完備距離空間におけるシャウダーの不動点定理 と無限区間ファジィ境界値問題

Schauder's Fixed Point Theorems in Complete Metric Spaces and Fuzzy Boundary Value Problems on an Infinite Interval

> 齋藤誠慈 (Seiji SAITO), 石井博昭 (Hiroaki ISHII) 大阪大学大学院 情報科学研究科 情報数理学専攻 (Graduate School of Information Science and Technology, Osaka University) E-mail: { saito, ishii }@ist.osaka-u.ac.jp Osaka, Japan, 565-0871

Abstract

Aims of our study are follows: One is to prove that a complete metric space of fuzzy numbers becomes a Banach space under a condition that the metric has a homogeneous property. Another is to give sufficient conditions that a subset in the complete metric space and an into continuous mapping on the subset have at least one fixed point by applying Schauder's fixed point theorem. Finally we discuss a sufficient conditions for the existence of solutions of fuzzy differential equations on an infinite interval with boundary conditions.

1 Complete Metric Space of Fuzzy Numbers

Denote I = [0, 1]. The following definition means that a fuzzy number can be identified with a membership function.

Definition 1 Denote a set of fuzzy numbers with bounded supports and strict fuzzy convexity by

$$\mathcal{F}_{\mathbf{b}}^{st} = \{ \mu : \mathbf{R} \to I \text{ satisfying (i)-(iv) below} \}.$$

- (i) μ has a unique number $m \in \mathbf{R}$ such that $\mu(m) = 1$ (normality);
- (ii) $supp(\mu) = cl(\{\xi \in \mathbf{R} : \mu(\xi) > 0\})$ is bounded in \mathbf{R} (bounded support);
- (iii) μ is strictly fuzzy convex on $supp(\mu)$ as follows:
 - (a) if $supp(\mu) \neq \{m\}$, then

$$\mu(\lambda \xi_1 + (1 - \lambda)\xi_2) > \min[\mu(\xi_1), \mu(\xi_2)]$$

for $\xi_1, \xi_2 \in supp(\mu)$ with $\xi_1 \neq \xi_2$ and $0 < \lambda < 1$;

- (b) if $supp(\mu) = \{m\}$, then $\mu(m) = 1$ and $\mu(\xi) = 0$ for $\xi \neq m$;
- (iv) μ is upper semi-continuous on R (upper semi-continuity).

It follows that $\mathbf{R} \subset \mathcal{F}_{\mathbf{b}}^{st}$. Because m has a membership function as follows:

$$\mu(m) = 1 \; ; \quad \mu(\xi) = 0 \; (\xi \neq m)$$
 (1.1)

Then μ satisfies the above (i)-(iv).

In usual case a fuzzy number x satisfies fuzzy convex on R, i.e.,

$$\mu(\lambda \xi_1 + (1 - \lambda)\xi_2) \ge \min[\mu(\xi_1), \mu(\xi_2)]$$
 (1.2)

for $0 \le \lambda \le 1$ and $\xi_1, \xi_2 \in \mathbf{R}$. Denote α -cut sets by

$$L_{\alpha}(\mu) = \{ \xi \in \mathbf{R} : \mu(\xi) \ge \alpha \}$$

for $\alpha \in I$. When the membership function is fuzzy convex, then we have the following remarks.

Remark 1 The following statements (1) - (4) are equivalent each other, provided with (i) of Definition 1.

- (1) (1.2) holds;
- (2) $L_{\alpha}(\mu)$ is convex with respect to $\alpha \in I$;
- (3) μ is non-decreasing in $\xi \in (-\infty, m)$, non-increasing in $\xi \in [m, +\infty)$, respectively;
- (4) $L_{\alpha}(\mu) \subset L_{\beta}(\mu)$ for $\alpha > \beta$.

Remark 2 The above condition (iiia) is stronger than (1.2). From (iiia) it follows that $\mu(\xi)$ is strictly monotonously increasing in $\xi \in [\min supp(\mu), m]$. Suppose that $\mu(\xi_1) \geq \mu(\xi_2)$ for $\xi_1 < \xi_2 \leq m$. From Remark 1(3), it follows that $\mu(\xi_1) = \mu_1(\xi_2)$ for some $\xi_1 < \xi_2$, so we get $\mu(\xi) = \mu(\xi_1) = \mu(\xi_2)$ for $\xi \in [\xi_1, \xi_2]$. This contradicts with Definition 1 (iiia). Thus μ is strictly monotonously increasing. In the similar way μ is strictly monotonously decreasing in $\xi \in [m, \max supp(\mu)]$. This condition plays an important role in Theorem 1.

We introduce the following parametric representation of $\mu \in \mathcal{F}_{\mathbf{b}}^{st}$ as

$$x_1(\alpha) = \min L_{\alpha}(\mu),$$

 $x_2(\alpha) = \max L_{\alpha}(\mu)$

for $0 < \alpha \le 1$ and

$$x_1(0) = \min supp(\mu),$$

 $x_2(0) = \max supp(\mu).$

In the following example we illustrate typical types of fuzzy numbers.

Example 1 Consider the following L-R fuzzy number $x \in \mathcal{F}_{\mathbf{b}}^{st}$ with a membership function as follows:

$$\mu(\xi) = \left\{ \begin{array}{ll} L(\frac{|m-\xi|}{\ell})_+ & (\xi \le m) \\ R(\frac{|\xi-m|}{r})_+ & (\xi > m) \end{array} \right.$$

Here it is said that $m \in \mathbf{R}$ is a center and $\ell > 0, r > 0$ are spreads. L, R are I-valued functions. Let $L(\xi)_+ = \max(L(|\xi|), 0)$ etc. We identify μ with $x = (x_1, x_2)$. As long as there exist L^{-1} and R^{-1} , we have $x_1(\alpha) = m - L^{-1}(\alpha)\ell$ and $x_2(\alpha) = m + R^{-1}(\alpha)r$.

Let $L(\xi) = -c_1 \xi + 1$, where $c_1 > 0$ and $|x_1 - m| \le \ell$. We illustrate the following cases (i)-(iv).

- (i) Let $R(\xi) = -c_2\xi + 1$, where $c_2 > 0$. Then $c_2\ell(x_2 m) = c_1r(m x_1)$.
- (ii) Let $R(\xi) = -c_2\sqrt{\xi} + 1$, where $c_2 > 0$. Then $c_2\ell(x_2 m)^2 = c_1r^2(m x_1)$.
- (iii) Let $R(\xi) = -c_2 \xi^2 + 1$, where $c_2 > 0$. Then $c_2^2 \ell^2 (x_2 m) = c_1^2 r (x_1 m)^2$.

(iv) Let c be a real number such that 0 < c < 1. Denote

$$L(\xi) = \begin{cases} 1 & (\xi = 0) \\ -c\xi + c & (0 < \xi \le 1) \end{cases}$$

and let $R(\xi) = L(\xi)$. Then we have $\ell(x_2 - m) = r(m - x_1)$ for $|x_1 - m| \le \ell$. The representation of $x = (x_1, x_2)$ is as follows:

$$x_1(\alpha) = m - (1 - \frac{\alpha}{c})\ell,$$

 $x_2(\alpha) = m + (1 - \frac{\alpha}{c})r \quad (0 \le \alpha < c)$
 $x_1(\alpha) = x_2(\alpha) = m \quad (c \le \alpha \le 1)$

The membership function is given by as follows:

$$\mu(\xi) = \begin{cases} 0 & (\xi < x_1(0), \xi > x_2(0)) \\ x_1^{-1}(\xi) & (x_1(0) \le \xi < m) \\ 1 & (\xi = m) \\ x_2^{-1}(\xi) & (m < \xi \le x_2(0)) \end{cases}$$

Denote by C(I) the set of all the continuous functions on I to \mathbf{R} . The following theorem shows a membership function is characterized by x_1, x_2 .

Theorem 1 Denote the left-, right-end points of the α -cut set of $\mu \in \mathcal{F}_{\mathbf{b}}^{st}$ by $x_1(\alpha), x_2(\alpha)$, respectively. Here $x_1, x_2 : I \to \mathbf{R}$. The following properties (i)-(iii) hold.

- (i) $x_1, x_2 \in C(I)$;
- (ii) $\max_{\alpha \in I} x_1(\alpha) = x_1(1) = m = \min_{\alpha \in I} x_2(\alpha) = x_2(1);$
- (iii) x_1, x_2 are non-decreasing, non-increasing on I, respectively, as follows:
 - (a) there exists a positive number $c \leq 1$ such that $x_1(\alpha) < x_2(\alpha)$ for $\alpha \in [0,c)$ and that $x_1(\alpha) = m = x_2(\alpha)$ for $\alpha \in [c,1]$;
 - (b) $x_1(\alpha) = x_2(\alpha) = m \text{ for } \alpha \in I;$

Conversely, under the above conditions (i) -(iii), if we denote

$$\mu(\xi) = \sup\{\alpha \in I : x_1(\alpha) \le \xi \le x_2(\alpha)\}$$
(1.3)

for $\xi \in \mathbf{R}$, then $\mu \in \mathcal{F}_{\mathbf{h}}^{st}$.

Remark 3 From the above Condition (i) a fuzzy number $x = (x_1, x_2)$ means a bounded continuous curve over \mathbf{R}^2 and $x_1(\alpha) \leq x_2(\alpha)$ for $\alpha \in I$.

In what follows we denote $\mu = (x_1, x_2)$ for $\mu \in \mathcal{F}_b^{st}$. The parametric representation of μ is very useful in calculating binary operations of fuzzy numbers and analyzing qualitative behaviors of fuzzy differential equations.

Let $g: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be an \mathbf{R} -valued function. The corresponding binary operation of two fuzzy numbers $x, y \in \mathcal{F}_{\mathbf{b}}^{st}$ to $g(x, y): \mathcal{F}_{\mathbf{b}}^{st} \times \mathcal{F}_{\mathbf{b}}^{st} \to \mathcal{F}_{\mathbf{b}}^{st}$ is calculated by the extension principle of Zadeh. The membership function $\mu_{g(x,y)}$ of g is as follows:

$$\mu_{g(x,y)}(\xi) = \sup_{\xi=g(\xi_1,\xi_2)} \min(\mu_x(\xi_1),\mu_y(\xi_2))$$

Here $\xi, \xi_1, \xi_2 \in \mathbf{R}$ and μ_x, μ_y are membership functions of x, y, respectively. From the extension principle, it follows that, in case where g(x, y) = x + y,

$$\mu_{x+y}(\xi) = \max_{\xi = \xi_1 + \xi_2} \min_{i=1,2} (\mu_i(\xi_i))$$

$$= \max \{ \alpha \in I : \xi = \xi_1 + \xi_2, \ \xi_i \in L_{\alpha}(\mu_i), i = 1, 2 \}$$

$$= \max \{ \alpha \in I : \xi \in [x_1(\alpha) + y_1(\alpha), x_2(\alpha) + y_2(\alpha)] \}.$$

Thus we get $x + y = (x_1 + y_1, x_2 + y_2)$. In the similar way $x - y = (x_1 - y_2, x_2 - y_1)$.

Denote a metric by

$$d_{\infty}(x,y) = \sup_{lpha \in I} \max(|x_1(lpha) - y_1(lpha)|, |x_2(lpha) - y_2(lpha)|)$$

for $x = (x_1, x_2), y = (y_1, y_2) \in \mathcal{F}_{\mathbf{b}}^{st}$.

Theorem 2 $\mathcal{F}_{\mathbf{b}}^{st}$ is a complete metric space in $C(I)^2$.

2 Induced Linear Spaces of Fuzzy Numbers

According to the extension principle of Zadeh, for respective membership functions μ_x, μ_y of $x, y \in \mathcal{F}_b^{st}$ and $\lambda \in \mathbf{R}$, the following addition and a scalar product are given as follows:

$$\mu_{x+y}(\xi) = \sup\{\alpha \in [0,1] : \\ \xi = \xi_1 + \xi_2, \ \xi_1 \in L_{\alpha}(\mu_x), \xi_2 \in L_{\alpha}(\mu_y)\}; \\ \mu_{\lambda x}(\xi) = \begin{cases} \mu_x(\xi/\lambda) & (\lambda \neq 0) \\ 0 & (\lambda = 0, \ \xi \neq 0) \\ \sup_{\eta \in \mathbf{R}} \mu_x(\eta) & (\lambda = 0, \ \xi = 0) \end{cases}$$

In [5] they introduced the following equivalence relation $(x,y) \sim (u,v)$ for $(x,y), (u,v) \in \mathcal{F}_{\mathbf{b}}^{st} \times \mathcal{F}_{\mathbf{b}}^{st}, i.e.$

$$(x,y) \sim (u,v) \Longleftrightarrow x + v = u + y. \tag{2.4}$$

Putting $x = (x_1, x_2), y = (y_1, y_2), u = (u_1, u_2), v = (v_1, v_2)$ by the parametric representation, the relation (2.4) means that the following equations hold.

$$x_i + v_i = u_i + y_i \quad (i = 1, 2)$$

Denote an equivalence class by $[x,y]=\{(u,v)\in\mathcal{F}^{st}_{\mathbf{b}}\times\mathcal{F}^{st}_{\mathbf{b}}:(u,v)\sim(x,y)\}$ for $x,y\in\mathcal{F}^{st}_{\mathbf{b}}$ and the set of equivalence classes by

$$\mathcal{F}_{\mathbf{b}}^{st}/\sim=\{[x,y]:x,y\in\mathcal{F}_{\mathbf{b}}^{st}\}$$

such that one of the following cases (i) and (ii) hold:

- (i) if $(x, y) \sim (u, v)$, then [x, y] = [u, v];
- $\text{(ii)} \quad \text{ if } (x,y) \not\sim (u,v) \text{, then } [x,y] \cap [u,v] = \emptyset.$

Then $\mathcal{F}_{\mathbf{b}}^{st}/\sim$ is a linear space with the following addition and scalar product

$$[x,y] + [u,v] = [x+u,y+v]$$
(2.5)

$$\lambda[x,y] = \begin{cases} [(\lambda x, \lambda y)] & (\lambda \ge 0) \\ [((-\lambda)y, (-\lambda)x)] & (\lambda < 0) \end{cases}$$
 (2.6)

for $\lambda \in \mathbf{R}$ and $[x,y], [u,v] \in \mathcal{F}_{\mathbf{b}}^{st}/\sim$. They denote a norm in $\mathcal{F}_{\mathbf{b}}^{st}/\sim$ by

$$\parallel [x,y] \parallel = \sup_{\alpha \in I} d_H(L_{\alpha}(\mu_x), L_{\alpha}(\mu_y)).$$

Here d_H is the Hausdorff metric is as follows:

$$\begin{split} d_H(L_{\alpha}(\mu_x), L_{\alpha}(\mu_y)) \\ &= \max(\sup_{\xi \in L_{\alpha}(\mu_x)} \inf_{\eta \in L_{\alpha}(\mu_y)} |\xi - \eta|, \\ \sup_{\eta \in L_{\alpha}(\mu_x)} \inf_{\xi \in L_{\alpha}(\mu_y)} |\xi - \eta|) \end{split}$$

It can be easily seen that $\| [x,y] \| = d_{\infty}(x,y)$. Note that $\| [x,y] \| = 0$ in $\mathcal{F}_{\mathbf{b}}^{st} / \sim$ if and only if x=y in $\mathcal{F}_{\mathbf{b}}^{st}$.

3 Schauder's Fixed Point Theorem in Complete Metric Spaces

In the following theorem we show that the complete metric space $\mathcal{F}_{\mathbf{b}}^{st}$ has an induced Banach space.

Theorem 3 Let S be a bounded closed subset in $\mathcal{F}_{\mathbf{b}}^{st}$. Assume that S contains any segments of $x, y \in S$, i.e., $\lambda x + (1 - \lambda)y \in S$ for $\lambda \in I$. Let V be an into continuous mapping on S. Assume that the closure cl(V(S)) is compact in $\mathcal{F}_{\mathbf{b}}^{st}$. Then V has at least one fixed point x in S, i.e., V(x) = x.

In the following theorem complete metric spaces have at least one fixed point of the induced Banach space.

Theorem 4 Let \mathcal{F} be a complete metric space with a metric d. Assume that \mathcal{F} is closed under addition and scalar product, and that $d(\lambda x, 0) = |\lambda| d(x, 0)$ for the scalar product λx and $\lambda \in \mathbf{R}, x \in \mathcal{F}$. Denote $X = \{[x, 0] : x, 0 \in \mathcal{F}\}$. Here [x, y] for $x, y \in \mathcal{F}$ are equivalence classes of (2.4) and 0 is the origin. Then X is a Banach space concerning addition (2.5), scalar product (2.6) and norm ||[x, 0]|| = d(x, 0) for $[x, 0] \in X$.

Moreover let S be a bounded closed subset in \mathcal{F} . Assume that S contains any segments of $x, y \in S$ in the same meaning of Theorem 3. Let V be an into continuous mapping on S. Assume that the closure cl(V(S)) is compact in \mathcal{F} . Then V has at least one fixed point in S.

4 FBVP on Infinite Intervals

In this section we deal with the following FBVP on an infinite interval:

$$\frac{dx}{dt} = p(t)x + f(t,x), \quad x(\infty) = c \tag{4.7}$$

Here $p: \mathbf{R}_+ \to \mathcal{F}_{\mathbf{b}}^{st}$, $f: \mathbf{R}_+ \times \mathcal{F}_{\mathbf{b}}^{st} \to \mathcal{F}_{\mathbf{b}}^{st}$ are continuous functions. Let denote $\mathbf{R}_+ = [0, \infty)$ and $c \in \mathcal{F}_{\mathbf{b}}^{st}$. The following assumptions play important roles in considering the existence of solutions of (4.7).

Assupmtion.

(A1) Assume that

$$\int_0^\infty d(p(s),0)ds = K < \infty.$$

(A2) There exist positive real numbers a, r, R and integrable function $m: \mathbf{R}_+ \to \mathbf{R}_+$ such that

$$d(f(t,x),0) \leq m(t) \text{ for } (t,x) \in \mathbf{R}_{+} \times S_{1};$$

$$\int_{0}^{\infty} m(s)ds \leq rR;$$

$$[R+N_{p}(a+\parallel L\parallel R)]K < 1.$$

Here

$$S_1 = \{x \in \mathcal{F}_{\mathbf{b}}^{st} : d(x,0) \le \min(ar,r)\}$$

and N_p is independent on the function p.

 $L: C_r^{\text{lim}} \to \mathcal{F}_b^{st}$ is a linear operator as $L(x) = x(\infty)$ and

$$C_r^{\lim} = \{x \in C(\mathbf{R}_+:\mathcal{F}_\mathbf{b}^{st}): \exists x(\infty), d(x,0) \leq r\}.$$

(A3) There exists no solution of

$$\frac{dx}{dt} = p(t)x, L(x) = 0$$

except for the zero solution.

We expect the following existence theorem for solutions of FBVP on the infinite interval.

Under assumptions (A1) - (A3) we expect that there exists at least one solution of (4.7) in C_r^{lim} for any $c \in S_1$ by applying the Schauder's fixed point theorem in C_r^{lim} .

References

- [1] S.R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
- [2] P. Diamonde and Koelden: Metric Spaces of Fuzzy Sets; Theory and Applications, World Scientific (1994).
- [3] V. Lakshmikanthan and S.Lella: Nonlinear Differential Equations in Abstract Spaces, Pergamon Press (1981).
- [4] V. Lakshmikanthan and R.N. Mohapatra: Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis (2003).
- [5] M.L. Puri and D.A. Ralescu: Differential of Fuzzy Functions, J. Math. Anal. Appl. 91 (1983), 552-558.
- [6] H. Radstrom: An Embedding Theorem for Spaces of Convex Sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- [7] S. Saito: Some Topics of Fuzzy Differential equations and Fuzzy Optimization Problems via a Parametric representation of Fuzzy Numbers (to appear), Contemporary Differential Equations and Applications, ed. Y.J. Cho, J.K. Kim and K.S. Ha, Nova Science Publishers (2004).
- [8] S. Saito: Qualitative Approaches to Boundary Value problems of Fuzzy differential Equations by Theory of Ordinary Differential Equations, J. Nonlinear and Convex Analysis 5(2004), 121-130.
- [9] S. Saito: Boundary Value Problems of Fuzzy Differential Equations, Proceedings of 3rd Nonlinear and Convex Analysis, 481-492 (2004).
- [10] D. R. Smart: Fixed Point Theorems, Cambridge Univ. Press (1980).
- [11] H.Tuy: Convex Analysis and Global Optimization, Kluwer Academic Publ. (1998).