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Indecomposable representations of quivers
on infinite dimensional Hilbert spaces

WA ZHB(Yasuo Watatani)Kyushu Univ)
BAHEMS (Masatoshi Enomoto)(Koshien Univ)

We shall show that the theory of relative position of several subspaces of a Hilbert
space is rich as subfactor theory.

We should study an indecomposable system of n subspaces in the sense that the
system can not be isomorphic to a direct sum of two non—zero systems.

Many problems of linear algebra can be reduced to the classification of the systems of
subpaces in a finite-dimensional vector space. In a finite—dimensional space, the
classification of indecomposable systems of n subspaces for n = 1,2 and 3 was simple.
Jordan blocks give indecomposable systems of 4 subspaces. But there exist many other
kinds of indecomposable systems of 4 subspaces. Therefore it was surprising that Gelfand
and Ponomarev gave a complete classification of indecomposable systems of four
subspaces in a finite-dimensional space over an algebraically closed field.

We study relative position of # subspaces in a separable infinite—dimensional Hilbert
space.

Let H be a Hilbert space and E1, ...E, be n subspaces in H. Then we say that
S = (H.E,,...,Ey) is a system of n subspaces in H or a n-subspace system in H. A
system S is called indecomposable if § can not be decomposed into a nontrivial direct
sum.
For any bounded linear operator A4 on a Hilbert space K, we can associate a system Sy
of four subspacesin H = K @ K by
Si = (H,K® 0,0 K, {(xA4x).x € K}, {(x,x);x € K}).

Two such systems S, and Sp are isomorphic if and only if the two operators 4 and B
are similar. The direct sum of such systems corresponds to the direct sum of the
operators. In this sense the theory of operators is included into the theory of relative
positions of four subspaces.

In particular on a finite dimesional space, Jordan blocks correspond to indecomposable
systems. Moreover on an infinite dimensional Hilbert space, the above system Sy is
indecomposable if and only if 4 is strongly irreducible, which is an infinite~dimensional
analog of a Jordan block. Therefore there exist uncountably many indecomposable
systems of four subspaces.

But it is rather difficult to know whether there exists another kind of indecomposable
system of four subspaces. One of the main result of the paper EW] is to give
uncountably many, exotic, indecomposable systems of four subspaces on an
infinite—dimensional separable Hilbert space.
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Gelfand and Ponomarev introduced an integer valued invariant p(S), called defect, for

a system S = (H, E1,E»,E3,E4) of four subspaces by
p(S) = Z; dimE; - 2dimH.

We extend the defect to a certain class of systems of four subspaces on an infinite
dimesional Hilbert space using Fredholm index.

If a system S = (H: Ey, E,, E3, E4) of four subspaces is finite-dimensional, then the
defect p(8) is an integer. Gelfand and Ponomarev showed that the possible value of
defect p(8) is exactly in {-2,-1,0,1,2}. We show that the set of values of defect for
indecomposable systems of four subspaces in an infinite-dimesional Hilbert spaces is
exactly {&;n € Z}.

In finite dimensional case, the classification of four subspaces is described as the
classification of the representations of the extended Dynkin diagram 5:. Recall that
Gabriel listed Dynkin diagrams 4,, D,, Es, E7, Eg in his theory on finiteness of
indecomposable representations of quivers. We will discuss on indecomposable
representations of quivers on infinite-dimensinal Hilbert spaces . We shall show the
following. Let I" be a finite connected undirected graph. If there exist no infinite
dimensional( Hilbert space) indecomposable representatlons of T with any orientations,
then I is one of A,,Dn,Fs,E7,Es.

Now we shall explain the framework of systems of subspaces.

Definition. Let H be a Hilbert space and E;, ..., E, be a closed subspaces in H.
The ordered system § = (H;E1,...,Ey) is called an n—subspace system.

Definition.Let S = (H,E:,...,E,) and T= (K;Fy,...,F,) be n—subspace systems.
Then we say that S and T are isomorphic(S ~ T) if there exists an invertible operator
¢ € B(H,K) such that (E,) = Fi(i = 1,...,n).

Definition.1.et § = (H,E,,...,E,) and T = (K;F\,...,Fy) be n—subspace systems.
Define the direct sum S@ TbyS@ T = (HOK,E1 & F,....E,®F,).

Definition. Define § = 0 by H = 0.

Definition. We say that § is indecomposable if, for n —subspace systems §;and S,,
S=85&8,;,thenS; =0or8; =0

In this framework, for §,T € B(K) we have that § ~ T(similar) if and only if
Ss =~ Sr(isomorphic).

In this framework, Gelfand Ponomarev completely classified indecomposable n —
subspace systems (n = 1,2,3,4) in a finite dimensional vector spaces.

The extension of Gelfand Ponomarev results (1970) to the infinite dimensional case is

considered in [ EWIM.Enomoto,Y.Watatani,Relative position of four subspaces in a
Hilbert space, Advanced Math.,in press.

Now we shall describe the Gelfand Ponomarev results .

[1]the Gelfand Ponomarev results



For n = 1, that is, one subspace case. Then the underlyng space is only one

dimensional space. Thus we have H = CE; = Cor 0.

For n = 2, that is, two subspaces case. Then the underlyng space is only one
dimensional space. Thus we have H = C.E; = Cor 0.(i = 1,2).

For n = 3, that is, three subspaces case. Then the case in which the underlyng space
is a one dimensional space occurs. That is, we have H = C,E; = Cor 0.(i = 1,2,3).

But the other case occurs. That is, H = C2,E; = C(}),E2 = C(1),Es = C(3).

For n = 4, that is, four subspaces case. In this case they have many interesing cases

as follows. The classification is carried by the invariant
defectp(S) = Z; dim(E;) — 2dimH.

They showed thatthe set of the possible values of defects is {0,£1,+2}.
At first, we mention the case(A) ,the dimension of the whole space is even.

(A)dim H = 2k is even for some integer k > 0
Let H be a space with a basis {ey, ..., €wf1,--- i}
(IXH;E1,E2,E3, Es) with p(S) =-1

H = [81,...,ek,f1,.,.,fk],
E, = [61,...,61,], Ez = [fi,....[t),
Ez = [(e2 +£1), .., (e + fi1)],
Es = [(e1 +f1), ..., (ex + /)]
(O)(H; E1,E2,E3,Eq) with p(S) =1
H = [e1,....euf1, - > ft),
Ei = [e1,....ex), E2 = [fi,....[xl,
Es = [e1,(e2 + f1), ..., (ex + firr)o i,
Es = [(e1 + /1), e+ fi)]:
(3)(H; E1,E2, E3,Es) with p(S) =0
H = [e1,...,enf1,....ft],
E: = [e1,....ex), B2 = [fi,....[x],
Es = [e1, (e2 + 1), .., (ex + fi-1)]
Es = [(er +£1), ..., (ex + 1)l
(4)(H. Ev, E2, E3, Eq) with p(S) = 0
H = [e1,....ex 1, .- . Je)
Ey = [ey,...,ex), Ex = [f1, - Sl

Es = {(61 -+ /’Lfl), (67_ +f1 + /‘sz), cee (ek +fk—1 + Afk)],

Eq4 = [(e1 +£1), ..., (ex + )]

At first, we mention the case(B) ,the dimension of the whole space is odd.

(B) dim H = 2k + 1 is odd for some integer k > 0.
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Let H be a space with a basis {ey, ..., €x €p1, /1, .-+ Se)-
(B)(H; E1,E2,E3, Eq) with p(S§) = ~1
H = [ey,...,eneu101, ... . Jt)
Ei = [e1,....enein], E2 = [fi,... . fe],
Es = [(e2 +f1), -, (eps1 +f0)),
Es = [(e1 + f1), ..o, (ex +fD)].
(6)(H, E1,E2, E3,Eq) with p(S) =1
H = [ey,...,ereu1,/1, - Ji)s
El = [81,...,ek,€k+1], Ez = fﬁ,...,fk],
Ey = [21, (62 +f1), ces (ek+1 +fk)],
Es = [(es + i), ..., (ex +fi), exn].
(1V(H;Ey,E2,E3,E4) with p(§) =0
H=le1,....e0em1, 1, - . S0l
E| = [el,...,ek,ek+1], E, = {fl,---,fk],
Es = [e1,(e2 +f1), ..., (et /0],
Ey = [(21 +f1), vie s (ek +fk)]-
(8)(H,E;,Ey, Es,Es) with p(§) = -2
H= [61, ,ek,ek+1,f1, ,fk],
E, = e, ....exl, E2 = [f1,.... 04,
Es = [(e2 +£1), ..., (e + S},
Es = [(e1 + f2), ..., (€1 + fo), (€x + ew1)].
(9)(H;E1,E2,E3, Es) with p(8) = 2
H= [31, ,ek,ek+1,f1, ,fk],
Ei = ey, ....enein], E2 =[fi,....fr.er],
Es = [e1,(e2 + /1), ..., (exn +S0)],
Ey = [fi,(e1 + f2), ..., (1 + fi), (e + em1)].
[2]Some of our results|[EW].

We consider the Gelfand Ponomarev results in an infinite dimensional Hilbert space
setting.
At first we can construct an uncountable family of indecomposable systems of four

subspaces.

Example.(an uncountable family of indecomposable systems of four subspaces) Let
K = 02(N) and H = K @ K. Consider a unilateral shift § : K - K. For a parameter
aeC,letE; =K®0,E, =08 K,E; = {(x,(§+ aDx)lx € K} and
Es = {(x,x)|x € K}. Then the system S, = (H;E\, E2,E3, Es) of four subspaces are
indecomposable. If @ # B, then S, and Sy are not isomorphic, because the spectra
(S +a) # o(S + B) and S + af and § + BI are not similar. Thus we can easily construct
an uncountable family (S;)., (e € C)of indecomposable systems of four subspaces.
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This example extended to the unbounded case as follows.

Definition.(closed operator systems) We say that a system § = (H, E1, E2,E3,E4) of
four subspaces is a closed operator system if there exist Hilbert spaces K;,K> and
closed operators T : K1 © D(T) - K», S K2 © D(S) » K such that H = K1 & K>
and El = Kl D O)

Ez = 0@ Ka, Es = {(x,Tx);x € D(D)},E4 = {8y, »);y € DIS)}.

We can show exotic example which does not come from closed operator systems.
Exotic examples. Let L = (2(N) with a standard basis {ei,ez,...;. Pt K =L & L and

H=K®K=La&L&LaL. Consider a unilateral shift § : L - L by Se, = en1 for
n=1,2,... . For a fixed paramater y € C with [y|> 1, we consider an

operator
s I
T, = ("O S) e BK) = BL @ L),

LetEy =K®0,E, = 08K,

E; = {(x,Tyx) € K& K;x € K} + C(0,0,0,e1) =graphTy + C(0,0,0,e1), and

Es = {(x,x) € K® K;x € K}. Consider a system S, = (H;E1,E», E3,Es). We shall
show that &, is indecomposable. If [y[> 1, then Sy is not isomorphic to any closed
operator systems under any permutation.

We shall extend their notion of defect for a certain class of systems relating with
Fredholm index.
Definition Let S = (H: E1,E2, E3, E,) be a system of four subspaces. For any distinct
i,j = 1,2,3,4, define an adding operatord; : E; ®E; 2 (x,y) > x+y € H Then
Kerd, = {(x,—x) € E: ® E;;x € E;NE;} and Imdy = E; +E;.

We say 8§ = (H;E1,E2,E3,E4) is a Fredholm system if Ay is a Fredholm operator for

any i,j = 1,2,3,4 with i # j.

Definition We say S = (H;E1,E2, Es3, Es) is a quasi-Fredholm system if E; N E; and

(E; + E;)* are finite-dimensional for any i # j. In the case we define the defect p(S) of S
by

p(S) = T 2 e (dim(Ei N E)) — dim(E; + ENY)

which coincides with the Gelfand—Ponomarev original defect if H is finite—dimensional.
Example(a fractional value). Let § be a unilateral shift on K = {2(N). Then the
operator system Sy is an indecomposable. It is not a Fredholm system but a
quasi-Fredholm system and p(Ss) = —+. The operator system Sg,1,1s a Fredholm
system and p(Sg. 1 ) = —%. Moreover (Stsar)e (¢ € C)is uncountable family of

indecomposable , quasi-Fredholm systems. Fredholm systems among them and their
defect are given by ‘
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-2, (o< lende-1< 1)
-+, (o< landje—1> 1) or (jef> 1 and e~ 1< 1)
(o> 1 and |a — 1> 1).

p(Ssvar) =

kd

0

>

Example. For y € Cwith [y}> 1, let §, = (H.E1,E2,E3,Es) be an exotic system of
four subspaces in Theorem as above. Then &, is a quasi—-Fredholm system and

p(Sy) = L.
Theorem. The set of the possible values of the defect of indecomposable systems of four
subspaces is exactly Z/3.

Theorem. For any n € Z there exist uncountable family of indecomposable systems S of
four subspaces with the same defect p(S) = %.

About exotic indecomposable systems of four subspaces, we have the following:

Theorem. There exists uncountable family of exotic indecomposable systems S of four

subspaces with the defect 22L(n € N).

Next we can generalize Coxeter functors in an infinite dimensional Hilbert space. case..
Definition.(Coxeter functor ®*) Let & = (H;E1, ..., Ex) be a system of n subspaces in

a Hilbert space H. Let R := ®7%, E; and
T iR3x=(x,...%n) > T(x) = in € H -
=1

Define St = (H*,Ef,...,E;) by

Ht := Kert and E} = {(x1,...,x») € H";xx = 0}.
Let 7 = (K;F1,...,F,) be another system of n subspaces in a Hilbert space K and
¢ : 8 » Thbe a homomorphism. Since ¢ : H - K is a bounded linear operator with
@(E;) < F,, we can define a bounded linear operator ¢* : H* - K* by
9t (x1,....%s) = (@(x1),...,@(x.)). Since p*(E}) < F;}, ¢* define a homomorphism
¢* : 8t - T*. Thus we can introduce a covariant functor ®* : Sys” - Sys” by

®+(S) = §* and ©*(¢) = ¢™.
Definition.(Coxeter functor &) Let S = (H;Ey, ..., E,) be a system of n subspaces in

a Hilbert space H. Let et € B(H) be the projection onto E+ < H. Let Q = ®L; Ey
and

: u:Hsxw— ulx) = (efx,...,esx) € Q.

Then p* : Q - His given by p*(v1,...,yn) = 2., ¥i. Define H~ :=Kery* < Q. Put
g- : Q — H~ is the canonical projection. Define S~ = (H™; Ey, LED by ‘
. Ei=q O0®E®0)c H.

Our definition of S~ = (H™;E1, ..., E;) coincides with the original one by Gelfand and
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Ponomarev up to isomorphism in the case of ﬁnite—diménsional spaces. ‘
Define ®(S) = &~ = (H;Eq,...,E;). Then there is a relation between $* and S-.
Theorem.Let 8 = (H.E1, ..., E,) be a system of n subspaces in a Hilbert space H.

Then we have

O (S) = DLO*DL(S).
Let S = (H:E, ..., E,) be a system of n subspaces in a Hilbert space H and

T = (K.F1,...,F») be another system of n subspaces in a Hilbert space K. Let

¢ : S » The a homomorphism, i.e., ¢ : H » Kisa bounded linear operator with

¢(E;) < Fi. Define ¢ : ®°(S) - &~ (T) by

- = OO D (p).
Thus we can introduce a covariant functor ®~ : Sys” - Sys” by
O (8) =85 and ® () = ¢~
Definition. Let S = (H:E1, ...,E») be a system of n subspaces in a Hilbert space H.

Then S is said to be reduced from above if for any k = 1,...,n, 3, E: = H.
Similarly S is said to be reduced from belowif for any k = 1,...,n, ZME"} = H.
Example.(1) Any bounded operator system is reduced from above and reduced from

below. (2)The exotic examples are reduced from above and reduced from below.
Theorem. (duality) Let S = (H;E1,...,En) be a system of n subspaces in a Hilbert
space H. Suppose that S is reduced from above. Then we have

O-0*(S) = S.
Similarly we have the follwoing:
Theorem. (duality) Let & = (H;E1, ..., E,) be a system of n subspaces in a Hilbert
space H. Suppose that & is reduced from below. Then we have

OD(S) = .

Theorem.Let S = (H,E:,...,En) be a system of n subspaces in a Hilbert space H.
Suppose that S is reduced from above and §* = ®+(S) is reduced from below. If § is
indecomposable, then ®*(S) is also indecomposable.

Example. Let §; = (H,E\,E,,E3,E4) be an exotic example. Then 8, is reduced from

above and ®*(S,) is reduced from below. Since Sy is indecomposable, ®*(Sy) is also
indecomposable.

Similarly we have the following:

Theorem.Let S = (H,E\,...,Ex) be a system of n subspaces in a Hilbert space H.
Suppose that S is reduced from below and S~ = ®~(S) is reduced from above. If S is
indecomposable, then ®-(S) is also indecomposable.

We shall show that the Coxeter functors ®* and @~ preserve the defect under certain
conditions.

Theorem. Let S = (H:E1,E», Es, E4) be a system of four subspaces. Suppose that S is
reduced from above. If S is a quasi-Fredholm system, then ®*(S) is also a
quasi-Fredholm system and p(®*(85)) = p(8).

Theorem. Let S = (H,E1,E2,E3,Es) be a system of four subspaces. Suppose that S is
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reduced from below. If § is a quasi-Fredholm system, then ®~ (S) is also a
quasi—Fredholm system and p(®(S)) = p(S).

[3] Representations of quivers on infinite dimensional Hilbert spaces

Next we consider to extend 4—shspace systems to general finite connected directed
graph.
We consider representation of quivers{finite directed graphs) on Hilbert spaces.

Gabriel showed that quivers which have only finite numbers of indecomposable
representations are ADE. We consider this Gabriel theorem in the infinite dimensional
setting.

In order to do this, we need some definitions.

(1)General Definition

Definition. LetT = (V,E,s,r) be a finite quiver. The set V represents the set of
vertices of I" and the set of E represents the set of arrows of I'.  For { € E, s({)
represents the starting point of § and r({) represents the end point of £ .

Definition.1.et T = (V,E,s,r) be a finite quiver. We say that & Hilbert space
representation (H,f) of I is a pair of a family H = (H,)vey of Hilbert spaces H, and a
family of f = (fo)sezof bounded linear operators f; such that fy : Hyy — Hy)-

Definition.1.et T = (V,E,s,r) be a finite quiver. Let (H,fand (K, g) be
representations of I. We put

Hom((H,f),(K,g) = {T = (Tx)er; T, € B(Hx,Kx), Tr(e)fe = geTs(e)(Ve = E)}

If (H.f) = (K, g) holds, we denote End((H,f)) = Hom((H.f),(H.f)). Put
Idem((H,f)) = {T € End((H,f)); T is idempotent. }

Definition.Let I' = (V,E,s,r) be a finite quiver.Let (H,f) and (W, g) be Hilbert space
representations of I'. We say that (H,f) and (W, g) are isomorphic (H,f) = (W, g) if
there exists a family ¢ = (v)ver of bounded invertible linear operators ¢, € B(H,,K,)
such that ¢, fi = g1p,(Vl € E).

Definition.Let T = (V,E,s,r) be a finite quiver.Let (H,f) and (W, g) be Hilbert space
representations of I'. Define the direct sum (H,f) ® (W,g) .
Definition.Let(K, g) be representations of I. Then we put (K,g) = 0 as

K. = 0(vVx € V).

Definition.Let(H, f) be representations of I'. Then (H, f) is indecomposable if
(Hf) = (K.g) @K ,g) then (K,g) = Oor (K,g) = 0.

Proposition. Let (H,f)be a representation of I'. Then (H,f) is indecomposable if and
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only if Idem(H, f) = {0,1} = {(0x)x, (15)x}.

As a fundamental tool, we can construct reflection functors on representations of
quivers.
(2)A definition of reflection functors

Definition. Let T’ = (V,E,s,r) be a finite quiver. We say that a vertex f € Visa
sink if B = s(0)(V! € E). WeputI'? = {l € E;r(l) = B}. Then we can construct a
new quiver o5(I') as follows. Define the set of vertices of 63(I") =V, For { € E, we
put the arrow I which has the opposite direction of { ,therefore
s(T) = #0),7(T) = s(l). DefineI? = {T;l e '’} Define the set of arrows of
o3(D):=IP U (E\TF),

Let (H,/) be a Hilbert space representation of a finite quiver I' = (V, £, s, r).

We construct a new representation (W,g) of o3(I") using by (H.f). Define
hp : Sers Howy > Hp, by hp((¥s(0iers) = Zfa(xs(n))-

terP
Put Wp = kerhg © @rs Hyp. Letip 1 Wp > @eers Hp be the inclusion map.
Let Proje : @err Hewy = Hye be the projection map.
Then ,for & € TP, we put g= = (Proje)ig, g = fill ¢ TF), W, = Hi(v + B).
From this, we can define a new representation (¥, g) of a5(I').

Definition.Let T = (V,E,s,r) be a finite quiver. We say that a vertex a € Visa
source if @ # r(O}(V0 € E). WeputI'® = {l € E;s(0) = a}.

Then we can construct a new quiveroz(I") as follows.

Put I .= {T,0 € T'*}.

The set of vertices of 6;(I") = V.

The set of arrows of a5(I) = [2 U (ENT?).

Let (H,f) be a Hilbert space reoresentation of a finite quiver I' = (V, E, 5, 7).

We construct a new representation (#,g) of oz(I) using by (H.f).

Define ha @ Ho = ®ere How, by ha(x) = (%)) eere.

Put W, = (Im'i‘z‘,,:)ﬂL C @gere Hygy. Fore e I'tlet j. : Hyy — Suwre Hopbe the
inclusion map and Projw, : @were Hy —~ Wa be the projection.

We put g= = (Projw,)je, g¢ = fill & T%), Wy = Hi(v * Q).

Thus we can get a new representation (W, g) of o5(I).

(3)Decomposition Theorem, Duality Theorem, Indecomposability Theorem
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Theorem (Decomposition)

(DLet T = (V,E,s,r) be a finite quiver.

Let B € Vbe asink. Let (H,f) be a Hilbert space representation of I'.
(Assumption) the set 3 ., Im(f;) is a closed set.

Then, there exists a Hilbert space representation (ﬁ,;‘) of I' such that
(H.f) = apob(H.f) ® (A, 1)

(DLetI' = (V,E, s,r) be a finite quiver.
Let @ € V'be a source. Let (H, f) be a Hilbert space representation of I'.
(Assumption)the set) ., -, Im(fs)*is a closed set.

Then, there exists a Hilbert space representation (171, 7) of T such that
(H.f) = otoa(H ) © @)

Definition. let” = (V,E,s,r) be a finite quiver,
Letp € V be a sink. Let (H,f) be a Hilbert space representation of I.
Then we say that (H,f) is full at g if D ., Im(fi) = Hp.

Definition. lLet I' = (V,E,s,¥) be a finite quiver.
Let @ € V' be a source. Let (H,f) be a Hilbert space representation of T".

Then we say that(H,f) is co-full at ¢ if 3, Im(fs)* = Ha.

Then we have a duality between o} and o,

Theorem (Duality)

()Let I’ = (V,E,s,r) be a finite quiver.

Let B € V'be a sink. Let (H,f) be a Hilbert space representation of I,
(Assumption) (H,£) is full at j.

Then

(H.f) = oz05(H.f).

(2)(H.f) is full at B.

Let @ € V'be a source. Let (H,f) be a Hilbert space representation of T".
(Assumption) (H, ) is co-full at a.

Then (H.f) = oj0z(H.f) .

Theorem (Indecomposability)
(1)Let T = (V,E,s,r) be a finite quiver.

Let B € V'be a sink. Let (H,f) be a Hilbert space representation of I" which is



indecomposable and dimHp > 2.
(Assumption) Y -, Im(f) is a closed set.
Then
o}(H.f) is indecomposable.

@)

LetT' = (V,E,s,r) be a finite quiver. Let o € V'be a source.

Let (H,f) be a Hilbert space representation of I" which is indecomposable and
dimHp = 2.
(Assumption) Y .. Im(fi)*is a closed set.

Then
o;(H, fis indecomposable.

We have now the following results about the indecomposable representations of finite

quivers on infinite dimensional Hilbert spaces.

Theorem.

Let T be a finite connected undirected graph. If there exist no infinite dimensional(
Hilbert space) indecomposable representations of I" with any orientations, then I" is one
of

An,Dn,EG,E%E&

Proposition.
There exist indecomposable representation of ﬂ;, ’7(11 > 1),6:,(11 > 4) on an infinite
dimensiona! Hilbert space.

Hence we need to investigate the special trees Tpqr.

r

Ny
=

In order to do this, we only need to check E; E; E's'

147
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2H
11')
;1‘ .—##—*%.
3 1.0 1 2 3 2 10 "2 F
Es £

We give an indecomposable representation (H, f) of E; on an infinite dimensional
Hilbert space.

We take an infinite dimensional Hilbert space K and a unilateral shift on XK.
We put

Hy,=K®&K®Kk,

H =K& 08Kk,

H, =04 00K,

H, =K®&K&®0,

Hy,=08Ka0,

H» = {(x,x,x);x € Ky +{(»5.,0);y € K}
Hy = {(x,%,x);x € K}.
We also give inclusion maps along the each arrows.

This gives an indecomposable representation of E; on an infinite dimensional Hithert
space.

Similarly we can give indecomposable representations of E,E on an infinite
dimensional Hilbert space.
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