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On Computing Sum of Roots with Positive Real
Parts of Polynomials
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Abstract

In this paper we present a method to compute or estimate the sum of roots with positive real parts
(SORPRP) of a polynomial, which is related to a certain index of stability in optimal control, without
computing numerical values of the roots explicitly. The method is based on symbolic computations and
enables us to deal with polynomials with parametric coefficients for their SORPRP. This leads to provide
a novel systematic method to achieve optimal regulator design in control by combining with quantifier
elimination. We show some experimental result for a typical class of plants to confirm the effectiveness of
the proposed method.

1 Introduction

In control and system theory, investigating location of roots of the characteristic polynomial is one of
important and fundamental topics related to the stability of feedback control systems. For example, in
case of a typical feedback system with a plant P(s) = Z;’((g controlled by a controller C{s) = %fg% where
ng(8), dy(8), ne(s), de(s) € Qfs], the stability of the system is described as follows: The feedback system is
stable if and only if all of the roots of the closed-loop characteristic polynomial g(s) = npne + dydy locate
within the left-half plane of the Gaussian plane. This is called Hurwitz stability. We may consider more
general notion of stability, called D-stability, which implies that all of the roots locate inside a restricted
region D within the left-half plane of the Gaussian plane.

Control design problem is to find a controller C(s) so that the system satisfies given specifications. As

the controller C(s, q) has fixed-structure with some parameters q, what we have to do is to seek feasible

controller parameters q which satisfies the specifications. For such problems, techniques in computer
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algebra have been successfully applied [9, 13, 1, 2. Stability is the first necessary requirement for control
system design. Assigning roots of a certain polynomial within a desired region is an essential problem
for stability study. Root assignment problem for Hurwitz stability is to find controller parameters q so
that the system is Hurwitz stable. This is easily verified by the well-known Routh-Hurwitz criterion. In
the case of D-stability, a wedge shape region or a circle is usually used as stability region D. For root
assignment problems with such stability regions, controller design problem is reduced to check a sign
definite condition (SDC) Vz > 0, f(z) > 0 where f(z) € Q(q)[z], see [14, 12]. Applying real quantifier
elimination (QE) to the sign definite condition, we can obtain possible regions of controller parameters

q to meet D-stability. For a sign definite condition we can utilize an efficient quantifier elimination
algorithm specialized to SDC [1, 10]. These two controller synthesis methods with respect to stability
are implemented as functions in a MATLAB toolbox for robust parametric control [3]

In this paper we focus on the sum of roots with positive real parts (SORPRP) of a given even polyno-
mial, and provide another successful application of computer algebra to control design problem, where the
SORPRP is related to certain index of stability in optimal control. We call the index “stability index”.
Here we compute or estimate the SORPRP without computing explicit numerical values of roots. Hence,
we can handle polynomials with parametric coefficients for their SORPRP.

The key point of the method is that computing SORPRP is reduced to computation of the maximal
real root of another univariate polynomial. Subsequently this enables us to achieve control system design
with respect to SORPRP systematically. In fact, since the actual control design problems treated are
recast as simple conditions on an univariate polynomial with parametric coefficients (one of them is a
sign definite condition), we can utilize an efficient quantifier elimination algorithm using Sturm-Habicht
sequence |1, 10]. The proposed method is applied to an even polyhomial derived from “Linear Quadratic
Regulator (LQR) problem” which is one of the main concerns in control theory.

2 SORPRP of even polynomials

First we consider an even polynomial f(z) of degree 2m in (Y[z] with non zero constant, and let
ai,...,0m be roots of f(z) with positive real parts and m41,. .-, 02m roots with negative real parts.
We set Q = {o,...,00m}. So,

2m
flz) = Aomz™ + A28 % 4 4 azzr? +ay = Qam H(ﬂ'? — ),
=1

where ag, € Q for 0 < k < m, agm # 0 and ap # 0. Our first target is to compute W = a1 + ... + am
without computing all o’s. For simplicity, we call W the SORPRP of f. Since, for each non real root of
f(z), its complex conjugate has the same real part, we have the following:

Lemma 1
W is a real number.

2.1 Polynomial having SORPRP as its root

Let Bi,,...0,, =y +- -+ ay, fori; <...<in, and B the set of all distinct values of B, .-
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Definition 2
Gathering all sums B;,..,., e can construct a polynomial Rm, f(z) and its square-free part Rm, ¢(z),

where z is a new variable:

Rmi(z)= ][] (¢=Bi.in) Bms(x)=[[(z-B)
1< Lim BeB
As there might be a case where By, . ;.. coincides with By, .. j,. for distinct (i1,...,im) and (J1,. - -, Jm),
the square-free part R, ;(z) might be smaller than R ;(z). Since all B;, . ;,, are algebraic number, it
follows that R ¢(z) € Q[y] and s0 Rm,z(z) € Qy]. We may call Ry £(z) and R ¢(2) the characteristic
polynomial of sums of m roots, and the minimal polynomial of sums of m roots, respectively.

It is obvious that the SORPRP W = a3 + --- + o4y of f(z) coincides with the maximal real root of -
Ry £(2) (Rm,s(2)), since W is a real number. To compute Ry, j(z) and R #(2), we use the following
triangular set related to Cauchy moduli [5] defined by f(z).

Definition 3
Let D be an arbitrary computable integral domain and K its quotient field. For a polynomial g(z)
of degree n in Dz}, we define the following polynomials: {g1(x1), g2(%1,22), ..., gn(Z1s - . ., Tn)}, Where
gi{z1) = g(z1) and gi(z1,...,2:) is the quotient of g(z;) divided by (z:i — Z1) -+ (@ — zi-1) for each
i > 1. We note that g(z1,...,%;) € Dlzy,..., ;] and gi(z1,...,%i) coincides with the quotient of
Gi-1(x1, ..., Tim2, Ti) divided by z; — x;-1. Here we call {g1,...,9n} the standard triangular set defined
by g(z), and also call {g1,...,gx} the k-th standard triangular set defined by' g{z).

It is well-known that {g1,...,gx} forms a Grobner basis of the ideal {g1,...,gx) generated by itself
with respect to the lexicographic order z; < ... < z¢ in Kz, ... ,Zk) and the set of all its zeros with
multiplicities counted coincides with the set {(8i;,.--;Bi) | t1;---1%k € {1,...,n} are distinct to each
other }, where [, . .., By are all roots of g{z) in the algebraic closure of K. Thus, when g(z) is square-free,
{91, ...,9x) is a radical ideal. We note that for each g; its leading coefficient lc(g;) with respect to the order
< coincides with the leading coefficient le(g) of g(z). Now let F = {fi(z1),..., fm(z1, ... ,Tm )} be the
m-th standard triangular set defined by f(z) in Q[z1,...,%m]. Rm,s(2) can be computed by successive
resultant computation and R,, ;(z) can be computed as the minimal polynomial of z = 1 + -+ + ZTm
modulo the ideal 7 = (F) (with square-free computation if necessary).

Computation of R, j(z) via resultant Let Try(2) = z — (1 + -+ + Zr) and for each k.< m, we

define T} successively as follows:

Tk—l(zsxla B 1Ik—1) = T€8z; (fk(zlv e ,xk),Tk(Z,Il, s 9Zk))7‘

where res, means the resultant with respect to a variable z. Then To(z) € Qly] and To(z) coincides
with ag,, Rm,7(z) for some positive integer d. This can be shown as follows: By construction of Sylvester
matrices in resultant computation, it follows that the leading coefficient of T; with respect to z;, where
T; is considered as a univariate polynomial in z;, is some powers of agm for each j < 4, and the same for
the leading coefficient of T} with respect to z. Then, by the property of resultant, we have

2m
To(z) = ag‘:ﬂ HTl(ziai):
i=1
Ti(z,on,) = agﬁn H To(2, 0y s s ),

T
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Tm—l(‘z,ah;-‘-;aim_l) = agm H Tm(z7a117*'-)aim)y
L B e bom 1
Tz, 0y, oo @iy) = 22— (0 + o+ Qi)
where 41, . . ., im are distinet to each other and each d; is a positive integer. (See [8].) When f(z) € Z[z],

that is, all agx are integers, Tp(2) belongs to Z[z], In order to avoid “coefficient growth” in resultant
computation, we may apply factorization technique to each T} or its factors for computing smaller factors
of Tp. (See §4.2 for usage of factors.) We note that multi-pelynomial resultant can be also applied for

computing To(z).

Computation of R, (z) via minimal polynomial Let z = z1 + -+ + &, and Z = (F) in
Qiz1,.-.,2m]. Then, we consider a minimal polynomial M(z) of z modulo Z, that is, M(z) has the
smallest degree among all polynomials A(z) in Q[z] such that A{z; + --- + ) belongs to the ideal Z.
Since the set of all zeros of 7 with multiplicities counted is {(o;,..., @i ) | t1,. .-, im € {1,...,2m} are
distinct to each other }, it can be shown easily that M(z) is a factor of Ry, #(2) and has B, 5(z) as
its factor. (We may say that M(z) stands between Ry, ;(z) and By f(2). ) Especially, when f(z) is
square-free, then M (2)/lc(M(2)) coincides with By, 7(z). When f(z) € Z{z], that is, all ass are integers,
by removing denominators of coefficients appearing in M (z), we may assume that M (z) belongs to Z|[z].
Then the leading coeflicient lc{M) divides some power of agy,, as M(z) divides Ty(z). As we already
know the Grobner basis {f1,..., fm} of Z, M(z) can be computed rather easily.

2.2 Parametric case

Now we consider the case where each coefficient agy, is some polynomial in parameters p = {p1,...,p:}-
Thus, the even polynomial f(z) is considered as a multivariate polynomial f(z,p) in Q[z,p]. Setting
D = Q[p] and K = Q(p), we can compute the m-th standard triangular set

F = {fl(whp)"“’fm(zlw":w'rn?p)}

in D{zy,...,2m). Then, aslc(f;) = aom(p) for each i, F = {fi/aom, - - ., fm/Gam} is the reduced Grobner
basis of (F} in K[z1,...,2m,]. By F, we can compute To(z, p) by successive resultant computation and
M(z, p) as a minimal polynomial of z modulo the ideal (F) in K{z1,...,Z~]. We note that using a block
order {Tm > ... > ;} >> z, M(z,p) is found in a Grobner basis of (F U {z—(z1+ - +2zn)}) in
Klz1,...,2m,2]. Then Tp(z, p) belongs to Qly, p], and by removing denominators, we may assume that
M (z,p) also belongs to Qy, p]. As F is the reduced Grobner basis of (F) and the denominator coincides
with a2, (p), the following holds. (See Exercises of Chapter 6.3 in [7].)

Theorem 4

For each (c1,...,c;) € QF, consider the polynomial f.(z) obtained from f(x,p) by substituting the
parameters (pi,...,ps) with (c1,...,¢;). If the leading coefficient agm{cy,...,c;) does not vanish, then
To(z,¢1,-..,ct) coincides with ¢Rm, s (2) for some non-zero constant ¢ in Q, and M(z,ci,...,¢:) is a

factor of Rm,1.(2) and has Ry, 1, (2) as its factor in Q[2].

By Theorem 4, we can handle the SORPRPs for polynomials with parametric coefficients. For the
total computational efficiency, computing M{z, p) is much better than computing Ty(z, p) in many cases.
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3 Formulation of Basic Problem

Here we explain the fundamental problem in this paper. We denote the polynomial obtained above
(To(z,p) or M(z,p)) by R{z). What we do after obtaining R(z) is the following:

Problem 1

Given a polynomial R(z) involving parameters p in coefficients, R(z) € Q(p)[z] and My, M; € Q
(M, > Ms). Then find feasible ranges of parameters p so that the maximal real root W of R(z) satisfies
the following each requirement: (a) W < M, (b) W > Ma, and (¢) My < W < M;. Here we exclude
ranges where the leading coefficient of R(z) or its constant term vanishes.

In view of control theory the parameters p usually comes from controller or plant parameters of the control
system to be designed, and the above three requirements are originated from control design specifications
in terms of SORPRP. PROBLEM 1 is resolved by using quantifier elimination over the real closed field.
Actually all of the requirements are reduced to simple first-order formulas for R(z) € Q{p)[2] as follows:

(a) W < M;: This requirement is equivalent to the first-order formula ¥z > M, R(z) # 0. This is
so called a sign definite condition [1], hence we can solve it by an efficient quantifier elimination algorithm
using Sturm-Habicht sequence [11, 6].

(b) W > My: This requirement is equivalent to the first-order formula: 3z > Mo, R(z) = 0. We
can also solve it by an efficient quantifier elimination algorithm using Sturm-Habicht sequence [10].

(c) My < W < M;: This requirement is equivalent to the conjunction of (a) and (b), that is,
(Vz > M1, R(2) # 0) A (3z > Ma, R(2z) = 0). Hence, this is achieved by superposing both quantifier-free
formulas obtained by performing quantifier elimination for (a) and (b).

4 LQR problem - control application

We here consider a typical optimal control problem named Linear Quadratic Regulator (LQR) problem.
We will first briefly explain the problem in §5.1 and show some computational examples, by which we
can confirm the effectiveness of our proposed method?).

Here we briefly explain about Linear Quadratic Regulator (LQR) problem (see [18] for more details)
and introduce our target polynomial of which we want to estimate the SORPRP

Let us consider a linear time-invariant SISO (single-input single-output) system represented by

2(t) = Az(t) + bult), )
y(t) = C.’L‘(f),

where z € R™ is the state variable, u € R is the control input, y € R is the output, 4 € R™*™ is the
system matrix, b € R™ is the input matrix, and ¢’ € R™ is the output matrix. Then the LQR problem

is to find a coutrol input » which minimizes the cost function

7= " (@200) + ), (2)
O

D All computations except quantifier elimination are done by using a computer algebra system Risa/Asir, see
http://www.math.kobe-u.ac. jp/Asir/asir.btml). All QE computations in this paper were carried out by QEPCAD,
see http://www.cs.usna.edu/ gepcad/B/QEPCAD.htnl, since QEPCAD succeeded in achieving all of QE computations for
our examples in a very small amount of time. For the larger sized problems, we may use an efficient QE algorithm based
on Sturm-Habicht sequence (1, 10]. Some types of QE methods using Sturm-Habicht sequence are available in a Maple

package SyNRAC [4, 17].
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where ¢ > 0 and r > 0 are called weights. If we take the lager value of g, we can get the faster response
in general. On the other hands, the lager value of r is required when we have a severe restriction on the
value of u, since r reflects the penalty on u(t) Note that the ratio ¢/r plays an essential role for finding
the optimal control input and determines the closed-loop poles.
Actually, it is well-known that the optimal closed-loop polesv are determined by the corresponding
polynomial given by
p(s) = r - d(s)d(~s) + ¢ - n(s)n(~3), (3)

where d(s) and n(s) are the denominator and numerator of the transfer function of the plant (1) rep-
resented by P(s) = c(sI — A)~!b. In other words, P(s) = %%, where d(s) := det(sI — A), n(s) :=
c adj(sI — A) b. Note that deg{(d(s)) = m, deg(n(s)) < m hold.

The polynomial ¢(s) is our target polynomial with deg{y(s)) = 2m and it is an even polynomial. It
is strongly desired to establish a guiding principle to choose appropriate values of r and g or the ratio
g/r, since the closed-loop poles are all the poles of ¢(s) which has negative real parts.

In the sequel we carry out an investigation of the weights r and ¢ in terms of stability index, that is,
the sum of roots with negative real parts (SORNRP) of ¢(s). We can attain this by just applying our
method for SORPRP shown in the previous sections to R(~z), where the polynomial R(z) has SORPRP
of ((s) as its root. Because, as ¥(s) is even, the value of SORPRP coincides with the absolute value of
SORPNP, and R(—z) also has —1xSORPNP as its maximal real root.

Particularly we study some behaviors of a parameter involving in the plant P(s) and feasible bounds
for SORPRP W versus the ratio of weights g/r or ¢ with r = 1 under the specifications in §4. This kind
of investigations is important in practice to see control performance limitations, since the stability index
is one of appropriate measures for the quickness of feedback control systems.

4.1 A sample plant: 2nd-order system with time delay
Here we study the LQR problem for a class of typical second-order systems with time delay given by

2Lo—Ls 2 ~1
wike kwy 1~3Ls

Ps) = o
(s) 52+ 2wns +wi ~ 82+ 2wns+wi 1+ 3Ls’

where the exponential e~ * is transformed to a rational function by the Padé approximation. We consider
the case where k = 1, { = 0.1, w, = 30 (kHz), and r = 1. Here, initially we assume that L > 0, r,q > 0.
Then the target even polynomial is expressed as :

p(sig, L) = d(s)d(-s)+q n(s)n(-s)
—25L2s8 + (—49L2% + 100)s* + ((—25¢ — 25)L2 + 196)s? + 100g + 100

We remark that the leading coefficient —~25L2 of ¢(s) never vanish as L > 0, and the constant term
100¢g + 100 also never vanish as ¢ > 0.

Let Z3 be the ideal generated by the 3rd standard triangular set of ¢(s; g, L); {p(x1;¢, L), p1(z1,22; ¢, L),
(1,2, 23; ¢, L)}, where @1 (21, Z2; ¢, L) is the quotient of p(z2, g, L) divided by z2—z; and @a(z1, 2o; 235 ¢, L)
is the quotient of p1(x3, ¢, L) divided by (23 ~ z1)(23 — z2). Then we can obtained the following minimal
polynomial in z of 21 + 22 + z3 with respect to I3 immediately:

R(Z; ¢, L) = RiR2RsR4Rs
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where
Ri =Lz+2,

Rs =Lz—-2,

Rs = 625L42% — 5000L%2° + (2450L* + 15000L2)z% + (—9800L3
—20000L)z + (—2500rgk2 — 99)L* + 9800L> + 10000,

Rs = 625L%z* + 5000L2° + (2450L* + 15000L?) 2% + (9800L°
+20000L)z + (~2500rgk2 — 99)L* + 9800L? + 10000,

Rs = —252* — 492% — 25rgk2 — 25.

The maximal real root of R(z) coincides with the SORPRP W of ¢(s; ¢, L). Since we need to compute
sum of roots with negative real parts in a sense of stability, we apply our method computing SORPRP
to R{—z;q,L). But, it follows that R(-z;¢,L} = R(z;q,L).

Relationship between L and ¢ : Here we consider the case where the bounds for the SORPRP
are given, that is, M; and M, are fixed. Then we check the behavior of the plant parameter L versus
a change of ¢. The possible regions of (L, ¢) to meet the specifications in the L — g parameter space is
obtained by applying quantifier elimination to R(z;¢, L) as explained in §4.

(a) W < M;: Let My = 500, then the specification (a) is equivalent to the following first-order formula:
¥z > 500, R{z;q,L) # 0. After performing quantifier elimination to this, we can obtain the following
equivalent quantifier-free formula in (L, g) which describe feasible regions of (L, q) for (a):

(g + 62500490001 >=0A250L —1 2 0A

2500L*q — 39063112499901L* + 625004900000L° — 3750009800L* + 10000000L — 10000 < 0 A
2500L4g — 39063112499901L* — 625004900000L% — 3750009800L% — 10000000L — 10000 < 0

This is illustrated as a shaded region in Fig.1.

Figure 1: Feasible region of L — g for (a) [Left] , (b) [Middle], and (a) A (b) [Right]

(bYW > My Let My = 300, then the specification (b) is equivalent to the following first-order formula:
32z > 300, R{z;q,L) = 0. After performing quantifier elimination to this, we can obtain a following
equivalent quantifier-free formula in (L, g) which describe feasible regions of (L, q) for {b):

(g + 8100176401 < 0) V (L > OA150L — 1< 0) V
(2500L*q — 5062720499901 L* — 135002940000L° ~ 1350009800L% — 6000000L — 10000 > 0} V
(2500L*g — 5062720499901L* + 135002940000L° ~ 1350009800L? + 6000000L — 10000 > 0)

This is illustrated as a shaded region in Fig.2.
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(¢) My < W < Miy: If My = 300,01 = 500 for the requirement (c), the problem is recast as the
following first-order formula: (Vz > 500, R{z;¢,L) # 0) A (3z > 300, R(z;¢q,L) = 0). A formula
describing feasible regions of (L, q) for the requirement (c) can be obtained by superposing above two
results for (a) and (b) in the parameter space L — ¢ as shown in Fig.3.

Control theoretical significance : Any system with parameter values of L and g within the feasible
regions shown in Figs. 1, 2 and 3 meets the above requirements in terms of the magnitude of SORPRP.
We can obtain the following knowledge from Fig. 3. The plant parameter L is restricted within an interval
for a fixed value of ¢ under the specification of 300 < W < 500. The maximum and minimum edges of
the feasible interval of L are monotonically increasing. Thus, for instance for the value of L around 0.01,
¢ must be taken from the region which is larger than a certain value. We can obtain the exact threshold
value easily since we have the feasible region as a semi-algebraic set by virtue of quantifier elimination.
These greatly help control designers to choose appropriate value of the ratio of weights ¢/r for their

control system more systematically.

5 Conclusion

In this paper we have presented a method to compute or estimate the sum of roots with positive
real parts (SORPRP) of a polynomial with parametric coefficients based on symbolic and algebraic
computations. Since the method does not compute explicit numerical values of the roots, we can treat
polynomials with parametric coefficients for their SORPRP.

Combining the method with quantifier elimination, we succeeded in giving a novel systematic method
for achieving optimal regulator design in control. In order to see its effectiveness and practicality, we
made some experiments for a concrete example from optimal regulator control.

The method proposed here shall provide one of promising direction for an ad hoc part (i.e., choice
of weights) of optimal regulator design that is one of the main concerns in control and gives another

successful application of computer algebra to control design problem.
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