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Abstract

Let P be the set of all non-negative operator monotone functions
defined on [0, 00), and put ?_;1 ={h:h"te€Py}. Then Py -P;' C
Prtand PTHPI! ¢ Pyl For a function h(t) and a strictly increasing
function h we write b < h if hoh™! is operator monotone. Ifo <h=h
andoggjgandifhe’P;l andgEP_,'_lu’PJr, then h g X h g.
We will apply this result to polynomials and operator inequalities.
Let {a;}"; and {b;}7-; be non-increasing sequences, and put u4(t) =
ITi1(t — as) for ¢ 2 a1 and v (t) = [[7L;(t — b;) for t 2 b1, Then
vy S ut ifm S nand ELI b S 22;1 a; (12 k< m): in particular,
for a sequence {p,}2, of orthonormal polynomials, (Pn—1)+ = (Pn)+

Suppose 0 < rypand 0 < o £ 5 Then 0 £ A £ B implies

rA rA ra TA
(e2 A%eP4e2)* < (e2 B%ePPe2 ) fors=00r 1SsS1+2

1 Introduction

Let A, B be bounded selfadjoint operators on a Hilbert space. A real-valued
(Borel measurable) function f(t) defined on a finite or infinite interval I in
R is called an operator monotone function on I and denoted by f € P(I),
provided A < B implies f(A) £ f(B) for every pair A, B whose spectra lie in
the interval I. When I is written as |a, b) we simply write Pla, b) instead of
P([a,b)). It is easy to verify that if a sequence of functions in P(I) converges
to f pointwise on I then f € P(I) and that if f(¢) in P(a,b) is continuous



at a from the right then f(t) € Pla,b). It is well known that t* (0 < a £ 1),
logt and ;5 (A > 0) are in P(0, 00). The following Lowner theorem [8](see
also [4, 5]) is essential to the study of this area:

f is operator monotone on an open interval if and only if f has an analytic
extension f(z) to the open upper half plane 11, so that f(z) maps I into
itself, that is, f(z) is a Pick function.

From this theorem it follows that f(¢) in P(I) is constant or strictly
increasing and that by Herglotz’s theorem f(¢) € P(0,00) can be expressed

| f(t):a+bt+/om( IR )du(az),

T4t x4l

where a, b are real constants with b 2 0 and dv is a non-negative Borel
measure on [0, co) satisfying

/°° dv(z) < oo
o zT2+1

Suppose f € P[0,00). Then we can rewrite the above expression as:

so=r0 o+ [ (3-5) w@ )

T+t

For further details on the operator monotone function we refer the reader to
Chapter V of [4], [5] and [7].

Thanks to (1), we can see that if f(t) 2 0 is in P[0,00), then the holo-
morphic extension f(z) to IL. satisfies arg f(z) < argz. By making use of
this property we can construct operator monotone functions as follows:
if f(t) and g(t) are both positive operator monotone on (0,00), then so are
w5 FE)Y°, Ft*)g(8%), f()°g(t)' ™" for0 <@ <1 and f(t)g(G5); more-
over, if f; is positive operator monotone on (0, o0) for 1 £4 < n, then so is
(T ) .

In contrast to this direct way, there is another way to construct an oper-
ator monotone function; indeed, it is the way to construct a function whose
inverse is operator monotone:

(a) For the function u(t) on [a1,00) defined by

k
u(t) :e"tH(t——ai)% (c20,a1>a > >a, %>0),
i=1

©if 4, 2 1, then the inverse function u~(s) is in P[0,00) ([11, 12, 15]):
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(b) If 0 £ f(t) is in P[0,00), then so is the inverse function of tf(t) ([2]).

Let P,[a,b) be the set of all non-negative operator monotone functions
defined on [a,b) and P;*[a,b) the set of increasing functions h defined on
[a, b) such that the range of A is [0, 00) and its inverse A~ is operator mono-
tone on [0, c0). Let g be a non-decreasing function and h a strictly increasing
function. Then g is said to be magjorized by h, in symbols g X h, if go h™ -1
is operator monotone on the range of h, where f o g means the comp051te
function f(g). In Section 2, we will show that P.[a,b) - P; e, b) C P:'[a,b)
and P7Ya,b) - Pila,b) C Pi'la,b): the first relation mcludes (a) and (b)
given above. Moreover, we will show that if 0 < hi < h; and 0 < fJ 2 f;
for 1 £i<m, 1 £j £ m and if the range of each f; is [0, oo) then
T, hi Il fj(t) < T hslt) TG f3(2). we will call this the product the-
orem.

Let us define real polynomials u(¢) and v(t) by

u(t) = [l (- a), () =TTz (E = b)),

where a; = a;41 and b; = bi1. The positive and increasing parts of u(t) and
v(t) are denoted by u.(t) and v, (t) respectively, that is ui(t) := u(t)|a;,00)
and v (t) := v(t)|py,c0). In Section 3, we will show that v, < uy if m S nand
Sk b S ai(k=1,2,-- ,m). In particular, for a sequence {p,}52, of
orthonormal polynomials with the positive leading coeflicients we will show
(Pn-1)+ = (Pn)+

Let h(t) € P7'0,00) and fi(t) € P.[0,00) for 1 £ ¢ £ n, and put
9(®) = [T, fi(t). Suppose 0 £ A(t) < h(t). Then, in Section 4, we will
show that for the function ¢ on [0, 00) defined by w(h(t)g(t)) = h(t)g(%) for
0Zit<>

0= A< B = p(g(A)Th(B)g(A)?) 2 o(g(A)Fh(A)g(A)7) = g(A)R(4),

which yields a concrete operator inequality that extends the Furuta inequal-
ity.

2 P:YI) and Majorization

Our objectives are non-negative operator monotone functions. A function
f(¢) that is operator monotone on —oo < t < oo is affine, that is, of the form
at + (3. Therefore we confine our attention to operator monotone functions
on a subinterval (a,b) of (—o0,00). We consider just the case —co < a; for,
it seems that the case —oco < a is more useful than the case b < co. Then
every increasing function defined on {a, b) has the right limit at a; accordingly



we deal with functions defined on [a,b). A “function” means a “continuous
function” and “increasing” does “strictly increasing” throughout this paper.

Let us introduce the sets of increasing functions defined on a interval
[a,b), although we made a short mention of them in the first section:

Definition 1
Pila,b) = {f|f(t) 20, f(t) € Pla,b)},
P a,b) := {h|h(t)is increasing with the range [0,00), A" € P[0,00)},

where h™! stands for the inverse function of h.

It is clear that P, [a,b) is a cone and that (sh™* + (1 - s)k™)™* € P{'[a,h)
for 0 < s £ 1if bk € P:'a,b). We note that h(t) € P;a,b) precisely
if h(t — ¢) € Pitla+ ¢, b+ c). We give simple examples: 1 € P.ila,b) for
any interval [a,b), t* € Py[0,00) for 0 < @ £ 1, 8% € P10, 00) for a 2 1
and (1+1)/(1 —t) € P;'[~1,1), because its inverse function (t —1)/(¢ + 1)
belongs to P[0, o).

Definition 2 Let h be non-decreasing function on I and k an increasing
function on J. Then we say that h is majorized by k, in symbols h X k, if
J C I and hok™! is operator monotone on k(J).

We note that this definition coincides with the following:
for A, B whose spectra lie in J

k(A) < k(B) => h(A) < h(B).

It is evident that 1 = k for every increasing function k(t).
We have the following properties:

(i) k~ = kP for any increasing function k(t)20and 0 < a £ G
(i) g=xh, R3k=>g=Fk;

(iii) if 7 is an increasing function whose range is the domain of k, then
h<k<>hort ko

(iv) k € ’P;l[a,, b) &=t Xk, k(la, b)) = [0, 00);

(v) if the range of k is [0,00) and h, k 2 0, then
h = k== h? < k%

(viih =<k, k=Xh<>h=ck+dfor real numbers ¢ > 0, d.
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(1),(i1),(iii) and (iv) are trivial. To see (v) suppose ¢ € P[0, oo} satisfies
#(k(t)) = h{t) for t € J which is the domain of k. Then ¢(t) := o(Vt)? €
P..[0,00) and @(k?) = h%; thereby h? < k*. To see (vi) assume h <k, k=
h. Then there is ¢ on k(J) such that ¢ and ¢~ are both operator monotone.
Since an operator monotone function is increasing and concave, ¢ must be
an increasing linear function. This implies h(t) = ck(t) +d for ¢ > 0. The
converse is evident.

Lemma 2.1 If f(t), g(t) and h(t) are all in Py [0,00), then h(f(t))g(+5) is
in P[0, 00) and so is f(t)g(5) in particular.

Proof. It is clear that h(f(t)) g(—f—fﬁ) is well-defined on (0, 0o) and has the |

analytic extension h( f(z))g(ﬁ) to I1,. Since arg f(z) < argz for z € I,
we have ?(?;5 €Il for z € I1;. Hence

z z

Mgg(m) s 31’%@ <, argh(f(z)) Sargf(z) <.
Thus arg A(f(2))g(55;) £ arg 2, which implies h(f(2))9(5;) is a Pick func-
tion. Therefore, h(f (t))g(ﬂ%) belongs to P(0, 00). By considering its con-
tinuous extension to [0,00) we get h( f(t))g(%) € P.[0,00); in particular,
we get f(t)g(5G) € P+[0,00), although it has been well-known. 0.

h < h, k < k does not necessarily imply hk < hk even if these functios
are all non-negative. For instance, 1 < ¢, ¢t < 1 + 2, where all functions are
defined on [0, 00); but t(1+2) & P11(0, 00) as proved in Example 2.1 of [15],
that is to say, £ < #(1 +¢%) is false.

The following lemma is beneficial, so we name it.

Lemma 2.2 (Product lemma) Let h(t), g(t) be non-negative increasing
functions defined on [a,b), with (hg)(a) =0, (hg)(b—0) = oo, where —oco <
a < b < oo. Then for 1, s in P[0, 00)

gxhg==h=hg, Pi(h)a(g) X hg.
Proof. Define the functions ¢; on [0, c0) by

$o(h(t)g(t) = g(t),  ¢1(A(B)g(t)) = h(2),
$2(h(t)g(t)) = ¥a(R(t))iha(9(t)) (a St <D).

We need to show that if ¢ is operator monotone, then so are both ¢; and
¢2. By putting s = h(t)g(t), $1 and ¢, can be expressed as
s

#(8)= oy #l) = ¢l(¢%(s>>%<¢°<5)>-



As we mentioned in the first section, ¢; € P.[0,00), and ¢ € P[0, 00)
follows from Lemma2.1. ‘ O

We note that if 1,(t) = ¢ in the above lemma , then the last relation
implies ¥1(h) g < hg.

Remark 2.1 In the proof of Lemma2.2, it is crucial that v; and ¢ are in
P..[0,00). For instance, put h(t) = g(t) = ¢ for 0 S ¢ < co. Then clearly
g < hg. Consider the functions 41 () = 2(t) = t — 1 in Py[1,00) N P[0, ).
But the function ¢, defined by ¢a(t?) = 1 (t)¢s(t) = (t — 1)? is not operator
monotone even on [1,00) (see Section 1 of [11]).
Lemma 2.3 Suppose a = 0 and h(t) € P;'[a,b). Then

t-h(t) € Pitla,b), ie., t Xth(t).

Moreover,
h(t) < th(t), t* = th(t).
The lemma below is a generalization of the statement (b) in Introduction.
Lemma 2.4 Suppose a 2 0. Then
P.la,b) - Pia,b) € Pylla,b).
Moreover, for f(£) € Pyla,b), h(t) € P:'[a,b) and ¢(t), ¢(t) € P10, 00)
h=hf, f=hf, ¢h)e(f)2hf

Lemma 2.5 Let f(t) be in P+[0,00) and h(t) in P7*[f(0), f(00)). Then
t-(ho f)(t) € PFH0,00), ¢-f3t-(hof)

Lemma 2.6 Suppose ¢ 2 0. Then
P la,b) - Pita,b) € P1a,b).
Moreover, for h(£), k(t) € Pzt[a,b) and for ¢1(t), ¥a(t) € P+[0,00)
t<hk, k=hk i(h)ya(k) < hk
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Lemma 2.7 Suppose a = 0. Let h(t) € P7'[a,b) and f;(t) € Pila,b) for
1Sj<n Putg(t)= 1%, £i(t). Then h(t)g(t) € P;'la,b). Moreover, for
11)1, ":b? € P+[O’ OO)

h=hg, g=hg, i(h)a(g)Zhg

Remark 2.2 If ¥1(t) = h™1(t) — c for ¢ £ a, ¥1(t) =t and ¥1(t) = 1, then
P1(h) =t — ¢, ¥1(h) = h and 91(h) = 1, respectively. Similarly, ¥2(g) may
be g or 1.

So far we have assumed a 2 0 concerning the domain [a, b), but now let
us consider the case a < 0. For a function h(t) and a real number c, we
put ho(t) = h({t + ¢). It is evident that h(t) € P[a,b) if and only if he(t) €
Pila—ecb—c), and h(t) € P:'[a,b) if and only if he(t) € Pi'[a—c,b—c),
because h_l(s) “Hs)+e for 0 £ s < o0. By the property (iii), k(t) < h(t)
if and only if k.(t) j he(t). Moreover, the function ¢ satisfying ¢(h(t)) = k(t)
for a £t < b also satisfies ¢(h.(t)) = k(t) fora —c £t < b—c. Thus we
can see Lemma?2.4, Lemma2.6 and Lemma2.7 hold even for ¢ < 0. We note
that h(t) =t — ¢ if h.(t) = t. Thus by Lemma2.7, we get

Theorem 2.8 (Product theorem) Suppose —o0 < a < b = oo. Then
P.la,b) - Pla,b) € Pilab), Pitla,b) - Pitle,b) € Pilla,b).

Further, let hi(t) € P7la,b) for 1 £i < m, and let g;(t) be a finite product
of functions in Pyla,b) for 1 £ j < n. Then for ¢;, ¢; € P+[0,00)

Hh(t)HQy(t)EP+ a,b), H%(MH%(QJ) *Hh Hgg

i=1 j=1

Remark 2.3 By Remark2.2 1;(h;) may be t — ¢; for ¢; £ a, h; or 1, and
#;(g;) may be g; or 1. Hence, for 0Smi+my<m, 0SmSn

H(t - cz)Hh (t)ﬂgy(t) = Hh Hga,

=1 j=1 i=

where we put [[;2, g;(t) =1if n; = 0.



In the proof of the following theorem, we will use the elementary result
that if ha(t) (n = 1,2,--+) is continuous and increasing on a finite closed
interval I and if {h,} converges pointwise to a continuous function h on I,
then {h,} converges uniformly to h on I.

Theorem 2.9 Suppose h,(t) € P7la,b) (n=1,2,---). If {ha} converges
pointwise to a continuous function h on [a,b) and if h(t) > 0 fort > a and
h(b — 0) = oo, then

h € P;'la,b).

Moreover, let hy (n=1,2,+--) be increasing functions on [a,b), and let {h,}
converge pointwise to a continuous function h on [a,b). Then

ho < hy (n=1,2,---)=>h =< h.

In the above theorem, we assumed the continuity of h for the sake of
simplicity, though this can be derived by an elementary argument.

Corollary 2.10 Let h € P7{a,b), and let gn, for each n, be a finite product
of functions in Pya,b). Suppose {gn} converges pointwise to g on [a,b) such
that g is increasing and continuous. Then, for Y1, € P[0, 00)

1 (h)a(g) 2 hg € P, b).

Proof. By the product theorem hg, € P;'[a,b) and A X hgn. Thus
by Theorem2.9 hg € Pi'la,b) and b X hg. By the product lemma we get

Pr(R)ia(g) 2 hg. O

3 Polynomials

The aim of this section is to apply the product theorem to real polynomials.
(a) in the first section has been shown by analytic extension method in [11].
But its proof was not so easy. To begin with, let us give a simple proof of
(a) by using the product theorem:

Another proof of (a). Since v; 2 1, (t —a1)™ € P;'a1,00). For each
~; (2 £ i £ k) take a large natural number 7 to ensure that n — 1 < % <
then (t—a;)"/™ € P,[a1,00). Thus by the product theorem h(t) =TT (E—
a:)* € Pylla1,00). Besides, (1+ 2t) € Pyfa1,00) for n so that -2 <
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and g,(t) = (1 + &)™ converges to e” for every t, which is increasing and
continuous. By Corollary2.10 h(t)e® € P [a1,0). O

The same argument as the above proof leads us to the following:

Proposition 3.1 Let h € P7 a,b) for —co < a <b S oo. Then forc 20
and 1,1y € P[0, 00),

he® € P7a,b), ¥i(R)a(e®) < he.

For non-increasing sequences {a;}%; and {b;}{,, we consider the positive
and increasing functions u(t) and v(t) defined by

ut)=[Jet-a) G2a) w@=][C-b) E20) 2)
i=1 i=1
Lemma 3.2 Suppose v < u for u and v given in (2). Then m < n.

Proof. Since v o u*(s) is concave and non-negative on 0 £ s < oo,
v(u~'(s))/s is decreasing. Therefore v(t)/u(t) is decreasing on a; <t < oo.
This implies m < n. O

Lemma 3.8 Let u and v be polynomials defined by (2). Then

ms<n, BLa(1Sism) =v=u

Proof. Consider t — a; and t — b; as functions on [a;,00) and [b;,c0)
respectively. It is evident that (t—a;1) € Py a1, 00) and (t—a;) € Pifaz, 00)
for every i. Since ¥(t) =t + (@i — b)) € P4[0,00) and Yt —a;) =t —b;
for t 2 ay, (t —b;) < (£ — a;) for every i. Hence the product theorem yields
v(t) < ult). O

The following theorem indicates that the “majorization between sequenses”

leads us to the “majorization between functions” introduced in the second
section.

Theorem 3.4 Let u(t) and v(t) be polynomials defined by (2). Then

k
m<n, sz’SZai(lgkém)z:?vju.



We do not know yet if the converse of Theorem3.4 holds.

Let {p,}52, be a sequence of orthonormal polynomials with the positive
leading coefficient. It is known that each p, has n simple zeros a; > az >
... > a, and there is a zero b; of p,—1 in (@ir1,0;). This means b; < a; for
i=1,2,---,n— 1. Thus, by Lemma3.3 we have

Corollary 3.5 [15] Let {p.}> be a sequence of orthonormal polynomials
with the positive leading coefficient. Denote the restricted part of pn to [a, 00)
abusively by p., where a is the mazimum zero of pn. Then

Pr-1 = Pn-

Now we give a bit of results related to characteristic polynomials of ma-
trices. Let A be a n X n matrix with singular values s; 2 s3 2 ++* 2 8n.

Then N
1Al =Y s
i=1

is called k-norm of A. It is well-known that ||Aljx < [|Bllx for k=1,2,---,n,
if and only if [A] £ ||BJ for every unitarily invariant norm. By using
Theorem3.4 we can easily verify the following:

Corollary 3.6 Let A, B be n X n non-negative matrices and pa,pp their
characteristic polynomials. Then

WAL S liBlle (1 £k Sn)=pa=2ps.

We finally deal with a general real polynomial w(¢) with imaginary zeros.

Theorem 3.7 Let u(t) be the polynomial defined in (2) and w(t) the poly-
nomial with imaginary zeros defined by

w(t) = H(t — ;) (Ra; £t <),

where Ray = Rag 2 -+ 2 Ray. Then

A ‘
Zaj(1§k§m)==>w-_<u.
=1

A

k
msn, Z Roy;
=1
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4 Operator Inequalities

In this section we apply the product theorem to operator inequalities. Our
interest is inqualities concerning non-negative operators. So we only deal
with functions defined on [0, o). Let us recall that for ¢(t) € P[0, 00)

X*X 1= ¢(X*AX) 2 X*¢(A)X (A20),
X*X 21 =>¢(X*AX) S X*$(A)X (A20).

The first inequality is called the Hansen-Pedersen inequality [7], from which
the second one follows (cf.[13]).

Lemma 4.1 Let ¢(t) and f(t) be in Py[0,00). Suppose h(t) and h(t) are
non-negative functions on [0,00). If ¢(h(t) f(t)) = h(t) f(t), then

S(F(A)TR(B)F(A)?) 2 F(A)3h(B)f(A)3,
02428= { S(F(BYR(A)F(B)E) < F(B)IR(A)F(B)}.

Proposition 4.2 Let h(t) € P;[0,00) and fi(t) € P+[0,00) fori=1,2,---.
For each natural number n put g,(t) = [, fi(t) and define the function ¢,
on {0,00) by

Pn(h(t)gn(t)) = tgu(t) (0=t < 00). (3)
Then
¢n(9n(A)%h(B)gn(A>%) 2 Agn(A)
IS A B ) 2 Ben(B) @

Proof. We will show only the first inequality of (4) since the second one
can be similarly shown. The product theorem says ¢, € P..[0,00) for every
n. By Lemmad4.1

61(g1(A)3R(B)gi(A)7) 2 g1(A)Bg:(4)7 = Agi(A).
Assume (4) holds for n, that is
$n(9n(A)7h(B)gn(A)7) Z Aga(A),

and denote the larger side (or the smaller side) of this inequality by K (or
H). The function ¢, defined by ©,,(tga(t)) = fat+1(t) is in P4 [0, 00), because
frs1(t) 2t 2 tg,(t). Putting s = tg,(t), we have :

Bni1(@n (8)¥n(s)) = stn(s).



Applying Lemmad.1 to this equality and the inequality H < K, we get

s (G (HVESL (K ) n(H)B) 2 (H) S K (H)F 2 Hipn(H).
This yields

1 (Gns1 (A)FA(B)gnr1(A)F) 2 Agnl(A) fair(A) = Agnii(4),

because Yn(H) = Ya(Aga(A)) = far1(A) and ¢72(K) = ga(A)Fh(B)gn(4)7.
Thus we have obtained the first required inequality of (4). O

Remark 4.1 (4) is the generalization of the Furuta inequality [6](also see
19, 14)):

(AT/ZBPATH)II_’% Z (Ar/2ApAr/2)%~i—:’

<AL
0 = A = B = { (Br/QAsB'r/Z)ﬁ é (Br/QBpBr/Z)%%’

where r > 0, p = 1. In fact, let us substitute # for h(t) and t" for ga(t) In
(3), where 7 is taken as n — 1 < r < n. Since the function ¢y, satisfies

fult) = 757,

(4) deduces the above inequalities.

Proposition 4.3 Let h(t) € P;'[0,00), and let h(t) be a non-negative func-
tion on [0,00) such that ;

h < h.
Let fi(t) € P.[0,00) fori=1,2,---, and put ga(t) = [Ti, fi(t). Then for
the function o, defined by oa(h(t)gn(t)) = h(t)gn(t)

ol AP R(BY(A)) 2 (B (A),
0sAsB= { oo B R(A)ga(B)) < gn( BYFH(A)gu(B)3. .
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Theorem 4.4 Let h(t) € P70, 00), and let h(t) be a non-negative function
on [0,00) such that N
h = h.

Let go(t) be a finite product of functions in P[0, ) fori=1,2,---. Sup-

* pose {ga} converges pointwise to g on [0,00) such that g is increasing and

continuous. Then for the function ¢ defined by (h(t)g(t)) = h(t)g(t)

©(g(A)Fh(B)g(A)?) Z g(A)Th(B)g(A)?,
62428= { olg(B) M A)g(B)}) < o(B)HR(A)g(B)}. ©®

Furthermore, if b € P[0, 00), then

(g(A)i(B)g(A)%) Z h(A)g(4),
S As 8= T o a)h) S AE(B) i

et N

Now we apply Theorem4.4 to power functions.

Proposition 4.5 Let h(t) € P1'[0,00), and let g be a pointwise limit of
{gn}, where gn(t) is a finite product of functions in Py[0,00). If

0<a<1, h()g(t)" 2 h(),
then

1
2,
1
2

(g(A)2h(B)g(A)%)> 2 g(A)ih(B)*g(B)*'g(A
(24=B= { o(B)E(A)g(B)})” < g(BYA(A)"g(4)" (B

(8)

Furthermore, if
h(t)*g(t)*™" € P4[0,00),
then

L ST

(oA (Blo(AR)" 2 (H(A)g(4))",
05455~ (a(B) h(A)g(B)})* < (h(B)a(B)" 9

Proof. Put A(t) = h(t)*g(t)*!. Then the assumption means h(t) =<
h(t). For ¢ on [0, 00) defined by

(h(t)g(t)) = h(t)g(®),
by Theorem4.4, we have

©(g(A)Th(B)g(A)?) Z g(A)Th(B)g(A4)?.



Since p(R(t)g(t)) = A(t)g(t) = (h(t)g(t))?, or p(s) = s* for 0 < s < oo, the
above inequality coincides with the first inequality of (8). The rest can be
shown in the same fasion. d

It seems that Proposition4.5 has numerous applications.

Corollary 4.6 Let a;,s; (i = 1,---,n) and r be real numbers such that
O=ag<a;,0<s;and0<r. Puts=> g8 If0<sS1,0<aS1, or

if

1+
1<s, r(s—s0—1)S s, 0<as s-l-:’
then
A5 TR (B +ai)* AF)™ 2 (AR T]Lg(A + ;) A%)
<a<p={ Al o S (BETT" (A4 a)%B5)
osash={ GlleE Lo e S (B A + ayeBor

We take notice that the Furuta inequality is just the case of so = p,s; =0
for ¢ 2 1 in the above inequalities.

Corollary 4.7 Let g be a pointwise limit of {gn}, where ga(t) is a finite
product of functions in P.[0,00). If0 <7, 0 < S 3, then

= s+tr’

(o()5a(BYa(A)5)" = (s A)ig(AVa( )"
054282 { {(lnlistars(Brr < GraEraERy. (7

The case of g(t) = € in (9) has been shown in [3](cf. [10]).
Example 4.1 Let h(t) = []q(t + a:)*, where a; 2> 0, 8 > 0. If s S r, then

|(R(B)eB ) (W(A)e?)"| Z (h(A)e)er),

0 é A é B = { Kh(A)eA)s(h(B)eB)r} é (h(B)EB)(8+T),

where | X| := (X*z)/2.

Indeed, consider g(¢) in the preceding corollary as [io(t + i)™ et with a; >
0,5 2 0, and substitute 2r for r and 2s for s; since 1/2 S7/(s+ r)ifsSr,
by (10) we get the above inequalities.

Corollary 4.8 Let h(t) = [Tr,(t+a:)%e*, where ag = 0,a; > 0,50 >1,8 2
0, and put s =" 8. If0<r, r(s—1) S5, 0<a s g, then
(e54h(B)es4)e 2 (e AR(A)ei ),
(e2Bh(B)esB)* 2 (e5Bh(A)eiB)>.
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