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Abstract

In this paper, we treat fuzzy linear programming problems with uncertain parameters whose ranges
are specified as fuzzy polytopes. The problem is form ulated as a necessity measure optimization
model. It is shown that the problem can be reduced to a semi-infinite programming problem and
solved by a combination of a bisection method and a relaxation procedure. An algorithm in which
the bisection method and the relaxation procedure converge simultaneously is Proposed. A simPle
numerical examPle is given to illustrate the solution procedure.
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semi-infinite programming, relaxation procedure, bisection method

1 Introduction
Fuzzy programming approach [6,12,15] is useful and efficient to treat a program ning problem under
uncertainty. While classical and stochastic programming approach may require a lot of cost to obtain the
exact coefficient value or distribution, fuzzy programming approach does not (see Rommelfanger [13]).
Prom this fact, fuzzy program ming approach will be very advantageous when the coefficients are not
known exactly but vaguely by human expertise.

Fuzzy prograrn ming }$\mathrm{l}\mathrm{a}\mathrm{s}$ been developed under an implicit assumption that all uncertain coefficients
are non-interactive one another. This assumption makes the reduced problem very tractable. The
tractability can be seen as one of advantages of fuzzy programming approaches. However, it is ob-
served that in a simple problem, such as a portfolio selection problem, solutions of models are often
intuitively unacceptable because of the implicit assumption (see Inuiguchi and Tanino [9]). This implies
that the non-interaction assumption is not sufficient to model the real world problem. In this sense,
we should deal with fuzzy programming problems with interactive uncertain coefficients. However,

unfortunately, the reduced problem usually becomes very difficult. Therefore, treatments of interactive
uncertain coefficients without loss of tractability of the reduced problem are requested in the field of
fuzzy programming. Several attempts have been done.

Rommelfanger and Kresztfalvi [14] proposed to use Yager’s parameterized $\mathrm{t}$-norm in order to control
the spreads of fuzzy linear function values. The interaction among uncertain parameters is treated
indirectly in these approaches. The parameter of Yager’s $\mathrm{t}$-norm should be selected for each objective

function and for each constraint and the reduced problem is not always a linear programm ing problem.
However, the selection of the parameter of Yager’s $\mathrm{t}$-norm will not be very easy,

Inuiguchi and Sakawa [8] treated a fuzzy linear programming with a quadratic membership function.
Since quadratic membership function resembles to a multivariate norm al distribution, they succeeded
to show the equivalence between special models of stochastic linear programming problem and fuzzy

linear programming problem. In this approach, though the fractile optimization problem [5] using a
necessity measure can be reduced to a convex programming problem, the reduced problem should be
solved by an iterative use of quadratic programming techniques.

Inuiguchi and Tanino [10] proposed scenario decomposed fuzzy numbers. In their approach, the
interaction between uncertain parameters are expressed by fuzzy if-then rules. They showed that a
fuzzy linear programming problem with scenario decomposed fuzzy numbers can be reduced to a linear
programming problem.

Furthermore, Inuiguchi, Ramik and Tanino [7] proposed oblique fuzzy vectors. A non-singular
matrix shows the interaction among uncertain param eters in an oblique fuzzy vector. It is shown that
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Figure 1: An example of fuzzy set $Q$

linear function values of oblique fuzzy vectors can be calculated easily. Owing to this property, fuzzy
linear programming problems with oblique fuzzy vectors can be reduced to linear programming problems
with a special structure. A solution algorithm utilizing the special structure has been proposed. Oblique
fuzzy vectors are able to incorporate knowledge about linear function values of uncertain parameters.
However, a non-singular matrix is not always sufficient to express the interaction among uncertain
variables in real world problems.

Recently, Inuiguchi and Tanino [11] have introduced a fuzzy polytope to fuzzy linear programming
problems. They have shown that the fractile optimization model using a necessity measure can be
reduced to a semi-infinite linear programming problem. The reduced problem can be solved by a
relaxation procedure. The fuzzy polytope can be constructed from the information about the linear
fractional values of uncertain coefficients. Therefore, the fuzzy polytope will be useful when we know
the vague values of sums of uncertain coefficients, ratios between two uncertain coefficients or more
generally, the linear fractional values of uncertain coefficients.

In this paper, as a continuance of Inuiguchi and Tanino’s paper [11] using a fuzzy polytope, we
apPly a necessity measure optimization model and propose a solution algorithm. In the next section,
we describe the problem setting. Then we apply a necessity measure optimization model and show
that the problem is reduced to a semi-infinite programming problem but not necessarily to be a linear
one in Section 3. In Section 4, we propose a solution algorithm based on a relaxation procedure and
a bisection method. In the algorithm, the relaxation procedure and the bisection method converge
simultaneously. A simple numerical example is given to illustrate the solution procedure in Section 5.
Finally, concluding remarks are given in the last section.

2 Problem Statement
In this paper, we treat the following linear programming problem with uncertain parameters:

minimize $\mathrm{c}^{\mathrm{T}}x$ ,
subject to $a_{i}^{1^{\backslash }}x’<\sim ib_{i}$ , $\mathrm{z}$ $=1,2$ , . .. , $m$ , (1)

where $c=$ $(c_{1}, c_{2}, \ldots, c_{n})^{\mathrm{T}}$ , $a_{i}=$ ( 1) $a_{\iota 2}$ , $\ldots$ , $a_{in})^{\mathrm{T}}\mathrm{i}=1$ , 2, $\ldots$ , $m$ and $b$ $=(b_{1}, b_{2}, \ldots , b_{m})^{\mathrm{T}}$ are
uncertain parameters. Let $q^{\prime \mathrm{r}}=$

$(a_{1}^{\mathrm{T}}, a_{2}^{\mathrm{T}}, \ldots, a_{m}^{\mathrm{T}}, b^{\mathrm{T}}’, c^{\mathrm{T}})$. We assume that some linear fractional
function values $(w_{k}^{\mathrm{T}}q+w_{k0})/(d_{k}^{\mathrm{T}}q+d_{k0})$ , $k=1$ , 2, $\ldots$ , $p(d_{k}^{\mathrm{T}}q+d_{k0}\neq 0)$ are vaguely known, where
$w_{k}$ , $d_{k}\in \mathrm{R}^{\langle mn+m+n)}$ , $k=1,2$ , . . . , $p$ are constant vectors, and wkOj $d_{k0}\in \mathrm{R}$ , $k=1,2$ , $\ldots$ , $p$ are
constants. Namely, we assume that the fuzzy boundary of linear fractional function values are known.
Based on the linear fractional function value information we may construct an $(mn+m+n)$ -dirnensional
fuzzy set $Q\subseteq \mathrm{R}^{(mn+m+n)}$ with the following membership function:

$\mu_{Q}(q)=\min_{k=1,2,.,\rho}..L_{k}\ovalbox{\tt\small REJECT}\frac{w_{k}^{\mathrm{T}}q+w_{0k}}{\underline d_{k}^{\mathrm{T}}q+d_{0k}}-\overline{q}_{k}\alpha_{k}$

.
$)$ , (2)

where $L_{k}$ : $\mathrm{R}arrow[0,1]$ , $k=1,2$ , . . . ’ $p$ are reference functions, i.e., upper semi-continuous non-increasing
functions such that $L_{k}(0)=1$ and $\lim_{rarrow+\infty}L_{k}(r)=0.\overline{q}_{k}$ shows the most plausible value for the k-th
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linear fractional function value $(w_{k}^{\mathrm{T}}q+w_{0k})/(d_{k}^{\mathrm{T}}q+d_{0k})$ . $a_{k}$ shows the spread, i.e., to what extent

the linear fractional function value $(w_{k}^{\mathrm{T}}q+w_{0k})/(d_{k}^{\mathrm{T}}q+d_{0k})$ possibly exceeds $\overline{q}_{k}$ . When we know the

maximum possible shortage of $(w_{k}^{\mathrm{T}}q+w_{0k})/(d_{k}^{\mathrm{T}}q+d_{0k})$ from $\overline{q}_{k}$ , by multiplying $w_{k}$ , wok and $\overline{q}_{k}$ by

(-1), we can treat it as we know the maximum possible excess of $(-w_{k}^{\mathrm{T}}q-w_{0k})/(d_{k}^{\mathrm{T}}q+d_{0k})$ from $-\overline{q}_{k}$ .
The fuzzy set $Q$ is assumed to be bounded, i.e., $h$-level sets $[Q]_{h}=\{q|\mu Q(q)\geq h\}$ for all $h\in(0,1]$

are bounded. Moreover, without loss of generality, we assume that $d_{k}^{\mathrm{T}}q+d_{k0}>0$ for all possible $q$ .
Let $L_{k}^{*}(h)= \sup\{r|L_{k}(r)\geq h\}$ . Then, because of (2), we have

$[Q]_{h}=\{q|w_{k}^{\mathrm{T}}q+w_{0k}\leq(\overline{q}_{k}+\alpha_{k}L_{k}^{*}(h))(d_{k}^{\mathrm{T}}q+d_{0k}), k=1,2, \ldots,p\}$ (3)
$=\{q|wd_{k}^{*}(h)^{\mathrm{T}}q\leq-wd_{0k}^{*}(h), k =1,2, \ldots,p\}$.

Here, $wd_{k}^{*}(h)=w_{k}-(\overline{q}_{k}+\alpha_{k}L_{k}^{*}(h))dk$ and $wd_{0k}^{*}(h)=w_{0k}-(\overline{q}_{k}+\alpha_{k}L_{k}^{*}(h))d_{0k}$ . Since $[Q]_{h}\subseteq$

$\mathrm{R}^{(mn+m+n)}$ is bounded, from (3), we know that $p>$ (mn $+m+n$) and that $[Q]_{h}$ is a polytope for all
$h\in(0, 1]$ . In what follows, we may use the closure of a strong $h$-level set $\mathrm{c}1(Q)_{h}=\mathrm{c}1\{q|\mu Q(q)>h\}$ .
In two dimensional case, such a fuzzy set $Q$ is exemplified in Figure 1.

Let $L_{k}^{\#}(h)= \sup\{r|L_{k}(r)>h\}$ . Then, in the sam $\mathrm{e}$ way as (3), we have

$\mathrm{c}1(Q)_{h}=\{q|wd_{k}^{\#}(h)^{\mathrm{T}}q\leq-wd_{0k}^{\#}(h), k=1, 2, \ldots,p\}$ , (4)

where $wd_{k}^{\#}(h)=w_{k}-(\overline{q}_{k}+\alpha_{k}L_{k}^{\#}(h))d_{k}$ and $wd_{0k}^{\#}(h)=w_{0k}-(\overline{q}_{k}+\alpha kL_{k}^{\#}(h))d_{\mathrm{C}k}$ . As shown in (3),
$h$-level sets of $Q$ are polytopes. Thus, we may say that $Q$ is a fuzzy polytope.

Notation ‘
$f<\sim i\mathit{9}$

’ is a fuzzy version of ‘ $f\leq g$
’ and stands for ‘

$f$ is approximately smaller than
or equal to $g’$ . The subscript $\mathrm{i}$ implies that the elasticity of the fuzzy inequality may depend on the
constraint. To treat such a fuzzy inequality, $<\sim i$ is regarded as a fuzzy binary relation. In this PaPer,

we define $\leq_{i}$ by
$\mu_{\sim \mathrm{i}}<(f, g)=\nu_{i}(f-g)$ , (5)

where $\nu_{i}$ : $\mathrm{R}arrow[0,1]$ is an upper semi-continuous non-increasing function such that $\nu_{i}(r)=1$ for all
$r\leq 0$ and $\lim_{rarrow+\infty}$ Lk { $\mathrm{r})=0$ (see Inuiguchi, et. al [5]). An $h$-level set of $<\sim i$ is obtained as

$[\leq_{i}]_{h}=\{(f,g)|f -g\leq\iota\prime^{*}i(h)\}$ , (6)

where $\nu_{l}^{*}(h)=\sup\{r|$ Vi{r) $\geq h$ }. Especially, when $\nu_{i}$ is defined by

$l/_{\dot{\mathrm{t}}}\{r)=\{$

1, if $r\leq 0$ , (7)
0, otherwise,

$<\sim i$ is a conventional inequality relation $\leq$ .
When $L_{k}$ , $k=1,2$ , $\ldots\gamma p$ are defined by

$L_{k}(r)=\{$
1, if $r\leq 0$ , (8)
0, otherwise,

$Q$ is a conventional polytope. When $d_{k}=0$ , $w_{k}=\mathrm{e}_{k}$ (a unit vector whose &-th component is one),
$d_{0k}=1$ and $w_{0k}=0$ , $Q$ is a vector of non-interactive fuzzy numbers. When L&, $k=1,2$ , $\ldots$ , $p$ are
defined by (8), $d_{k}=0$ , $w_{k}=\mathrm{e}_{k}$ (a unit vector whose &-th component is one), $d_{0k}=1$ and $w_{0k}$ $=0$ , $Q$ is
a vector of intervals. Thus, Problem (1) includes the conventional fuzzy linear program ming problems
and interval linear programming problems,

3 Formulation and reduction
In order to treat Problem (1), we should introduce some interpretation of the problem, Inuiguchi and
Tanino [11] applied a fractile optimization model using a necessity to Problem (1) and reduced it to
a semi-infinite linear programming problem. In this paper, we apply a necessity measure optimization
model. The readers who are familiar with possibility theory [3] may have a question why a possibility
measure is not treated but only a necessity measure. The reason is mainly a technical reason. Namely,
the model with a possibility measure is reduced to a non-convex programming problem which is rel-
atively hard to be solved. Moreover, the application of a possibility measure provides an uncertaint
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prone model so that the solution is risk-seeking. Because of this, solitary use of a possibility measure
is not suitable for the robust planning, safety design, and so on. Nevertheless, the introduction of a
possibility measure to our model is useful to express the decision maker’s attitude and preference under
uncertainty. Handling of a possibility measure in our problem will be one of the future topics.

A necessity measure of a fuzzy set $B\subseteq\Omega$ under a fuzzy set $A\subseteq\Omega$ , i.e., $N_{A}\langle B$ ) is defined by (see

Dubois and Prade [2] $)$

$N_{A}(B)=$ $\inf_{r}$
$\max(1-\mu_{A}(r)_{:}\mu_{B}(r)))$ (9)

where $\mu_{A}$ and $\mu_{B}$ are membership functions of fuzzy sets $A$ and B. $\Omega$ is a universal set, $N_{A}(B)$ evaluates
to what extent the uncertain variable surely takes a value in a fuzzy set $B$ under the inform than that
the uncertain variable value is in a fuzzy set $A$ . For the necessity measure, we have (see, Inuiguchi and
Ichihashi [4] $)$

$N_{A}(B)\geq h$ if and only if $(A)_{1-h}\subseteq[B]_{b}$ . (10)

When $\Omega$ is a metric space and $B$ has an upper semi-continuous membership function $\mu_{B}$ , $[B]_{h}$ , $h\in(0,1]$

are closed sets. Therefore, (10) is equivalent to

$N_{A}(B)\geq h$ if and only if $\mathrm{c}1(A)_{1-h}\underline{\subseteq}[B]_{h}$ . (11)

Let us apply the necessity measure optimization model [5] to Problem (1). Then Problem (1) is
formulated as

maximize Nes $(c^{\mathrm{T}}x<\sim 0\overline{z})$ , (12)
subject to $\mathrm{N}\mathrm{e}\mathrm{s}(a_{i\sim i}^{\mathrm{T}<}xb_{i})\geq h^{i}$ , $\mathrm{i}=1,2$ , $\ldots$ , $m$ ,

or equivalently,
maximize $h$ ,
subject to $\mathrm{N}\mathrm{e}\mathrm{s}(c^{\mathrm{T}}x<\sim 0\overline{z})\geq h$ , (13)

$\mathrm{N}\mathrm{e}\mathrm{s}(a_{i}^{\mathrm{T}}x\leq_{i}b_{i})\geq h^{i}$ , $\mathrm{i}=1,2$ , $\ldots$ , $m$,

where $\overline{z}$ is a target value specified by the decision maker and $<\sim 0$ is a fuzzy inequality relation defined by
$\nu_{0}$ in the same way as (5). Thus, $”<\sim 0\overline{z}$

” corresponds to a fuzzy goal “approximately smaller than $\overline{z}"$ .
$h^{i}\in(0, 1]$ , $\mathrm{i}=1,2$ , $\ldots$ , $m$ are constants specified by the decision maker. ;Nes(C)’ shows the necessity
degree of the event that the condition $C$ is satisfied. Since possible range of all uncertain parameters
$a_{i}$ , $\mathrm{i}=1,2$ , $\ldots$ , $m$ , $b$ and $c$ are jointly given by a fuzzy set $Q$ . To evaluate all necessity degrees in
Problem (12), we should consider events as a set or a fuzzy set of $\mathrm{R}^{(mn+m+n)}$ . We define

$\mu_{E_{0}(X)}(q)=\sup\{\mu_{<,\sim 0},(c^{\mathrm{T}}x, z_{0})|q^{\mathrm{T}}=(q_{mn+m}^{\mathrm{T}},$ $c^{\mathrm{T}}))\}$ , (14)

$\mu_{E_{i}(X)}(q)=\sup\{\mu_{<,\sim t},(a_{i}^{\mathrm{T}}x, b_{i})|q^{\mathrm{T}}=(q_{n(\mathrm{z}-1)}^{\mathrm{T}},$$a_{i}^{\mathrm{T}}$ , $q_{n(m-i)+(i-1)}^{\mathrm{T}},b_{i}$ , $q_{m-i+n}^{\mathrm{T}})\}\prime \mathrm{i}=1,2$ , $\ldots$ , $m$,

(15)

where $q_{\mathit{8}}$ is a vector of $\mathrm{R}^{s}$ and $\mu_{E_{i}(X)}$ is a membership function of $E_{i}(x)$ . Now, we can define

$\mathrm{N}\mathrm{e}\mathrm{s}(c^{\mathrm{T}}x\leq z)=NQ(E\mathrm{o}(x))$ , (15)
$\mathrm{N}\mathrm{e}\mathrm{s}(a_{i\sim i}^{\mathrm{T}}x<b_{i})=$ Aq $(E_{i}(x))$ , $\mathrm{i}=1$ , 2, $\ldots$ , $m$ . (17)

APPlying (11) to Problem (13) with the substitution of (16) and (17), we have

maximize $h$ ,
subject to $\mathrm{c}1(Q)_{1-b}\subseteq[E_{0}(x)]_{h^{0}}$ , (13)

$\mathrm{c}1(Q)_{1-b^{\mathrm{g}}}\subseteq[E_{t}(x)]_{h^{i}}$ , $\mathrm{i}=1,2$ , ..., $m$ .

For the sake of convenience; we define $q(aubi)=(q_{n(i-1)}^{\mathrm{T}}, a_{i}^{\mathrm{T}}, q_{n(m-i)+(i-1)}^{\mathrm{T}},b_{i}, q_{m-i+n}^{\mathrm{T}})$T. From (14),
(15) and (6), we have

$[E_{0}(x)]_{h}=\{q|q^{\mathrm{T}}=(q_{mn+m\prime}^{\mathrm{T}}c^{\mathrm{T}}), (c^{\mathrm{T}}x,\overline{z})\in[_{\sim 0}^{<}]_{h}\}=\{(q_{mn+m}^{\mathrm{T}}, c^{\mathrm{T}})|c^{\mathrm{T}}x-\overline{z}\leq\nu_{0}^{*}(h)\}$ , (19)
$[E:(x)]_{h^{\mathrm{i}}}=\{q|q=q(a_{i}, b_{i}), (a_{i}^{\mathrm{T}}x, b_{i})\in[_{\sim i}<]_{h}.\}=\{q(a_{i}, b\mathrm{i}\rangle|a_{\mathrm{i}}^{\mathrm{T}}x-b_{i}\leq\nu_{i}^{*}(h^{i})\}$. (10)
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Then, by (14), (19) and (20), Problem (18) is reduced to

maxim ize $h$ ,
subject to $c^{\mathrm{T}}x-\overline{z}\leq\nu_{0}^{*}(h)$ , $\forall c$ : $(q_{mn+m}^{\mathrm{T}}, c^{\mathrm{T}})^{\mathrm{T}}\in \mathrm{c}1(Q)_{1-h}$, (21)

$a_{i}^{\mathrm{T}}x-b_{i}\leq\nu_{i}^{*}(h^{i})$ , $\forall(a_{i}^{\mathrm{T}}, b_{i})^{\mathrm{T}}$ : $q(a_{i}, b_{i})\in \mathrm{c}1(Q)_{1-h^{t}}$ , $\mathrm{i}=1,2$ , . . . ’ $m$ ,
$h\in[0,1]$ .

This problem is a semi-infinite programming problem [1]. Since $h$ is not a constant, Problem (21)
does not possess the linearity. When $h$ is fixed, the problem becomes a system of semi-infinite linear
inequalities. The existence of a solution satisfying a system of semi-infinite linear inequalities can be
examined by a relaxation procedure for solving a semi-infinite linear programming problem. Prom these
facts, we can solve this problem by a bisection method together with a relaxation procedure. However, if
we apPly the relaxation procedure at each step of a bisection method, the combined solution algorithm
will require a lot of computational effort.

4 A Solution Algorithm
We propose a solution algorithm such that the relaxation procedure and the bisection method converge
simultaneously. To this end, we use a vector function $c[I]$ : $(0, 1]arrow \mathrm{R}^{n}$ whose function value is defined
by $c$-value of an optimal solution to the following linear programming problem:

minimize
$\sum_{k\in I}\delta_{k}$

,

(22)
subject to $wd_{k}^{\not\simeq\neq}(1-h)^{\mathrm{T}}(q_{m\mathrm{n}+m}^{\mathrm{T}}, c^{\mathrm{T}})^{\mathrm{T}}+\delta_{k}=-wd_{0k}^{\neq\neq}(1-h)$, $k=1,2$ , $\ldots$ , $p$ ,

$\delta_{k}\geq 0$ , $k=1,2_{2}\ldots,p$ ,

where $I\subseteq\{1,2, \ldots ,p\}$ is an index set such that $|I|=mn+m+n$ . Once Problem (22) is solved for a
given I and $h$ , we fix the value $c[I](h)$ as the $c$-value of the obtained optimal solution. This breaks the
$\mathrm{n}\mathrm{o}\mathrm{n}arrow \mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{c}\mathrm{y}$ of $c[I](h)$ due to the multiplicity of optim al solutions of Problem (22).

Now we are ready to describe the proposed solution algorithm.
Solution Algorithm

Step 1. Select $x^{0}$ arbitrarily and set $s_{i}=0$ , $\mathrm{i}=0,1$ , $\ldots$ , $m$ , $h^{\mathrm{L}}=0$ , $h^{\mathrm{U}}=1$ and $h=(h^{\mathrm{U}}+h^{\mathrm{L}})/2$ .
Step 2. Solve a linear program ming problem,

maximize $x^{0^{\mathrm{T}}}c$ , (23)
subject to $wd_{k}^{\#}(1-h)^{\mathrm{T}}(q_{mn+m}^{\mathrm{T}}, c^{\mathrm{T}})^{\mathrm{T}}\leq-wd_{0k}^{\#}(1-h)$, $k=1,2$ , $\ldots,p$ .

Let $\hat{c}$ be $c$-value of the obtained optimal solution to Problem (23) and $\hat{I}$ an index set of active
constraints at the optimal solution. Similarly, for $\mathrm{i}=1,2$ , $\ldots$ , $m$ , solve a linear programming problem,

maximize $x^{0^{\mathrm{T}}}a_{i}-b_{i}$ , (24)
subject to $wd_{k}^{\#}(1-h^{i})^{\mathrm{T}}q(a_{i}, b_{t})\leq-wd_{0k}^{\#}(1-h^{i})$ , $k=1,2$ , $\ldots,p$ .

Let $\hat{a}_{i}$ and $\hat{b}_{i}$ be $a_{i}$ value and $b_{i}$-value of the obtained optimal solution to Problem (24), respectively.

Step 3. For $\mathrm{i}=1,2$ , $\ldots$ , $m$ , if $\hat{a}_{i}^{\mathrm{T}}x^{0}-\hat{b}_{i}>\nu_{i}^{*}(h^{i})$ , then update $s_{i}=s_{i}+1$ and let $a_{is_{i}}=$ a and
$b_{is_{\mathrm{i}}}=\hat{b}_{i}$ . In this step, if some $s_{i}$ , $\mathrm{i}\in\{0,1, \ldots, m\}$ is updated, then go to Step 6.

Step 4. If $\mu_{\sim 0}<(\hat{c}^{\mathrm{T}}x^{0},\overline{z})\geq h$ , then go to Step 5. Otherwise, update $h^{\mathrm{L}}=h$ and $h=(h^{\mathrm{U}}+h^{\mathrm{L}})/2$ .
Solve Problem (23). Update $\hat{c}$ by the $c$-value of the obtained optimal solution. Repeat Step 4.

Step 5. If $h^{\mathrm{U}}-h^{\mathrm{L}}<\epsilon$ , then terminate the algorithm. In this case, we obtained the optimal solution
as $x^{0}$ . If $h^{\mathrm{U}}-h^{\mathrm{L}}\geq\epsilon$ and $I_{\mathit{8}}\neq\hat{I}$ for all $s\leq s_{0}$ , then update $s_{0}=s_{0}+1$ and define $I_{s_{0}}=\hat{I}$ and
$c[I_{s_{0}}](h)=\hat{c}$.

Step 6. If $s_{0}=0$ , then set $s_{0}=s_{0}+1$ , $I_{s0}=\hat{I}$ and $c[I_{s_{0}}](h)=\hat{c}$ . Solve a linear programming problem,

minimize $z$ ,
subject to $c[I_{l_{0}}](h)^{\mathrm{T}}x\leq z$ , $l\mathit{0}=1,2$ , $\ldots$ , so, (25)

$a_{il_{i}}^{\prime \mathrm{r}}x-b_{il_{t}}\leq\nu_{i}^{*}(h^{i})$ , $l_{t}=1,2$ , . . ., $s_{i}$ , $i=1,2$ , $\ldots,m$ .
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Let $(x^{0^{\mathrm{T}}}, z^{0})^{\mathrm{T}}$ be an optimal solution if it exists. If Problem (25) is unbounded, let $z^{0}=-\infty$ and
$x^{0}=\hat{x}+At$ with a sufficiently large A $>0$ , where $\hat{x}$ is an obtained feasible solution and $t$ is an
obtained extreme ray. If Problem (25) is infeasible, then Problem (13) is infeasible, too, and the
algorithm is terminated. If $\mu\leq_{\mathrm{o}}(z^{0},\overline{z})<h$, then update $h^{\mathrm{U}}=h$ and $h=(h^{\mathrm{U}}+h^{\mathrm{L}})/2$ and repeat
Step 6, else return to Step 2.

The convergence of this algorithm can be shown as follows. Since we have $\mu_{\sim 0}<(\hat{c}^{\mathrm{T}}x^{0},\overline{z})\leq 1$ and we
update $h$ by $h=(h^{\mathrm{U}}+h^{\mathrm{L}})/2$ , Step 4 terminates in a finite number of repeats. Similarly, since we have
$\mu_{\sim 0}<(z^{\mathit{0}},\overline{z})\geq 0$ and we update $h$ by $h=(h^{\mathrm{U}}+h^{\mathrm{L}})/2$ , Step 6 terminates in a finite number of repeats.

The linear programming problems at Step 2 always have optimal solutions because of the bounded-
ness of $Q$ . If Problem (13) is infeasible, the algorithm terminate at Step 6 in finite iterations because
a new extreme point of a polytope $\mathrm{c}1(Q)_{h^{\mathrm{a}}}$ for some constraint is added at each iteration.

In order to show the convergence of the proposed algorithm, it suffices to prove that one of the
followings holds at each iteration when Problem (13) is feasible. This is because $\mathrm{c}1(Q)_{h}$ is a polytope:

(a) at least one of s$, $\mathrm{i}=1$ , 2, $\ldots$ , $m$ increases,
(b) so increases,
(c) $(h^{\mathrm{U}}-h^{\mathrm{L}})$ is reduced to less than the half.

We prove this. If Step 4 is skipped in the iteration, (a) holds. If $h^{\mathrm{U}}$ is updated at Step 6, obviously
(c) is valid. If $s_{0}$ is updated at Step 5 or Step 6 directly (b) holds. Then we consider a case that
Step 4 is not skipped, $h^{\mathrm{U}}$ is not updated at Step 6 and $s_{0}$ is not updated. Assume we come to Step 6
without any update among (a), (b) and (c) in this iteration. Since $\hat{c}^{\mathrm{T}}\geq z^{0}$ holds at Step 6, we should
have $\mu_{<,\sim 0},(\hat{c}^{\mathrm{T}}x^{0},\overline{z})\geq\mu_{<,\sim 0},(z^{0},\overline{z})\geq h>h^{\mathrm{L}}$ . Therefore, $h^{\mathrm{L}}$ must have been updated before Step 6. This
contradicts with the assumption. Hence, at least one of (a), (b) and (c) holds at each iteration.

5 Numerical Example
Example. Let us consider the following linear programming problem with interactive fuzzy parame-
ters:

maximize $-2.5x_{1}+c_{2}x_{2}$ ,
subject to $2.3\mathrm{x}\mathrm{i}+2.3\mathrm{x}\mathrm{i}<\sim 120$,

$021’+a_{22}x_{2}<_{2}\sim 14$ , (26)
$a_{31}x_{1}+2x_{2}\leq_{3}24$ ,
$x_{1}\geq 0,$ $x_{2}\geq 0$ ,

where 021, $a_{22}$ , $a_{31}$ and $c_{2}$ are uncertain parameters. For those parameters, we know $-c_{2}$ is about twice
of &22 and also about twice of 031, 031 is about 1, 022 is approximately greater than 0.7 and the ratio
of the sum of $3a_{22}$ and $c_{2}$ to $a_{31}$ is approximately greater than 1. Finally, the sum of $-\mathrm{a}2\mathrm{i}$ , $\mathrm{a}_{22}$ , $a_{31}$

and $-c_{2}$ is about 1. In order to express those information, let us assume param eters $d_{k}$ , do&, $w_{k}$ , $w_{0k}$ ,
$\overline{q}_{k}$ and $\alpha_{k}$ , $k=1,2$ , $\ldots$ , 9 are given as shown in Table 1. Since only 4 param eters are uncertain, we
consider 4-dimensional fuzzy set in this example. We define the functions $L_{k}$ , $k=1,2$ , $\ldots$ , 9 are same
and defined as $L_{k}(r)= \max(1-r,0)$ .
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We assume that the functions $\nu_{i}$ , $\mathrm{i}=1,2$ , 3 are same and defined as

$\nu_{\acute{l}}(r)=\min(1, \max(1-r/5,0))$ , $i=1,2,3$. (27)

Let $h^{i}=0,5$ , $\mathrm{i}=1,2$ , 3, $\overline{z}=-22$ and $\nu_{0}(r)=\min(1, \max(1-r/5,0))$ . We apply the necessity
measure optimization model. We apply the proposed solution algorithm with an initial solution $x^{0}=$

$(3,21)^{\mathrm{T}}$ and $\epsilon$
$=10^{-4}$ . In the 6th iteration, we obtain an optimal solution $x\approx$ $($4.8019, 4,8019 $)^{\mathrm{T}}$ and

$h\approx$ 0.4254. A part of the solution procedure is shown in Table 2.

6 Concluding Remarks
In this paper, we treated a linear programming problem with a fuzzy polytope. The fuzzy polytope
is obtained from vague knowledge on sums and ratios of uncertain variables, more generally, linear
fractional function values of uncertain variables. The fuzzy polytope would be useful to represent
interactive fuzzy numbers in real world problem $\mathrm{s}$ . A necessity measure optimization model is discussed.
It is shown that the problem is reduced to a semi-infinite programming problem and solved by a bisection
method together with a relaxation procedure. A solution algorithm in which the bisection method and
the relaxation procedure converge simultaneously is proposed.

The introduction of a possibility measure to the fuzzy programming problems treated in this paper
is one of the future topics. Furthermore, a symmetric model [5] using a necessity measure is also a
future topic.
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