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Abstract
Aims of our study are follows: One is to prove that a complete metric space of fuzzy numbers becomes a Banach
space under a condition that the metric has a homogeneous property. Another is to give sufficient conditions
that a subset in the complete metric space and an into continuous mapping on the subset have at least one fixed
point by applying Schauder’s fixed point theorem. Finally we discuss a sufficient conditions for the existence of
solutions of fuzzy differential equations on an infinite interval with boundary conditions.

1 Complete Metric Space of Fuzzy Numbers

Denote I = [0,1]. The following definition means that a fuzzy number can be identified with a membership
function.

Definition 1 Denote a set of fuzzy numbers with bounded supports and strict fuzzy convezity by
F = {u: R — I satisfying (i)-(iv) below}.
(i) p has a unique number m € R such that u(m) = 1 (normality);
(i) supp(p) = cl{{¢ € R: () > 0}) is bounded in R (bounded support);

(i1} p s strictly fuzzy convexr on supp(p) as follows:

(a) if supp(p} # {m}, then
' wAE + (1 — A)&2) > minfp(&r), p(éa)]

for €1, €2 € supp() with & # & and 0 < A< I;
(b) if supp(u) = {m}, then u(m) =1 and p(£) =0 for § # m;

(iv) p is upper semi-continuous on R (upper semi-continuity).

It follows that R C F3¢. Because m has a membership function as follows:
pm)=1; w€)=0@E#m) (1.1)

Then u satisfies the above (i}-(iv).
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In usual case a fuzzy number x satisfies fuzzy conver on R, i.e.,
A1 + (1~ N)€2) = minu(&), p(é2)] (1.2)
for 0 < A <1 and &, & € R. Denote a—cut sets by
Lo(u) ={£ €R: p(§) 2 o}
for o € I. When the membership function is fuzzy convex, then we have the following remarks.

Remark 1 The following statements (1) - (4) are equivalent each other, provided with (i) of Definition 1.
(1) (1.2) holds;
(2) La(g) is convex with respect to o € I
(3) 1 is non-decreasing in & € (—o00,m), non-increasing in £ € [m, +o0), respectively;
(4) La(w) C Lp() for o > B.

Remark 2 The above condition (iiia) is stronger than (1.2). From (iiia) it follows that p(§) is strictly monotonously
increasing in £ € [min supp(p), m|. Suppose that p(é1) > p(éa) for & < & < m. From Remark 1(3}, it follows
that p(&,) = (&) for some & < &2, so we get p(§) = p(é) = u(2) for & € [€1,&2]. This contradicts with
Definition 1 (iiia). Thus p is strictly monotonously increasing. In the similar way p is strictly monotonously
decreasing in ¢ € [m,max supp(u)]. This condition plays an important role in Theorem 1.

We introduce the following parametric representation of u € FE as

z1{a) = minLg{p),

zz(0) = maxLq(p)
for0<a<land

z1(0) = minsupp(p),

z2(0) = maxsupp(u).
In the following example we illustrate typical types of fuzzy numbers.
Example 1 Consider the following L — R fuzzy number © € Fgt with a membership function as follows:
L=, (g <m)
() = £ =
{M%m+@>m

Here it is said that m € R is a center and £ > 0,r > O are spreads. L,R are I—valued functions. Let
L(&)y = max({L([¢]),0) etc. We identify p with z = (z1,%2). As long as there exist L~! and R™!, we have
z1(a) = m — L™ ()¢ and z2(a) = m+ R~ {a)r.

Let L(§) = —c1£ + 1, where ¢; > 0 and |21 — m| < £. We illustrate the following cases (1)-(iv).

(i) Let R(§) = —ca€ + 1, where cg > 0. Then cpb(zs — m) = cir(m — z1).
(i) Let R(¢) = —cav/€ + 1, where ¢ > 0. Then cpl(z2 — m)? = cir?(m — z1).

(i) Let R(¢) = —c282 + 1, where c3 > 0. Then c362(zy — m) = c}r(z, — m)%.
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(iv) Let ¢ be a real number such that 0 < ¢ < 1. Denote

_J1 £=0)
L(e)'{ —ct+e (0<EL)

and let R(§) = L{€). Then we have {(z2 — m) = r(m — z) for |@y — m| < £. The representation of
z = (z1,x2) 8 as follows:

o
zi(a)=m—{1— E)E,

xz(a)zm—{—(l—%)r O<a<e)

zi{a)=xza{a)=m (c<a<1)

The membership function is given by as follows:

0 © g& <( 7)81(02,5 > ;:2(0))
ay ! 20 <€<m

5'(6) (m<€<a(0)

Denote by C(I) the set of all the continuous functions on I to R. The following theorem shows a membership
function is characterized by 1, 2.

Theorem 1 Denote the left-, right-end points of the a—cut set of p € FE¥ by z1{a), za(ex), respectively. Here
z1,73 : I — R. The following properties (i)-(iit) hold.

(1) 1, T2 € C(I),

(i) Igg.;cxl(a) = 1(1) = m = minzy(a) = z2(1);

(iii) z1,22 are non-decreasing, non-increasing on I, respectively, as follows :

(a) there exists a positive number ¢ < 1 such that z1(a) < za(e) for a € [0,¢) and that z1(a) =m =
zo(@) for o € [e,1};

(b) zi(a) =z2(a) =m fora € I;

Conversely, under the above conditions (i) -(iil), if we denote

p(§) =sup{e € I : z1(a) < § < o)} (1.3)
for £ € R, then p € F§Et.

Remark 3 From the above Condition (i) a fuzzy number z = (21, 22) means a bounded continuous curve over
R? and 71(a) < z2(a) fora e 1.

In what follows we denote g = (1, 22) for u € Ft. The parametric representation of p is very useful in calcu-
lating binary operations of fuzzy numbers and analyzing qualitative behaviors of fuzzy differential equations.

Let g: R x R — R be an R—valued function. The corresponding binary operation of two fuzzy numbers
T,y € F& to glz,y) : Fot x Fgt — FE is calculated by the extension principle of Zadeh. The membership
function fig(z ) of g is as follows:

ﬁ‘g(z,y)(&) = sup min{us (fl)a Hy (52))
£=g(£1,€2)
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Here &,£1,82 € R and g, pty, are membership functions of z,y, respectively. From the extension principle, it
follows that, in case where g{z,y) =z + ¥,

pzty(€)

= max min{g;{&
(2%, i (&)

= max{a er: 5 =£1 +£2’ Ez € La(ﬂ’z)ﬂ’ = 1$2}
=max{ea € I:§ € [z1(a) +3:1(a), 22(a) + 1a(D]}-
Thus we get  +y = (&1 + ¥1,Z2 + ¥2). In the similar way z — y = (21 ~ 2,22 — Y1)
Denote a metric by
doo(T,y) = sup max([z1(a) — yi(@)|, |za(0) — ya(a)])
o
for & = (z1,%2), 4 = (31, %2) € 7.

Theorem 2 Fg is a complete metric space in C{I)2.

2 Induced Linear Spaces of Fuzzy Numbers

According to the extension principle of Zadeh, for respective membership functions us, iy of =,y € FEt and
) € R, the following addition and a scalar product are given as follows :

toty(€) = sup{a€(0,1]:
é. = gl +52? 61 S La(”{'ﬂ:):& € La(ﬂy)}i
pz(§/A) (A #£0)

— 0 (A=0,¢#0)
#a(l) sgg pe(n) (A=0,£=0)

In [5] they introduced the following equivalence relation (z,y) ~ (u,) for (z,), (u,v) € F§' x F,ie.,
(z,y) ~{(y,v) = z+v=u+y. (2.4)

Putting = = (21, 22),y = (¥1,%2),u = (u1,u3),v = (v1,v2) by the parametric representation, the relation (2.4)
means that the following equations hold.

itvi=uwty ((=12)

Denote an equivalence class by [z,y] = {(u,v) € F&t x F&t : (w,v) ~ (z,y)} for z,y € FZ' and the set of
equivalence classes by

Fit = A{lz,y] 2y € F'}
such that one of the following cases (i) and (ii) hold:
(i) if (@,y) ~ (uw,v), then {z,y] = [u,v];
(i) i (z,y) # (u,v), then [z, y] N [u,v] = .
Then F3t/ ~ is a liriear space with the following addition and scalar product

[z, y] + [u,v] = [z +u,y + V] (2.5)

_{ 10w ) (A20)
Mz, yl = { =Ny, (~z)] (A<0) (2.6)
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for A € R and [z,y], [u,v] € F§'/ ~ . They denote a norm in F&/ ~ by

| [z, 4] lI= StgdH(La(ux),La(uy))-
Here dg is the Hausdorff metric is as follows:

dH (La (.um)a La (My))

—max( sup  inf |¢—7l,
£€Lo(ps) M€ La(uy)

sup inf -
N P i€ —ni)

It can be easily seen that || [z, y] |= doo (2, ¥)-
Note that || [z,9] ||=0 in Fgt/ ~ if and only if z = y in F&.

3 Schauder’s Fixed Point Theorem in Complete Metric Spaces
In the following theorem we show that the complete metric space F3J* has an induced Banach space.

Theorem 3 Let S be a bounded closed subset in Fit. Assume that S contains any segments of x,y €
Syie, Az + (1 — XNy € S for A € I. Let V be an into continuous mapping on S. Assume that the closure
cl(V(S)) is compact in Fg. Then V has at least one fized point © in S,i.e.,V{z) = x.

In the following theorem complete metric spaces have at least one fixed point of the induced Banach space.

Theorem 4 Let F be a complete metric space with a metric d. Assume that F is closed under addition and
scalar product, and that d(\z,0) = |A|d(z,0) for the scalar product Az and A € R,z € F. Denote X = {[z,0] :
z,0 € F}. Here [z,y] for z,y € F are equivalence classes of (2.4) and 0 is the origin. Then X is a Banach
space concerning addition (2.5), scalar product (2.6) and norm || [z,0] ||= d(x,0) for [z,0] € X.

Moreover let S be a bounded closed subset in F. Assume that S contains any segments of z,y € S in the
same meaning of Theorem 3. Let V be an into continuous mapping on S. Assume that the closure cl(V(S)) is
compact in F. Then V has at least one fized point in S.

4 FBVP on Infinite Intervals

In this section we deal with the following FBVP on an infinite interval:

X e+ ft2), ale)=c Ry

Here p: Ry — F&, f: Ry x Ft — Fit are continuous functions. Let denote R.y. = [0,00) and ¢ € . The
following assumptions play important roles in considering the existence of solutions of (4.7).

Assupmtion.
(A1) Assume that

]:0 d(p(s),0)ds = K < oo.

(A2) There exist positive real numbers a,, R and integrable function m : Ry — R such that
d(f(t,z),0) < m(t) for (t,z) € Ry x Sy;
o0
/ m(s)ds < rR,;

[13 + Np(a+ || L || R)]K < 1.
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Here
Sy = {z € F' : d(z,0) < min(ar,7)}

and N, is independent on the function p.
L:Cim — Fgt is a linear operator as L(z) = (o) and

Clim = [z € O(Ry : FY) : 32(c0),d(2,0) < r}.

(A3) There exists no solution of

dx

o —p(B)s,L(2) =0
except for the zero solution.

We expect the following existence theorem for solutions of FBVP on the infinite interval. _
Under assumptions (Al) - (A3) we expect that there exists at least one solution of (4.7} in Cim for any
¢ € S; by applying the Schauder’s fixed point theorem in Cl™,
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