite approximation inequality reduces to

(N +1Dht(z) +0(1) 2 Y (m(z,F;) + N(z, F))

v

1= i1

i
o

(ms(z, Fi) + N™(z, F))

En+1+£)ht(m)+0(e).

V

If N <n this reduces to
(n—N+e)ht(z) < C'(e)

which implies an effective bound on the height of all solutions of the opposite
inequality. However, even for small NV, if F’s are defined in an extension K of k, the
approximation inequality is as nontrivial as that in the case of general N. Therefore,
if we believe the existence of the geometry which unifies Diophantine approximation
and Nevanlinna theory, the above argument (using the “First Main Theorem”) has
no essential meaning and we should find more geometric way explaining the bound
of the height of the solutions of the opposite inequality even in the above easiest
situation. Later we examine the simplest case and show that the condition (17)
(split from (15)) in fact implies the effectiveness.

We suppose next that the linear forms are defined in the extension K of & and
we consider the approximation to hyperplanes by k-rational points, just as in the
classical Roth theorem (we assume that the valuations of k is extended to those of
K appropriately). The beliavior of the Weil height under the field extension implies
that the above mentioned argument does not work. However, the arguments in the
proof of Theorems 2.1 and 2.3 still work with respect to the extended valuations.

The above consideration suggests us to “assume” (as a working hypothesis) that
the structure of the proof of Theorems 2.1, 2.3, 4.1 and 4.2 contain something
essential for the existence of an effective bound of the height of the solutions of the
opposite approximation inequality.

We begin with the simplest case. Set nn = 1, k = Q and F = o where (zo, z1) are
coordinates of Q2 and I = 0 represents the point oo of P*(Q). This simplest case
is most important in the attempt toward the effectiveness. In fact, the following
simple argument turns out to be the non-trivial first step. We would like to show
that for any given positive number ¢, there exists an effective bound for the solutions
to the Diophantine problem (17):

mg, (Y, So) < ms, (z,F) —eht(z) or mg, M, 00) > eht (x)
vz e TPYZ) .
In this case, it is equivalent to the following:

(18) -
distEw;(:.,%"(l),SQ)“1 < dist pue(z, F)"1H(z)™® or dist E\,uc(ac(l),oo)‘1 > H(z)®

v (1) e 72 ,
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where S, represents the zero in the first jet space (= tangent space) of P'(Q) and
dist gue means to measure the Euclidean distance. Each quantity in the above
inequalities has the following geometric meaning:

dist gyo(z, F)™* = |slope] ,
dist guc(z®), So) ™! = min{|width|™?, |slopel} ,

dist guc(z™, 00) ! = |width| .

Here, |slope| represents the maximum of the absolute value of the usual slope in R?
of the line determined by the point z € Z? and 1. Moreover, |width|{~! represents
the maximum of the inverse of the Fubini-Study length of the vector z*) (measured
as a tangent vector in T[;,_.!Pl(C)) and 1. Finally, |width| represents the maximum
of the Fubini-Study length of the vector #{*) and 1. As the Fubini-Study metric of
P!(C) is given by —I%TZ_" we have

TF
. - Hx(l)HEuC
|width| := max{W’ 1} ,
idth|™! := max mﬂ:ﬁ_
idt = w1 Eatwis

for z with H{z) > 100 (for instance).

We then conjecture that the x’s satisfying the second inequality of (18) have
an effective bound.

As for the first inequality in (18), the necessary condition satisfied by z is
|width|~! < [slope]|. It is explicitly written as

2
(19) max -—ff—@-—, 1% < H(”:), vzl e 72 .
Hx(l)HEuc ix0|

We conjecture that such x’s have an effective bound.
We thus have the following effective Roth-type conjecture:

Conjecture 5.1. Let Fy, ..., Fy be distinct linear forms on P1(Q). Then for any
€, there exists an effectively computable constant C(e, F) such that

N
> m(z, B+ N' (e, F) < (2+e)ht (z) + C(e, F) Vz e P(Q).
=0 .

Using the definition of the residual counting function N(z, F;) — Ni(z, F;) =
NY{(z,F;) and the “First Main Theorem” m(z, F;) + N(z,F;) = ht(z), we can
rewrite Conjecture 5.1 as

2
ht (z) < (1+2) > Ni(z, Fi) +Cle) .
i=0
Now we take [y = zp, Iy = 21 and F3 = —z1 — 5. Then Conjecture 5.1 in the

product form becomes the statement of the effective version of the abc-conjecture:
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Conjecture 5.2 (abc-conjecture). For any € < 0, there exists an effectively
computable constant C(g) such that for all mutually prime integers a,.b and ¢ sat-
isfying a + b+ ¢ = 0, the inequality

1+e
m&X“a;alb‘1!C]} = C(£)< H P)

p}abe

holds.

The case n = 1 and & being any nuinber field is the same except we must consider
R2m x C2?2 into which Oi has a co-compact embedding, where r; and ro are the
number of real and (conjugate pair of) complex places of k (r1 + 2r2 = [k : Q]).
Indeed, let (z1,22) € k2 and (z{”,2{”) the point of R? or C2 corresponding to
the real or complex embedding of k. Let L{(z) = a1z1 + agz2 be a linear form
defined over k and L{* the linear form in R? or C? corresponding to the real or
complex embedding of k. Then, considering the linear equation L{z) = 0 in k2 is
equivalent to considering the system of linear equations L{*){(z(") = 0. For each
¢ we think of L& (2} = 0 as an equation defined in R™ x C2™2. We can thus
argue quantitatively the analogue of (18) over the co-compact lattice of algebraic
integers.

Next we consider the case n being general and k being any number field. Let
Fy, ..., Fn be linear forms with & coefficients in general position. In multiple di-
mensional case we cannot separate F's because these define hyperplanes having
nonempty intersections. Let r; and ro be the number of real and (conjugate pair
of) complex places. The Diophantine problem (17) is described as

Zm =(p) pl) <Zm{x F,)—¢eht(z) or m(z®, 00) > eht (x)
i==0) %
v TP) € TjyP™(Og) -

Here, T® ¢ Ti. P (k) is well defined (and therefore the approximation to Fim is
also well-defined). Indeed, let f : C — X be a holomorphic curve into any complex
manifold X and let (z1,...,2,), (w1,...,wns) be two systems of holomorphic local
coordinates around f(z). Write z; and w; simply for the compositions z; o f and

w? o f. Then we have ‘ff, =3 i1 g;] di’; Differentiating this (p — 1) times gives
d zL

Lo = =3 g; %—%’} modulo differentials up to order p—1. So
of holomorphic local coordinates behaves like a tangent vector.
The above Diophantine problem is equivalent to the problem of bounding the

height of z’s satisfying the following inequalities on On“ which is a co-compact
lattice in R x Clntiire,

for any system

(20) H dist , (z®), F() < H dist (z, F;) " H(z) "¢
VESeo VESee - .
0<i<N 0N
or H dist o (2™, 00) ™ > H(z)®

VE Too .
0<i<N

1
vz e OpFT
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The reason why we conjectured that we able to bound the solutions to (17) in
the case of n = 1 was that in (19) we find H(z) twice in the left hand side while
only once in the right hand side.

As the first inequality of (20) suggests, the inequality of type (19) still holds if
 locates in “general” position (note that the linear embedding P*(C) — P*(C) is
isometric and totally geodesic with respect to the Fubini-Study metric of projective
spaces). However, this “happy” situation on the first inequality no longer holds, if
z locates at some special position relative to the hyperplanes determined by F’s.
On the other hand, the second inequality of (17) has nothing to do with F’s and so
it causes no difficulty in multi-dimensional situation. Therefore, we are exclusively
interested in the first inequality of (17).

Since Theorems 2.1/4.1 and 2.3/4.2 hold outside of a collection of finitely many
proper linear subspaces and once the effectiveness of the simplest situation of n =1
were proved, the induction process on n would proceed. So, What we must do now
is to determine which linear subspaces are “special” in the sense that the “happy”
situation of (19) no longer holds.

The criterion is simple. Given a proper linear subspace, we just count how many
H(z)’s which appears in both sides and compare them. If we find more H(z)’s
in the left, we are able to have an effective bound. Otherwise, we have no hope
to get effective bound only from the Archimedean places and therefore we have
to take the non-Archimedean ones in S, into account. In doing so, we can argue
inductively on the dimension of linear spaces, because, in Conjecture 5.1 we have
already established the effective version of the Roth theorem.

How to reduce to lower dimensional cases is explained as follows. Given a proper
linear subspace we consider the restrictions of F’s. If F's are still in general position,
we can reduce the dimension. Suppose that the restricted F’s are no longer in
general position. If this happens, we need case by case consideration.

This happens, if, for instance, we choose F’s to be a configuration of four lines in
general position in P? and take any diagonal line L connecting P and @ which are
two of six intersection points. Let {z} be an infinite sequence of k-rational points
contained in L. Assume that the sequence approximates P in the Archimedean
places. In this case, H(z)'s appear twice in both sides of (19) and considering
only Archimedean places is not enough. In fact, this sequence will approximates
@ in the non-Archimedean places and We must argue synthetically taking both
approximations into account. Now let us suppose that L is not exceptional. Then
we have

3
> m(z, Fy) + N*(z, F;) < (3+¢)ht (z) + C(e)

i=0

and as z lies in L, this inequality reduces to the following inequality for a point in
L:

2(m(z, P) +m(z,Q) + N'(z, P) + Nl(i,Q)) <@B+e)ht(z)+C(e) .

However, If we forget the ambient space and consider the sequence as that in L
(= P'(k)), we have the Roth theorem

m(z, P) +m(z, Q)+ N'(z,P) + N'(z,Q) < (2 +¢) ht (z) + C(e)
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and it is well-known that this inequality is best possible which means that no
improvement on 2 + ¢ is possible. So, the conclusion of the same inequality as the
Schmidt Subspace Theorem for points of L violates the Roth theorem. Therefore
L must be an exceptional subspace.

Next we show that any line L passing through just one intersection point P is not
exceptional. Let @ and R be other two intersections of L and the line configuration.
Suppose that L is not exceptional. Then

om{z, P) +m(z,Q) +m(z,R) +--- < (3+&)ht (z) + C(e) .
On the other hand, the Roth theorem and the “First Main Theorem” imply

om(z, P) +m(z, Q) + - < ht(z) + (m(z, P) + m(z, Q) +-++)
< ht(z)+ (2+¢e)ht(z) + Cle) = (3 +¢e) ht () + C(e)

and therefore we have no contradiction. This means that L is not exceptional.

The reason why the above combinatorial argument (based on the Roth theorem)
synthesizes Archimedean and non-Archimedean places lies in the fact that under
the assumption mg_ (z(),00) < eht (z), the inequality in Theorem 2.3 (this is a
version of Parametric Subspace Theorem) and the Roth-Schmidt approximation
inequality is almost equivalent4,

It is now clear how to determine the exceptional linear subspaces in the general
case (n being general, k being any number field and F”s linear forms defined over
k in general position). First of all we say that a given linear subspace V is excep-
tional if the conclusion of the Schmidt Subspace Theorem on P"(k) translated to
an approximation inequality on V' contradicts the (dim V)-version of the Schmidt
Subspace Theorem. To check this, we have only to argue just we did to check lines
when n = 2 and F’s are four lines in general position. Although the argument
becomes combinatorially more complicated as n becomes larger, we are able to
algorithmically organize it.

The conclusion is that the set of all maximal exceptional subspaces are deter-
mined by combinatorial argument based on the inductive use of the {(lower dimen-
sional) Schmidt Subspace Theorem.

We say that an exceptional subspace is maximal if this is maximal among all
exceptional subspaces with respect to the inclusion.

Conjecture 5.3 (Effective Schmidt Subspace Theorem). Let F = (YN,
be a set of linear forms in P*(k) in general position. Let € > 0. Then there exists
an effectively computable finite union of linear subspaces E(F,e) (we call them
ezceptional subspaces) and an effectively computable constant C(F,¢) such that for
all z € PP(k)\E(F,¢€) the approzimation inequality

N N
Z?n(fl),F,;) + ZNR(:IT\FL') < (n+1+e)ht{z)+C(F,¢)

=0 ex={)

24 This is evident fromn the proof of the Sclumidt Subspace Theorem given in €4 and the proof
of Theorem 4.3.
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holds. Moreover, for given € and F’s, we have a combinatorial algorithm to de-
termine all mazimal exceptional subspaces. In particular, there exists an effective
bound for the height of exceptional subspaces.

We execute the above algorithm in the simplest case, i.e., n being general, k = Q
and F’s being Fy = z; for i = 0,1,...,nand Fpp1 = —%0 — 21 — - — Tn. In this
case it is easy to determine all maximal exceptional subspaces. These are diagonals,
i.e., those hyperplanes which are defined by the “sub-sum” >, ,z; = 0 over any
proper subset J € {0,1,...,n} such that |/| > 2 (the case of |I| = 1 is excluded
from the begining because we are arguing in the setting of the Schmidt Subspace
Theorem with respect to the linear forms Fs).

We check this in the case of n =3. Set F; = z; for i =0,...,3 and Fy = —{zo +
-+ +z3). First we consider P! over which F’s restricts in general position. By the
effective Roth, any such P! is not exceptional. Next, suppose that F’s do not restrict
in general position. If complementary two and three of five intersection points
coincide, the left hand side of the Schmidt Subspace Theorem becomes 3m(z, P) +
2m(z, @) plus residual counting function terms, which (as a total) is not larger
than 5 ht (z) by the “First Main Theorem” and indeed this estimate is best possible
for some infinite sequence. This violates the Schmidt Subspace Theorem for n =
3. So, such P! is exceptional. If just three coincide, the left hand side becomes
3m(z, P} + m(x, Q) + m(x, R) plus residual counting function terms, which is not
larger than (4 +¢)ht (z) by the effective Roth and the “First Main Theorem”. This
does not violate the Schmidt Subspace Theorem for n = 3. We can argue similarly
in the case that just two pairs coincide. Thus we have shown that the exceptional
P!’s are characterized by the condition that two and three of five intersection points
coincide. We cannot bound the height of such P’s. However, these P!’s turn
out to be not maximal. These are classified into a finite number of 1-parameter
family and each family is contained in some P? defined by certain subsum = 0,
which, as we show below, is exceptional. Next, we consider a P? on which the
restriction of I’s are in general position. This case is reduced to the Schmidt
Subspace Theorem on P? with four lines in general position. In this case the
only exceptions are diagonal lines. However as we saw above, the left hand side
of the Schmidt Subspace Theorem is 2(m(z, P) + m(z,Q)) plus residual counting
function terms and is not larger than 4 ht (z). This violates the Schmidt Subspace
Theorem for n = 2 but does not for n = 3. So any P? in general position with
F’s is not exceptional. If P? is determined by the line L = {Fy = F} = 0} and a
point P on Fy = Fy = 0, the right hand side of the Schmidt Subspace Theorem
becomes 2m(z, L) + 2m{z, P) plus residual counting function terms, which is not
larger than 4ht (z) by the “First Main Theorem”. So, this does not violate the
Schmidt Subspace Theorem and any such P? is not exceptional. If P? is determined
by the line L = {Fy = Fy = 0} and the point P = {F; = F3 = Fy = 0}, the
left hand side of the Schmidt Subspace Theorem becomes 3m(z, L) +2m(z, P) plus
residual counting function terms which is not larger than 5 ht (z) by the “First Main
Theorem”. This violates the Schmidt Subspace Theorem and this case corresponds
to the subsum zg+; = 0. Similarly P? determined by the line L = {F3 = Fy = 0}
and the point P = {Fy = F} = Fy = 0} corresponds to the subsum zg+z; +22 = 0.
We thus conjecture the following:

Conjecture 5.4 (generalized abc-conjecture). For any € < 0 there exists an
effectively computable constant C(e) such that the following holds: If ag, a1, ..., Gn, Gny1



111

RYOICHI KOBAYASHI

are mutually prime integers satisfying the condition ag + a1 + -+ -+ an + @pe1 =0
and Y,y a; # 0 for any proper subset I C {0,1,... ,n}, then

1+¢
max{laol, a1, s |ans1l} < C(E)( 11 pmi“{‘)‘"dv("'oar“an+1),n})

p:prime
plagay an+1

holds.
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