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Necessity Measure Optimization in Linear Programming
Problems with Interactive Fuzzy Numbers
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Abstract

In this paper, we treat fuzzy linear programming problerns with uncertain parameters whose ranges
are specified as fuzzy polytopes. The problem is formulated as a necessity measure optimization
model. It is shown that the problem can be reduced to a semi-infinite programming problem and
solved by a combination of a bisection method and a relaxation procedure. An algorithm in which
the bisection method and the relaxation procedure converge simultaneously is proposed. A simple
numerical example is given to illustrate the solution procedure.

Key Words: Possibilistic linear programming, necessity measure, interactive fuzzy numbers,
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1 Introduction

Fuzzy programming approach [6,12,15] is useful and efficient to treat a programming problem under
uncertainty. While classical and stochastic programming approach may require a lot of cost to obtain the
exact coefficient value or distribution, fuzzy programming approach does not (see Rommelfanger [13)).
From this fact, fuzzy programming approach will be very advantageous when the coefficients are not
known exactly but vaguely by human expertise.

Fuzzy programming has been developed under an implicit assumption that all uncertain coefficients
are non-interactive one another. This assumption makes the reduced problem very tractable. The
tractability can be seen as one of advantages of fuzzy programming approaches. However, it is ob-
served that in a simple problem, such as a portfolio selection problem, solutions of models are often
intuitively unacceptable because of the implicit assumption (see Inuiguchi and Tanino [9]). This implies
that the non-interaction assumption is not sufficient to model the real world problem. In this sense,
we should deal with fuzzy programming problems with interactive uncertain coefficients. However,
unfortunately, the reduced problem usually becomes very difficult. Therefore, treatments of interactive
uncertain coefficients without loss of tractability of the reduced problem are requested in the field of
fuzzy programming. Several attempts have been done.

Rommelfanger and Kresztfalvi [14] proposed to use Yager’s parameterized t-norm in order to control
the spreads of fuzzy linear function values. The interaction among uncertain parameters is treated
indirectly in these approaches. The parameter of Yager’s t-norm should be selected for each objective
function and for each constraint and the reduced problem is not always a linear programming problem.
However, the selection of the parameter of Yager’s t-norm will not be very easy.

Inuiguchi and Sakawa [8] treated & fuzzy linear programming with a quadratic membership function.
Since quadratic membership function resembles to a multivariate normal distribution, they succeeded
to show the equivalence between special models of stochastic linear programming problem and fuzzy
linear programming problem. In this approach, though the fractile optimization problem [5] using a
necessity measure can be reduced to a convex programming problem, the reduced problem should be
solved by an iterative use of quadratic programming techniques.

Inuiguchi and Tanino [10] proposed scenaric decomposed fuzzy numbers. In their approach, the
interaction between uncertain parameters are expressed by fuzzy if-then rules. They showed that a
fuzzy linear programming problem with scenario decomposed fuzzy numbers can be reduced to a linear
programming problem.

Furthermore, Inuiguchi, Ramik and Tanino [7] proposed oblique fuzzy vectors. A non-singular
matrix shows the interaction among uncertain parameters in an oblique fuzzy vector. It is shown that
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Figure 1: An example of fuzzy set ¢

linear function values of oblique fuzzy vectors can be calculated easily. Owing to this property, fuzzy
linear programming problems with oblique fuzzy vectors can be reduced to linear programming problems
with a special structure. A solution algorithm utilizing the special structure has been proposed. Oblique
fuzzy vectors are able to incorporate knowledge about linear function values of uncertain parameters.
However, a non-singular matrix is not always sufficient to express the interaction among uncertain
variables in real world problems.

Recently, Inuiguchi and Tanino {11] have introduced a fuzzy polytope to fuzzy linear programming
problems. They have shown that the fractile optimization model using a necessity measure can be
reduced to a semi-infinite linear programming problem. The reduced problem can be solved by a
relaxation procedure. The fuzzy polytope can be constructed from the information about the linear
fractional values of uncertain coefficients. Therefore, the fuzzy polytope will be useful when we know
the vague values of sums of uncertain coefficients, ratios between two uncertain coefficients or more
generally, the linear fractional values of uncertain coeflicients.

In this paper, as a continuance of Inuiguchi and Tanino’s paper [11] using a fuzzy polytope, we
apply a necessity measure optimization model and propose a solution algorithm. In the next section,
we describe the problem setting. Then we apply a necessity measure optimization model and show
that the problem is reduced to a semi-infinite programming problem but not necessarily to be a linear
one in Section 3. In Section 4, we propose a solution algorithm based on a relaxation procedure and
a bisection method. In the algorithm, the relaxation procedure and the bisection method converge
simultaneously. A simple numerical example is given to illustrate the solution procedure in Section 5.
Finally, concluding remarks are given in the last section.

2 Problem Statement

In this paper, we treat the following linear programming problem with uncertain parameters:

minimize clzx, )
subject to afx <, b, i=1,2,...,m,
_ T _ . y
where ¢ = (¢1,¢,...,¢,)7T, ai = (@i, @igs ..y ain)T, 4 = 1,2,...,m and b = (by,by,...,bm)T are
uncertain parameters. Let ¢* = (af,al,...,al,bT ¢T). We assume that some linear fractional

function values (w} g + wro)/(ds g + dio), k= 1,2, <o»p (diq + dio # 0) are vaguely known, where
wg, dp € RIMMIMIN) | = 19, p are constant vectors, and wyo, dyo € R, k = 1,2,...,p are
constants. Namely, we assume that the fuzzy boundary of linear fractional function values are known.
Based on the linear fractional function value information we may construct an (mn+m--n)-dimensionsl
fuzzy set @ C R{™™m+7) with the following membership funetion:

wEQ—FWOk _
T
polg)= min L, | -Zedtdo | (2
k=1,2,...,p
O

1,2,...,p are reference functions, i.e., upper semi-continuous non-increasing

where Ly : R — [0,1], &
{0 nd lim,q00 Li(r) = 0. g, shows the most plausible value for the k-th

functions such that Ly,

0)=1
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linear fractional function value (w',fq + wor)/ (dgq + dox). ax shows the spread, i.e., to what extent
the linear fractional function value (wTq + wox)/(dz g + dox) possibly exceeds Ge. When we know the
maximum possible shortage of (wlgq + wor)/(dy g + dox) from G, by multiplying wy, wok and gk by
(—1), we can treat it as we know the maximum possible excess of (~wj, ¢ —wok)/ (df g+ dox) from —G.
The fuzzy set Q is assumed to be bounded, ie., h-level sets [Q]n = {q | uq(g) > h} for all & € (0,1]
are bounded. Moreover, without loss of generality, we assume that d}fq + dro > 0 for all possible g.
Let Li(h) = sup{r | Lx(r) > h}. Then, because of (2), we have

[Qlh = {q | wiq+wor < (G + arLi(h Ydrq+dox), k=1,2,...,p} )
= {q | wdi(M)Tq < ~wdg,(h), k=1,2,-..,p}

Here, wdi(h) = wi — (G + axLi(h))de and wdi(h) = wor — (@ + cwLly(h))dor. Since [Qln C
R(mn+m4n) i hounded, from (3), we know that p > (mn +m + n) and that [Q] is a polytope for all
h € (0,1). In what follows, we may use the closure of a strong h-level set cl(@)n = ci{g | ug(q) > h}.
In two dimensional case, such a fuzzy set Q is exemplified in Figure 1.

Let Lk#(h) = sup{r | Lg(r) > h}. Then, in the same way as (3), we have

(Q)n = {q | wd? (R)Tq < —wdf,(R), k=1,2,...,p}, : (4)

where wdf (h) = wi — (@ + ax L (1))dx, and wd; (h) = wor — (G + ox L} (h))dox. As shown in (3),
h-level sets of Q are polytopes. Thus, we may say that Q is a fuzzy polytope.

Notation ‘f <, ¢’ is a fuzzy version of ‘f < ¢’ and stands for ‘f is approximately smaller than
or equal to ¢’. The subscript 4 implies that the elasticity of the fuzzy inequality may depend on the
constraint. To treat such a fuzzy inequality, <, is regarded as a fuzzy binary relation. In this paper,
we define <; by

pe (fr9) =wlf -9, ©)

where 1; : R — [0,1] is an upper semi-continuous non-increasing function such that v;(r) = 1 for all
r < 0 and limy 4o (1) = 0 (see Inuiguchi, et. al [5]). An h-level set of <, is obtained as

[Sdn={(f9}| f—g <vi(R)}, (6)
where v} (h) = sup{r | »;{r) > h}. Especially, when u; is defined by

1, ifr<o,
vilr) = { 0, otherwise, (™)
<, is a conventional inequality relation <.
When Ly, k =1,2,...,p are defined by
1, ifr <0,
Li(r) = { 0, otherwise, (8)
Q is a conventional polytope. When dj, = 0, wx = e (a unit vector whose k-th component is one),
dor = 1 and wgx = 0, Q is a vector of non-interactive fuzzy numbers. When L, &k = 1,2,...,p are

defined by (8), di. = 0, wy = e (a unit vector whose k-th component is one), dox = 1 and wor = 0, Q is
a vector of intervals. Thus, Problem (1) includes the conventional fuzzy linear programming problems
and interval linear programming problems.

3 Formulation and reduction

In order to treat Problem (1), we should introduce some interpretation of the problem. Inuiguchi and
Tanino [11] applied a fractile optimization model using a necessity to Problem (1) and reduced it to
a semi-infinite linear programming problem. In this paper, we apply a necessity measure optimization
model. The readers who are familiar with possibility theory [3] may have a question why a possibility
measure is not treated but only a necessity measure. The reason is mainly a technical reason. Namely,
the model with a possibility measure is reduced to a non-convex programming problem which is rel-
atively hard to be solved. Moreover, the application of a possibility measure provides an uncertainty
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prone model so that the solution is risk-seeking. Because of this, solitary use of a possibility measure
is not suitable for the robust planning, safety design, and so on. Nevertheless, the introduction of a
possibility measure to our model is useful to express the decision maker’s attitude and preference under
uncertainty. Handling of a possibility measure in our problem will be one of the future topics.
A necessity measure of a fuzzy set B C ) under a fuzzy set A C Q, i.e., Na(B) is defined by (see
Dubois and Prade [2])
Na(B) = inf max(1 - pa(r), u5(r)), (9)

where 14 and pp are membership functions of fuzzy sets A and B. Q is a universal set. Na(B) evaluates
to what extent the uncertain variable surely takes a value in a fuzzy set B under the information that
the uncertain variable value is in a fuzzy set A. For the necessity measure, we have (see, Inuiguchi and
Ichihashi {4])

NA(B) > h if and only if (A)l—h C [B]h (10)

When © is a metric space and B has an upper semi-continuous membership function ug, [Bs, b € (0,1]
are closed sets. Therefore, (10) is equivalent to

Na(B) > h if and only if cl{A)i1—x C [B]a. (11)

Let us apply the necessity measure optimization model [5] to Problem (1). Then Problem (1) is
formulated as
maximize Nes(cTz <, 2), (12)
subject to Nes(alz <, b)) > R, i=1,2,...,m,

or equivalently,
maximize A,
subject to Nes(cTz <, 2) > h, (13)
Nes(alz <, b)) 2 b, i=1,2,...,m,

where Z is a target value specified by the decision maker and <, is a fuzzy inequality relation defined by
vp in the same way as (5). Thus, “S, 2” corresponds to a fuzzy goal “approximately smaller than 2.
ki € {0,1], 1 = 1,2,...,m are constants specified by the decision maker. ‘Nes(C)’ shows the necessity
degree of the event that the condition C is satisfied. Since possible range of all uncertain parameters
a;, §=1,2,...,m, b and ¢ are jointly given by a fuzzy set Q. To evaluate all necessity degrees in
Problem {12), we should consider events as a set or a fuzzy set of R(™"+m+7) We define

kpo@)(@) = sup { i (€72, 20) | 47 = (Thnsmr D) }, (14)
pE(@)(q) = sup {Mgi(a?m;bi) 1 g' = (Qg(i——l))a;'raqz(m—i)-i—(i—l)'i thE—Hn)}, i=12,...,m,
(15)

where g, is a vector of R® and pg,(z) is a membership function of E;(x). Now, we can define

Nes(cTz < 2) = No(Ey(z)), 7 {16)
Nes(alz <, b;) = No(Ei(z)), i=1,2,...,m. (17)
Applying (11) to Problem (13) with the substitution of (16) and (17), we have

maximize A, :
subject to  cl(@)r—n T [Eo(x)]ne, (18)
Cl(Q)]_hi c IEi(‘B)]hi, ¢ = 1,2, ey L

For the sake of convenience, we define g(a;,b;) = (qz(i&l), af, qg(m~i)+(i~1)vbi’ ay_iin) - From (14),
(15) and (6), we have

[Bo(@)]n = {a| 4" =(gmnimr €7, (€72, 2) € [Sola} ={(Gmnimi €7) | T2 — 2 <13 (R)},  (19)
[Ei{@))p: = {g]| 9 = qlas b), (af@,b:) € [S)n} = {q(ai, bi) | af® — b < v} (RF)}. (20)
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Then, by (14), (19) and (20), Problem (18) is reduced to

maximize A,

subject to ¢tz —z < ui(h), Ve (q?nn+m,cT)T € (@)1, (1)
alz — b < vi(h), V(al,b) : qlai, b)) € cH{Q)1-psy 1=1,2,...,m,
he[0,1].

This problem is a semi-infinite programming problem [1]. Since h is not a constant, Problem (21)
does not possess the linearity. When & is fixed, the problem becomes a system of semi-infinite linear
inequalities. The existence of a solution satisfying a system of semi-infinite linear inequalities can be
examined by a relaxation procedure for solving a semi-infinite linear programming problem. From these
facts, we can solve this problem by a bisection method together with a relaxation procedure. However, if
we apply the relaxation procedure at each step of a bisection method, the combined solution algorithm
will require a lot of computational effort.

4 A Solution Algorithm

We propose a solution algorithm such that the relaxation procedure and the bisection method converge
simultaneously. To this end, we use a vector function ¢[I] : (0, 1] — R™ whose function value is defined
by c-value of an optimal solution to the following linear programming problem:

minimize Zék,
kel o

subject to  wdf (1 — h)T (€hnim: cT)T + 0 = —wdf (1-R), k=1,2,...,p,
520, k=1,2,...,p,

(22)

where I C {1,2,...,p} is an index set such that [I| = mn 4+ m 4 n. Once Problem (22) is solved for a
given I and h, we fix the value ¢[I](h) as the c-value of the obtained optimal solution. This breaks the
non-determinacy of ¢[I](h) due to the multiplicity of optimal solutions of Problem (22).

Now we are ready to describe the proposed solution algorithm.

Solution Algorithm

Step 1. Select 2° arbitrarily and set s; =0,7=0,1,...,m, R =0, hU =1 and h = (hY + AL)/2.
Step 2. Solve a linear programming problem,

. oT
maximize zV ¢, (23)

subject to  wdF(L — k)T (qn4ms€T)’ < —wdh(1-h), k=1,2,...,p.

Let & be c-value of the obtained optimal solution to Problem (23) and I an index set of active
constraints at the optimal solution. Similarly, for i = 1,2,...,m, solve a linear programming problem,

maximize 2° a; — b;, (24)
subject to  wd} (1 — h')Tq{as, bi) < —wdl (1 - k%), k=1,2,...,p.

Let @; and Ez be a;-value and bi-value of the obtained optimal solution to Problem (24), respectively.
Step 3. For 1 = 1,2,...,m, if &?mu —b > vi(ht), then update s; = s; + 1 and let ai, = & and
bis, = b;. In this step, if some s;, i € {0,1,...,m} is updated, then go to Step 6.
Step 4. If p< (€720 2) > h, then go to Step 5. Otherwise, update A% = h and h = (RY + hL)/2.
Solve ProbINe?n (23). Update & by the c-value of the obtained optimal solution. Repeat Step 4.
Step 5. If AV — AL < g, then terminate the algorithm. In this case, we obtained the optimal solution
as 2%, IF hU — AL > ¢ and I, # [ for all s < sp, then update so = so + 1 and define I, = I and
clls)(h) =¢. )
Step 6. If so = 0, then set sp = so+1, I;, = [ and c|I5,](h) = &. Solve a linear programming problem,

minimize 2z,
subject to e[l }(h) T < 2, o =1,2,...,50, (25)
agi.’.c-—bué < I/f(ht), L=1,2,...,8,1=12,...,m
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Table 1: Parameters of the fuzzy set

k W Wok dy dok | Gk | @k
1] (0,0,0,-0T [ 0] (,L0,0)T |0 2|05
21 (0,0,0,1)F 0 {(0,1,0,0)T | O | -2 |05
3| (0,0,0,-1)T | 0 | (0,0,1,00T | 0| 2 |05
4 (0,0,0, )T 0 [(0,0,-1,0)T| 0 | -2 05
5 (0,0,1,0)T 0| (0,000 | 1] 104
6| (0,0,-1,00T | 0| (0,0,0,00T | 1| -1 {04
71 (0,-1,0,00T { 0 | (0,0,0,0)T | 1 {-0.7|0.5
8| (0,-3,0,-1)T | 0 | (0,0,1,0)T | 0! -1 106
9|(-1,-,1,-1%} 0 | (0,0,0,0)T | 1 | 1 |04
0 @,1,-1,0T 1o | (0,0,000T | 1 ]-1]04
Let (2%, 2%)T be an optimal solution if it exists. If Problem (25) is unbounded, let 2° = ~o0 and

2% = & + Mt with a sufficiently large A > 0, where & is an obtained feasible solution and ¢ is an
obtained extreme ray. If Problem (25) is infeasible, then Problem (13) is infeasible, too, and the
algorithm is terminated. If p.(o(zo,fi) < h, then update AY = h and A = (AV + AY)/2 and repeat

Step 6, else return to Step 2.

The convergence of this algorithm can be shown as follows. Since we have ,u<o(&Tzo, Z) <1and we

update h by h = (AU + A¥)/2, Step 4 terminates in a finite number of repeats. Similarly, since we have
i< (2°,2) > 0 and we update h by h = (AU + AL)/2, Step 6 terminates in a finite number of repeats.

““The linear programming problems at Step 2 always have optimal solutions because of the bounded-
ness of Q. If Problem (13) is infeasible, the algorithm terminate at Step 6 in finite iterations because
a new extreme point of a polytope cl{Q)x: for some constraint is added at each iteration.

In order to show the convergence of the proposed algorithm, it suffices to prove that one of the
followings holds at each iteration when Problem (13) is feasible. This is because cl(Q) is a polytope:
(a) at least one of 85,2 =1,2,...,m increases,

(b) sp increases,
(¢) (RY — AL) is reduced to less than the half.
‘We prove this. If Step 4 is skipped in the iteration, (a) holds. If AV is updated at Step 6, obviously
(c) is valid. If sy is updated at Step 5 or Step 6, directly (b) holds. Then we consider a case that
Step 4 is not skipped, AV is not updated at Step 6 and sg is not updated. Assume we come to Step 6
without any update among (a), (b) and (c) in this iteration. Since &* > 2% holds at Step 6, we should
have MSO(&TfEO,E) > ,uso(zo, Z) > h > hl. Therefore, A" must have been updated before Step 6. This

contradicts with the assumption. Hence, at least one of (a), (b) and (c) holds at each iteration.

5 Numerical Example

Example. Let us consider the following linear programming problem with interactive fuzzy parame-

ters:
maximize  —2.5z1 + oz,
subject to 2.3z + 0.8z2 <, 20,
a21%1 + agezy S, 14, (26)

az1%y +2z9 Sy 24,
x1 2 0, Is Z O,

where as;1, 622, ag; and ¢ are uncertain parameters. For those parameters, we know —cj is about twice
of asz and also about twice of a3, ag; is about 1, ags is approximately greater than 0.7 and the ratio
of the sum of 3ag; and ¢ to as; is approximately greater than 1. Finally, the sum of —ag;, —ag2, 031
and —¢g is about 1. In order to express those information, let us assume parameters dy, dox, Wk, Wok,
dr and ag, k = 1,2,...,9 are given as shown in Table 1. Since only 4 parameters are uncertain, we
consider 4-dimensional fuzzy set in this example. We define the functions Ly, k= 1,2,...,9 are same
and defined as Li(r) = max(1 — r,0).
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We assume that the functions v, ¢ = 1,2, 3 are same and defined as
vi(ry = min(1, max(1 - r/5,0)), i =1,2,3. (27)

Let A* = 0.5, ¢ = 1,2,3, Z = —22 and w(r) = min(1, max(1 — 7/5,0)). We apply the necessity
measure optimization model. We apply the proposed solution algorithm with an initial solution z° =
(3,21)T and € = 10~*. In the 6th iteration, we obtain an optimal solution = ~ (4.8019,4.8019)" and
h = 0.4254. A part of the solution procedure is shown in Table 2.

6 Concluding Remarks

In this paper, we treated a linear programming problem with a fuzzy polytope. The fuzzy polytope
is obtained from vague knowledge on sums and ratios of uncertain variables, more generally, linear
fractional function values of uncertain variables. The fuzzy polytope would be useful to represent
interactive fuzzy numbers in real world problems. A necessity measure optimization model is discussed.
1t is shown that the problem is reduced to a semi-infinite programming problem and solved by a bisection
method together with a relaxation procedure. A solution algorithm in which the bisection method and
the relaxation procedure converge simultaneously is proposed.

The introduction of a possibility measure to the fuzzy programming problems treated in this paper
is one of the future topics. Furthermore, a symmetric model [5] using a necessity measure is also a
future topic.
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Table 2: A part of the solution procedure

Step 1.

Step 2.

Step 3.

Step 6.

Step 2.

Set 2° = (3,2)7, 55 = 0,4 = 0,1,2,3,
AU =1, ¥ =0 and h = 0.5.
Solve a linear programming problem,

maximize 2lcg,
subject to
1.75a90 < —c2 < 2.25a02,
1.75&31 S —C2 S 2.25&31,
0.8 < as1 < 1.2, az > 0.45,
—3aze + 0.7a31 —c2 £ 0,
0.8 < —ago1 —aae+an —c2 <12
X (x)
We obtain ¢z = —1.4 and I = {4,6,8,10}.
Under the same constraints, solve a linear
programrning problem with an objective
function

maximize 3ag1 + 2laze.

We obtain a21 = 1.65435 and @22 =
1.67765. Again, under the same con-
straints, solve a linear programming prob-
lem with an objective function

maximize 3asi.

We obtain a3 = 1.24.

Since a1 x® ~ b1 = 3.7 > v (k1) = 2, we
set 51 = 1 and a1 = (2.3,0.8)T. Since
alwd — by = 26.19 > v3(ha) = 2, we set
sz = 1 and az = (1.85435,1.67765)".
Since af &’ — ba = 21.72 > v3(ha) = 2,
we set s3 = 1 and asz = (1.24, E)T. 54,
i = 1,2,3 are updated, then we go to
Step 6.

Since s = 0, weset 5o = 1. Let Iy =
{4,6,8,10} and ¢z[[;](0.5) = ~1.4. Solve
a linear programming problem,

minimize
subject to

2,

-2.521 — 1.4z < 2,

2.3z + 0.823 < 22,
1.65435z; + 1.67765z, < 16,
1.24z1 + 222 < 26,

120, z22>20.

We obtain ° = (9.50976,0.15048)" and
2% = —23.99762. We have /1,<0(z°,2) =
1> h = 0.5 and return to Step 2.

Under the constraints of (x), sclve a linear
programming problem with an objective
function,

Step 3.

Step 6.

Step 6.

maximize 0.15948¢2,

We obtain ¢ = —1.4and [ = {2,6,8,10}.
Under the constraints of (x), solve a linear
programming problem with an objective
function

maximize 9.50976a21 + 0.15948az2.

We obtain gz = 2.092 and a2 = 1.24.
Again, under the constraints of {x}, solve
a linear programming problem with an
objective function

maximize 9.509764as;.

We obtain as; = 1.24.

atz® — by = vi(hi1) = 2. Since asx® -
by = 6.09215 > v§(hg) = 2, we set s2 = 2
and ag = (2.092,1.24)T. afz® — by =
—11.8880 < w;(h3) = 2. s2 is updated,
then we go to Step 6.

Solve a linear programming problem,

minimize 2z,

subject to —2.531 — 1.4z < 2,
2.3z + 0.822 < 22,
1.65435z1 + 1.6776522 < 16,
1.24z1 + 2x2 £ 26,
2.092z; + 1.24z; < 16,
120, z2 20

We obtain 2° = (7.64818,0)T and 2% =
—19.1205. Since p<c(z0,2) = 0.42409 <
h = 0.5, we update A = 0.5 and h =
0.25. Repeat Step 6.
e2{1](0.25) = —1.6875.
programming problem,

Solve a linear

minimize z,
subject to —2.521 — 1.6875z2 < 2,
2.3z1 4+ 0.8z, < 22,
1.65435z31 + 1.67765z2 < 16,
1.24z1 + 22, < 26,
2.092z1 + 1.24z5 < 16,
T1 2 0) z2 2 0.

We obtain z° = (4.80192,4.80192)T and
2% = —20.10804. We have u. (2°2) =
~0

0.62161 > h = 0.25 and return to Step 2.

* ok ok k% x % x #x Continue x * * # % x % % ¥%




