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ABSTRACT. In this report, we show reverse inequalities to Araki’s inequality and in-
vestigate the equivalence among reverse inequalities of Araki, Cordes and Lowner-Heinz
inequalities. Among others, we show that if A and B are positive operators on a Hilbert
space H such that 0 < mI < A < MI for some scalars m < M, then

K(m, M,p)|BAB|P < |[BPA?B?||  forall0<p< 1,

where K (m, M, p) is a generalized Kantorovich constant by Furuta.

1. INTRODUCTION

Let A and B be positive operators on a Hilbert space H. The equivalence among Cordes
and Léwner-Heinz inequalities was discussed by many authors. In [8], Furuta showed that
the Cordes inequality

(1) |APB?|| < |AB|F forO0<p<l1

is equivalent to the Lowner-Heinz inequality (cf.[14]) '

(2) A>B>0 implies AP>BP forO0<p<1

(cf. [5]). In [1], Araki showed a trace inequality which entails the following inequality:
(3) |BPAPBP|| < |BAB|P for 0 <p< 1.

Moreover, it was shown in [6, 2| that the Cordes inequality (1) is equivalent to Araki’s
inequality (3).

On the other hand, Furuta [9] showed the following Kantorovich type inequalities: If
A and B are positive operators with 0 < ml < A < M1 for some scalars m < M, then

(4) A>B>0 implies K{(m,M,p)A* > B? forp > 1,
where a generalized Kantorovich constant K (m, M,p) [3, 7, 11] is defined as
(5)

K(m,M,p) =

mM? — MmP (p—1 MP-—mF
p—-D)(M-m)\ p mMr—Mmr
We here cite Furuta’s textbook [10] as a pertinent reference to Kantorovich inequalities.

Also, Yamazaki [16] showed the following difference type reverse inequalities of the

Lowner-Heinz inequality: If A and B are positive operators with 0 < ml < B < MI for
some scalars m < M, then

(6) A>B >0 implies C(m,M,p)+ AP > B forp>1,

p
) for all real numbers p.
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where the constant C{m, M, p) [12, 16] is defined as

(7
' (Mp——mp)ﬁ'f MmP — mMP?

Cim,M,p)=(p—1)| ——— .
(m, M,p) = (p—1) 2(M —m) T for all real numbers p

In this report, we show reverse inequalitiés to Araki’s inequality (3) and the Cordes
inequality (1): If A and B are positive operators with 0 < mI < A < MT for some scalars
m < M, then the following inequalities hold

(8) K(m,M,p)||BAB|F < |BPAPBP| for 0 <p <1,
©) K (m?, M, p)/2) AB|P < | APB?|| for 0 <p<1,

respectively. We moreover show that reverse inequalities (4), (8) and (9) are mutually
equivalent.

2. MaAIN RESULTS

First of all, we present our main theorem which is a reverse inequality to Araki’s
inequality (3).

Theorem 1. If A and B are positive operators on H such that 0 <ml < A < MI for
some scalars m < M, then for each a >0

,a)||B|*  forall0<p<1,

Wi

(1) ||BAB| < ||BPAPB?| + B(m?, M?,
or equivalently |

(11) |BPAPBP|} < o |BAB|| + A(m, M,p,0)|BI>  for allp>1,

where
(12) |
3:1_( MP—mP )pl'Tl + a(MmP—mMP) if MP—mP <a< MP—m?

p \op(M-m) Mr=m» pMr-T(M-m) = © = pmp~1(M-m)’
ﬂ(mw Mapa O‘) = (]- . Q)M 7,f 0<a S pMﬁ{pT-(_J:Inimi’
1—a)m if a2 iy

If we choose a satisfying B(m, M,p,a) = 0 in Theorem 1, then we have the following
ratio type reverse inequalities.

Corollary 2. If A and B are positive operators on H such that 0 < mlI < A< MI for
some scalars m < M, then

(13) K(m, M,p)|BAB|P < | BPAPB?|  forO<p<1,
or equivalently

(14) IBABJ|P < K(m, M,p)|B*APB?||  forp>1,
where K(m, M,p) is defined as (5) in §1.
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If we put @ = 1 in Theorem 1, then we have the following difference type reverse
inequalities.

Corollary 3. If A and B are positive operators on H such that 0 <ml < A< MI for
some scalars m < M, then
(15) |BABJP — | BPA?B?|| < —C(m, M,p)||B|*  for0<p<1,

or equivalently

1
(16) | B 47BP7 ~ | BAB|| < —C(m?, M*, D|IBI*  forp>1,
where C(m, M, p) is defined as (7) in §1.

As special cases of Corollary 2 and Corollary 3, we have the following corollary.
Corollary 4. If A and B are positive operators on H such that 0 <ml < A < M1 for
some scalars m < M, then

(M 4 m)?

(1) i) < Qg e
(18) BBt — | BAB] < U0 e

~ 4(M +m) '

2v/Mm 1 1,151
(19) mHBABH < [|B2AZB7|.
i _Biabpl) < WM —vm)
@0) BB} - srats| < SOV g
Since || X*X || = || X||? for an operator X, we obtain the following reverse inequality to

the Cordes inequality by Corollary 2.

Theorem 5. If A and B are positive operators on H such that 0 < ml < A < M1 for
some scalars m < M, then

(21) K(m? M? p)7||AB|]P < |APB?||  forall0<p<1,
or equivalently
(22) |APB?|| < K(m?, M?,p)? |AB|P for allp > 1.

In particular,

2/ Mm

(23) T [ABIIE < A7 B3|
and

2y o M2+ m? 2
(24) |48 < T A

The equivalence among the reverse inequalities of Araki, Cordes and Loéwner-Heinz
inequalities is now given as follows.
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Theorem 6. For a given p > 1, the following are mutually equivalent: For all A,B > 0
and 0 <ml <AL MI

(A) A>B>0 implies K(m,M,p)A? > BP.
(B) |APB?|| < K(m?, M*, p)*?| AB|?.
(©) |1 B*APB?|| < K (m, M, p)| BABIP’.
(B) K(m?, M?,1/p)"*| AB|” < | A*B?|.
(€) K(m, M,1/p)|BAB|” < | B*A*B*.

3. LEMMAS

We start with the following three lemmas before we give proofs of the results in §2.

Let A be a positive operator on a Hilbert space H and z a unit vector in H. Then it
follows from Hélder-McCarthy inequality that

(25) (Az,z) < (Apac,.r)% for all p > 1.
By using the Mond-Pegari¢ method [12, 13}, we have the following reverse inequality of
(25) [15, 4]

Lemma 7. If A is a positive operator on H such that 0 < mlI < A < MI for some
scalars 0 < m < M, then for each o >0

(26) (A‘”a:,zc)zl? < a(Az,z) + B(m, M, p, a) forallp > 1
holds for every unit vector x € H, where 3(m, M,p,a) is defined as (12) in Theorem 1.

Proof. For the sake of reader’s convenience, we give a proof. Put 8 = B(m, M, p, a) and
1

() = (at+b)5 —ot for a = M= and p = MmPomM? they, we have f'(t) = & (at+b)e ™!~
17ap b

a. It follows that the equation f’(¢) = 0 has exactly one solution ¢ = 3(7)% — o If
i
m < tg < M, then we have 8 = maXy, <<y f(t) = f(to) since f"(t) = 6‘2—(;21191(at+E))?'_Z <
0 and the condition m < ¢y < M is equivalent to the condition
MP —mp M?P — mP
<a< .
pMPI(M —m) =" pmr (M —m)

If M < to, then f(t) is increasing on [m, M] and hence we have 8 = maxmci<nm f(t) =
Flto) = (1 — )M for to = M. Similarly, we have § = maXmer<u f(t) = flto) =(L—a)m
for to = m if tg < m. Hence it follows that

(at#—b)%-—atgﬁ for all t € [m, M|.

Since * is convex for p > 1, it follows that #* < at + b for t € [m, M]. By the spectral
theorem, we have AP < aA + b and hence (APz,z) < a(Ag,®) + b for every unit vector
z € H. Therefore we have

(APz, )7 — oAz, 1)

(a(Az, ) + b)7 — oAz, )
max f(t) = B(m, M,p, o).

<
<
m<t<M
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By Lemma 7, we have the following estimates of both the difference and the ratio in
the inequality (25).
Lemma 8. If A is a positive operator on H such that 0 < ml < A < MI for some
scalars 0 < m < M, then for each p > 1

(27) (Apx,m)il-f < K(m, M,p)rl"(Am,w)
and
(28) (APz 2)F — (Az,3) < —C(m?, M?, %)

hold for every unit vector © € H, where K (m, M, p) is defined as (5) in §1 and C(m, M, p)

is defined as (7) in §1.

Proof. If we choose o satisfying B3(m, M,p,a) = 0 in Lemma 7, then we have a =

K{m,M p)P If we put o = 1 in Lemma 7, then we have 8(m, M, p,1) = —C(m?, M?, %)
[

We remark that K (m, M,2) coincides with the Kantorovich constant (M+m) ifp=2.

We summarize some important properties of a generalized Kantorovich constant (3, 11].

Lemma 9. Let m < M be given. Then a generalized Kantorovich constant K(m, M, p)
has the following properties.

(i) K(m, M,p) = K(M,m,p) for allp € R.

)
(ii) K(m,M,p) = K(m,M,1 —p) forallp € R.
(iii) K(m, M,0) = (mM1)~lforallp€R.
(iv) K(m, M,p) is increasing for p > 3 and decreasing for p < 3
(v) K(m?, M7, 2)% — K, M7, 2)°F for pr £

4. PROOF OF RESULTS

Based on Lemmas in the preceding section, we give proofs of the results mentioned in
the second section.

Proof of Theorem 1.
For every unit vector € H, it follows that

((BAB)Yz,x)
< (BABz,z)? by Holder-McCarthy inequality and 0 <p < 1

_ ni BT Bx Bz %
= (g ey 18l

» Bz Br p agp L %
(a(A m,m) + B(m?, M ,E,a)) |Bz|* by Lemma 7

= a(APBa:,Bw)IIBmJ]2P_2+ﬁ(mp,Mp,%,Oé)“B$||2p

BPy  Bl-rg

[B=ra]]” [ B124] )| Ba||*

~ ofmaer ) iBat28tral + o, 37

S|
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and
|Bz|*~*|| B Px|® = (B%s,z)P~!(B* 1)
< (B%z,z)P"Y(B%z,z)'?=1 byO<l-p<l
By combining two inequalities above, we have
|BAB|P = [(BAB)||

1
< ol BPAPBP| + B(m?, MP, 2, )| BI*

and hence we have the desired inequality (10).
Next, we show (10)==(11). For p > 1, since 0 < —;- < 1, it follows from (10) that
|BABI> < o [|B7 A3 BF| + B(ms, M, p, 0)|| B>
By replacing A by AP and B by B? in the above inequality respectively, we have
|BP 4B < o | BAB]| + B(m, M,p,0) | B,
and so we have the desired inequality (11). Similarly we can show (11)==-(10). Therefore
(10) is equivalent to (11). ‘ ]

Proof of Corollary 2.
For p > 1, if we put 8(m, M,p,a) = 0 in Theorem 1, then it follows that

1

p—1( MP—mP\?T  _» (MmP—mMP)
+ ar-t =0
p \p(M—m) MP — mp
and hence ) '
P p—1( MP—mP \?"T MP—mF
apr-1 =— — .
p \p(M—m) MmP — mM?P

Therefore, we have

oF MP—mP (p—1 MP—-mP o
p(M—m)\ p mMP— MmF
= K(m, M,p)

and we obtain the desired inequality (14).
For 0 < p < 1, since 1/p > 1, it follows from {14) that

\BABI < K(m, M, %)“B%A%B%H.
By replacing A and B by A? and B? respectively, then we have

|BPAPB|F < K (P, MP, %)HBAB]L
Hence it follows from Lemma 9 that

B4 B < K, M?, Z | BABIP

< K(m,M,p)""|BAB|",

and we have the desired inequality (13). Similarly we have the implication (13)=>(14).
a .
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Proof of Corollary 3.
If we put @ = 1 in Theorem 1, then it follows that

1

1 ey
1 -1 M-m \# ! MPm—mPM
p AP = 1) — P ;o
ﬁ(m:M’p;l) % (%(Mp—mp)) + M—-m
_(1-p) p(M —m) Tf_f’_{_Mpm—mPM
- PI\Mr — o M-m
— —C(m; M? p)
Similarly it follows that 3(m, M,p,1) = —C(m?, MP, %) Hence we have the equivalence
(15) < (16) !
Proof of Corollary 4.
In Corollary 2 and 3, we have only to put p = 2 and p = 1/2. a
Proof of Theorem 5
By Corollary 2, it follows that
K (m, M,p)|| A2 B||* < | AFB?|.
By replacing A by A%, we have
- K(m?, M?,p)| AB|* < ||APB"]".
Therefore we have (21). Similarly, we have the equivalence (21)<=(22). o

Proof of Theorem 6

The proof is divided into three parts, namely the equivalence (4) => (B) = (C) =
(4), (B) <= (B) and (C) = (C).

(A) = (B). It follows that

(4) &= |A73B3]| < 1~ [A™EBE|? < K(m, M,p)
= |AIB?| <1 |AFBE|2 < K(M~,m™,p) = K(m, M,p)
= ||AB|| < 1 — || APB?|| < K(m?, M*,p).
If we put By = B/||AB||, then it follows from ||AB;|| =1 that
|ABY|| < K(m?, M, p)? «= | A°B|| < K(m”, M*,p)* | AB|P".
(B) = (C). If we replace 4 by A% in (A), then it follows that
|ARB?|| < K (m, M,p)t| AP BI".
Square both sides, we have
| BPAPB?|| < K (m, M,p)|| BABJ?.
(C) = (A). If we replace B by Bz and Aby Al in (C), then it follows that
|BEABE| < K(M~',m™",p)| BTA™ B3[P,
By rearranging it, we have
| A8 BP A8 || < K(m, M,p)| A2 BAS|.
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Since A > B > 0, it follows from A"?BA~% <1 that
|A~3BPA%| < K(m, M,p)

and hence
B < K(m,M,p)A?.

(B) <= (B'): If we replace A and B by A% and B? in (B) respectively, then it follows
that

2 2 1 i1
(B) <= | AB| < K(m#, M?,p)%|| A» Bs |
<= | AB||5 < K(m?, M#,p)% || A7 B7 |
s K(m?, M?,p)}|AB|> < ||A*B>| by Lemma 9
<= (B)

Similarly we have (C') <= (C') and so the proof is complete. O
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