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1 Introduction
The causal theory of stochastic calculus originated by K.Jt6 in 1942 is founded on the
hypothesis of Causality, saying that; “Every function $f(t,\omega)$ , $(t\geq 0,\omega \in\Omega)$ should
be adapted to the increasing family of $\sigma$ -fields, generated by the Tinderlying basic
process $Z_{t}(\omega)$ , which is a square integrable semi-martingale like the Brownian motion”
The hypothesis seems well fit to the principle of causality in physics, where the variable
$,,t$” appears as time parameter. Moreover it endows the theory a remarkable feature

of being in natural concordance with the notion of martingale which plays indeed an
essential role in It6’s Calculus.
However it is also true that the hypothesis of Causality has imposed a significant

restriction on the applicability of the causal theory of stochastic calculus. Let us take

for example the case of such SDEs driven by general stochastic processes, like the

fractional Brownian motion, that do not have the martingale property ([8]), or the

case of usual SDEs but under noncausal situations, that is the SDE with noncausal
coefficients $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ noncausal initial values. Let us take moreover the case where

the parameter ”
$t$
” stands for the space parameter, or the case where ”

$t$
” is multi-

dimensional ( $\mathrm{i}\mathrm{e}.$ , “a stochastic calculus” for the random field, [14]). The notion of

Causality looses its sound meaning in such cases because of the lack of natural sense
of time direction. Even in the case of physical problems where ”

$t$
” appears as time

parameter, we can find various situations of noncausal nature, such as the Cauchy

problem in the theory of Brownian particle equations [13], noncausal version of the

SDEs, the White noise analysis [23] etc.

Guided by these motivations the author had presented the noncausal theory of

stochastic calculus in 1979 [23], by introducing the noncausal stochastic integral which

is now refereed by author’s name. In this note we will give a unified sketch of that non-

causal stochastic calculus. We will show recent development of the theory (cf. [10],[13])
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and we will also refer to some typical applications of the theory to mathematical sci-
ences including mathematical finance.

2 Noncausal problems in stochastic analysis

To motivate our study we like to show in this paragraph some typical examples of non-
causal 1ature in stochastic analysis. Hereafter we fix once for all a probability space
$(\Omega, \mathcal{F}, P)$ on which all random quantities are defined. Among these we understand by
$W_{t}(\omega)$ , $t\geq 0$ the standard Brownian motion and denote by $\{\mathcal{F}_{t}\}$ the natural filtration
generated by the W., namely the family of $\sigma$ fields $\mathcal{F}_{t}=\sigma\{W_{s};0 \leq_{-}s\leq t\}\subset \mathcal{F}$.

By the random functions we understand those real valued functions $f(t, \omega)$ which
are measurable in $(t, \omega)$ with respect to the field $B_{[0,T]}\cross$

$\mathcal{F}$ and satisfy the condition,

$P \{\oint_{0}^{T}f^{2}(t, x,\omega)dt<\infty\}=1$

We will denote by $\mathrm{H}$ the set of all such random functions. A random function $f(t, \omega)\in$

$\mathrm{H}$ is called causal (or non-anticipative) if, for each $t\in[0, T]$ it is adapted to the $\sigma$

field $\mathcal{F}_{t}$ . We will denote by $\mathrm{M}$ the totality of causal random functions. For the
random function $f$ of this class, we have the It6 integral which we will denote by

$\oint fdW_{t}$ throughout the paper, while for thle $\mathrm{B}$-differentiable function $f\in \mathrm{M}$ the

integral of symmetric type (or noncausal type) is denoted by the symbol, $lfd_{*}W_{t}$

(see, Paragraph 3).

Example 1– Stochastic conservation law

Suppose given two stochastic processes, $X_{t}$ , $Y_{t}(t\geq 0)$ which obey a conservation
law as follows;

$E(X_{t}, Y_{t}, t, \alpha, \beta)\gamma$ , $..)=$ Const,

where $\alpha$ , $\beta$ , $\gamma$ etc are causal constants, that is the deterministic or at least the random
variables which are independent of the W., Now suppose that the process $X_{t}$ is
unknown but another one is know $\mathrm{n}$ to be generated by the following mechanism,

$dY_{t}=a(Y_{t})dt+b(Yt)dWu$ $Y_{0}=y0\in R^{1}$ .

Given these we are to derive the equation of dynamics for the process $X_{t}$ . We are
already familiar with such problem especially in mathematical physics, but also in the
mathematical finance we face to this. For example some authors like M.Schweizer,
E.Platen this idea for the modelling of the price process in some specific situation, and
we, S.Ogawa and M.Mancino [11], followed the same way to derive the SDE model for
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price process in such market that admits a feedback of the future information about
the delta hedging strategy.

For the derivation of the desired SDE, we are only to apPly the It6 formula to
the conservation equation. But an essential problem can arise when the parameters
ce, , 7etc. are allowed to arbitrary random variables dependent of the W., for in such
case we can no longer suppose that the process $X_{t}$ is causal and we can not apply the

It6 theory.
Let us take an example again from the mathematical finance.

Example 2– Black-Sholes model in noncausal situation

The SDE in Black-Sholes model is as follows;

$dS_{t}=rStdt$ $+\sigma^{2}S_{t}dW_{t}$ , (1)

which can be interpreted in the following form of the SDE with the symmetric stochas-
tic integrals,

$dS_{t}=$ $(r - \frac{\sigma^{2}}{2})S_{t}dt$ $+\sigma S_{t}d_{*}W_{t}$ , (2)

where the term $\oint d_{*}W_{t}$ represents the symmetric integral $([^{7}])$ , that is; for the B-

differentiable causal function $f(t, \omega)$ ,

$\int f(t, \omega)d_{*}W_{t}=\int fdW_{t}+\frac{1}{2}\int\frac{\partial}{\partial W_{t}}fdt$,

$\frac{\partial}{\partial W_{t}}f$ is the $\mathrm{B}$ derivation of the $f$ . The symmetric integral is a special case of the

noncausal integral that we are to study in the next paragraph.
To this simple model there correspond the following two variations of noncausal

nature;

1. Case 1: The case where the constants $r$ , a in the B-S equation are replaced by

arbitrary random variables.

2. Case 2: The case where the Brownian motion $W$ in the equation is replaced by

such random process which does not have a martingale property, for example

the Fractional Brownian motion.

The first modification can arise when we need to study the B-S model in such situation

of admitting the insider trading, and the latter case has been already discussed as
the fractional B-S model by many authors, like A.Shiryaev [6], P.Cheridito [1] for
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example, but without giving a justification of such noncausal type “SDEs” in terms
of the noncausal calculus.

For the study of these modified models, first of all we need the introduction of
the noncausal stochastic calculus and then we are to give precise meaning to such
noncausal SDEs as follows;

$dX_{t}=a(t, X_{t}, \eta(\omega))dt+b(t, X_{t}, \zeta(\omega))dW_{t}$,
(3)

$X_{0}(\omega)=\xi(\omega)$ .

In view of the application to the SDEs of the cases 1 and 2, we are concerned with the
study of the noncausal SDEs, with a special interest on the validity of a noncausal It\^o

fomufa. We will study these subjects in the paragraphs 3,4 and 5 in a much more
general situation.

Example 3– SIE of Fredholm type

Let us consider the boundary value problem for the second order SDE as follows;

$\{\frac{d}{dt}p(t,\omega)\frac{d}{dt}+q(t,\omega)\}X(t)=X(t)\frac{dZ}{dt}(t,\omega)+h(t,\omega)$

(4)
$X(0)=\xi_{0}(\omega)$ , $X(1)=\xi_{1}(\omega)$ ,

where $\xi_{0}$ and $\xi_{1}$ are arbitrary random variables.
where $Z_{t}$ , $t\in[0, 1]$ is an arbitrary stochastic process defined on the $(\Omega, \mathcal{F}, P)$ , with
square integrable sample paths.
Then as we do for the boundary value problem of ordinary differential equations, by
using the Green’s function $K(t, s, \omega)$ corresponding to the above $\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n},\mathrm{w}\mathrm{e}$ may get
in a very formal way the following integral equation of Fredholm type;

$X(t, \omega)=f(t, \omega)+\int_{0}^{1}L(t, s,\omega)X(s)ds+\oint_{0}^{1}K(t, s, \omega)X(s)d_{\varphi}Z(s)$ , (5)

where $L(t, s, \omega)=h(s)K(t, s, \omega)$ and $\int d_{\varphi}Z(s)$ represents the stochastic integral of

noncausal type with respect to an orthonormal basis $\{\varphi_{n}\}$ in $L^{2}(0, 1)$ .

This is a very typical subject in the noncausal stochastic calculus, since in such
situation we can no more suppose that the solution $X_{t}$ is still causal (it i.e. adapted)
to the natural filtration generated by the underlying fundamental process $Z_{t}$ , hence
the stochastic integral term $\oint X_{\mathrm{t}}dZ_{t}$ loses its meaning in the framework of the It6’s
theory
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In the article of 1986 ([16]) the author studied this subject in connection with the
boundary value problems of stochastic differential equations and he showed the exis-
tence and the uniqueness of solutions (see Theorem 1 in [16]), under some reasonable
assumptions on the choice of the fundamental pair $(Z, \{\varphi_{n}\})$ and on the sample reg-
ularity of the kernels $\mathrm{K}$ and L.

As a natural extension of such SIE (stochastic integral equation) to the case where the
$Z_{\mathrm{t}}$ , $X_{t}$ are the random fields, namely the stochastic processes with multi-dimensional
parameters $t\in J=[0,1]^{d}$ , we can think of the SIE for the random fields. Imagine
for example the case where the driving force process $Z_{t}$ is the Brownian sheet.

$X(t, \omega)=f(t, \omega)+\oint_{J}L(t, s,\omega)X(s)ds+\int_{J}K(t, s, \omega)X(s)d_{\varphi}Z(s)$ , (6)

For the review of this subject we would refer to the coming article [9], which will
appear in another monograph of lecture notes of the same conference.

So far the examples of noncausal problems are given where the noncausality has
entered into the situation through the noncausal quantities, such as the noncausal
initial values, the noncausal coefficients in SDE, or the driving stochastic process
that does not have the martingale or semi- martingale property. But the noncausal
problem can arise even in the ordinary situation where all the random quantities are
supposed to be causal, that is adapted to the natural filtration $\{\mathcal{F}_{t}\}$ . Here is another
example which is typical 1n this sense.

Example 4– The SPDE called BPE

Given the real Brownian motion $W_{t}$ and smooth coefficients

$a(t, x)$ , $\mathrm{b}(\mathrm{t}, x)$ , $A(t, x)$ , $B(t, x)7C(t, x),$ $u_{0}(x)$ , $(t, x)\in[0, T]\cross$ $R^{1}$ ,

we consider tire Cauchy problem of a stochastic partial differential equation as follows;

$\frac{\partial}{\partial t}u+\{a(t, x)+b(t, x)\frac{dW_{t}}{dt}\}\frac{\partial}{\partial x}u=A(t, x)u(t, x,\omega)\frac{dW_{t}}{dt}+Bu+C(t, x)$

(7)
$u(0, x, \omega)=u_{0}(x)$

By the solution of this problem, we understand the random function $u(t, x, \omega)$ mea-
surable in $(t, x,\omega)$ with respect to the field $B_{[0,T]}\cross$ $B_{R^{1}}\rangle\langle$

$\mathrm{T}$ , especially causal in
$(t,\omega)$ for each fixed $x\in R^{1}$ , and satisfies the following weak solution equality with
probability one for any test function $\varphi(t, x)$ (cf. [24]);

$I$ $\int_{G}[\{\varphi_{t}+(a\varphi)_{x}+A\varphi\}u(t, x, \omega)+C\varphi]$dtdx
(8)

$+ \int_{R^{1}}dxl^{T}(b\varphi)_{x}u(t, x, \omega)d_{*}W_{t}+\int_{R^{1}}u_{0}(x)\varphi(0, x)dx=0$,
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where $G=[0, T]\mathrm{x}$ $\mathrm{R}^{1}$ , $\varphi_{t}=\frac{\partial}{\partial t}\varphi$ , $\varphi_{x}=\frac{\partial}{\partial x}\varphi$ and the term $\int d_{*}W_{t}$ stands for the

symmetric stochastic integral(see the Paragraph 3 below) as it is remarked in the

introduction.

The equation of this type, called the “Brownian particle equation” , was introduced
by the author ([24]) in the study of wave propagation in random media as a mathe-
matical model for such stochastic propagation phenomenon carried by the Brownian
or diffusive particles, namely the propagation along the stochastic trajectory $X_{t}$ gov-
erned by the SDE,

$dX_{t}=a(t, X_{t})dt+b(t, X_{t})d_{*}W_{t}$ .

Now the noncausal situation arises in this problem when we try to construct the
solution $u(t, x, \omega)$ by means of the method of stochastic characteristics which was
first studied by the author; By the formal application of the well known method of
characteristics in the theory of the partial differential equation of the first order, or of
hyperbolic type, we will get in this case the following system of (symmetric) stochastic
integral equations.

$X^{(l,x)}(s)$ $=x+l^{t}a(r, X^{(t,x)}(r))a’ r+f_{s}^{\iota}b(r, X^{(t,x)}(r))d_{*}W_{r}$ , $(0\leq s\leq t\leq T)$

$u(t, x, \omega)$ $=u_{0}(X^{(t,x)}(0))+ \int_{0}^{t}\{Bu(s, X^{(t,x)}(s), \omega)+C(s, X^{(t,x)}(s))\}ds$

$+ \int_{0}^{\mathrm{t}}Au(s, X^{(t,x)}(s)$ , $\omega)d_{*}W_{s}$ .

(9)

Here the first equation gives the characteristic curve $X^{(t,x)}(s)(s\leq t)$ passing through
the fixed point $(t_{7}x)$ , along which the phenomenon propagates, and the second equa-
tion is derived by integrating the PDE along that stochastic calculus. Now remem-
bre that the solution $u(t, x, \omega)$ is adopted to the (7-field $\mathcal{F}_{t}$ , while the character-
istic curve $X^{(t,x)}(s)$ , $0\leq s\leq t\leq T$ is measurable with respect to the cr-field
$\mathcal{F}_{t}^{s}.--\sigma\{W(t)-W(r);s\leq r\leq t\}$ . The composed function $u(s, X^{(t,x)}(s),\omega)$ ap-
peared in the second equation above is no more causal with respect to the Brownian
motion and hence the term of stochastic integral loses its meaning.

Such are the examples of noncausal problems, for the treatment of which we need
another theory of stochastic calculus that is free from the restriction of the Causality.
The calculus introduced by the author in 1979 is one of such theories and has many
advantageous properties compared to other calculus from the viewpoint of the tool
for the modelling and analysis of noncausal random problems. We are going to give
in what follows a resume of that noncausal theory of stochastic calculus, brief but
sufficient for us to see that these problems can be treated in very natural way
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3 Review of the noncausal stochastic calculus
For the rigorous study of those noncausal problems listed in the previous paragraph,
we need to introduce a noncausal stochastic calculus that is free from the restriction
of causality and one of such calculus was introduced by the author in 1979 ([23],
[18],[22],[20] and [15], etc.). We are going to give in this paragraph a rapid review
of some fundamental results in the theory of noncausal stochastic calculus, mainly
following the recent article [13]. For its special importance of the Brownian motion
in the stochastic theory and also for the concreteness of the discussion, we will show
mainly the case of the noncausal calculus with respect to the Brownian motion $W_{t}$ ,
but as we will see (cf. Remark 2) easily the formalism can work even for the ase of
more general stochastic processes instead of the $W_{t}$ .

3.1 Causal functions and the B-differentiability

Following the [25], we will say that an $\mathrm{H}$-class random function $g(t, \omega)$ is differ-
entiable with respect to the Brownian motion $W_{t}$ (or $\mathrm{B}$-differentiable) provided that
there exists an $\mathrm{M}$-class random function say $\frac{\partial}{\partial W_{t}}g(t,\omega)$ such that, for small enough
$h>0$ ,

$t,s,|t-s|<h \mathrm{S}11\mathrm{p}E|g(t, \omega)-g(s, \omega)-\int_{s}^{t}\frac{\partial}{\partial W_{r}}g(r,\omega)dW_{r}|^{2}=o(h)$

where the integral $\int dW$ stands for the It6’s stochastic integral. The function

$\frac{\partial}{\partial W_{t}}g$ is called the $\mathrm{B}$-derivative of the $g$ . It is not difficult to see that if the func-
tion $g(t, \omega)$ is $\mathrm{B}$-differentiable then its $\mathrm{B}$-derivative is uniquely determined (see [25]).
The $\mathrm{B}$-differentiability of the random function with respect to the multi-dimensional
Brownian motion is defined in a similar way.

Remark 1 Let $g(t, \omega)$ be a functional of the multi-dimensional Brownian motion,
$\mathrm{W}_{t}=$ $(W_{t}^{1}, W_{t}^{2}, \cdots, W_{t}^{n})$ where the $W^{i}$ , $(1 \leq \mathrm{i}\leq n)$ are independent copies of
the l-dim. Brownian motion $W_{t}$ . Then the $B$-derivative of such function, say $\nabla_{w}g_{7}$

can be defined in the following way: the $\nabla_{w}g=$ $( \frac{\partial}{\partial W_{t}^{1}}g_{\dagger}\overline{\partial}W_{\vec{t}}g\partial, \cdots, \frac{\partial}{\partial W_{\mathrm{t}}^{n}}g)^{t}$ is a Causal
random vector such that,

$t,s|^{\sup_{t-S|<h}E|g(t,\omega)-g(s,\omega)-\sum_{k=1}^{n}} \int_{s}^{t}\frac{\partial}{\partial W_{r}^{k}}g(r, \omega)dW_{r}^{k}|^{2}=o(h)$

Here we notice that the It6 integral is defined for the causal random functions
$f(t, \omega)\in \mathrm{M}$ and roughly speaking the symmetric integrals (i.e. $\mathrm{I}_{1/2}$ of Ogawa [25] and
Stratonovich-Fisk integral) are defined for the causal and $\mathrm{B}$-differentiable functions.
That is, the symmetric integral $\mathrm{I}_{1/2}(f)$ of a $\mathrm{B}$-differentiable function was introduced
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as the limit (in probability) $\lim_{|\Delta|arrow 0}\mathrm{I}_{\Delta}(f)$ of the sequence $\{\mathrm{I}_{\Delta}(f)\}$ of Riemannian
sums,

$\mathrm{I}_{\Delta}(f)=\sum_{t_{i}\in\Delta}f(\frac{t_{l}+t_{i+1}}{2})\{W(t_{i+1})-W(t_{i})\}$

where, $\triangle=\{0\leq t_{1}<\cdots<t_{n}\leq 1\}$ is a partition of the interval $[0, 1]$ and $|\triangle|=$

$\max_{i}(t_{i+1}-t_{i})$ .

The following result was established by the author in 1970,

Theorem 3.1 ([25]) The limit (in probability) $\mathrm{I}_{1/2}(f)=\lim_{|\Delta|arrow 0}\mathrm{I}_{\Delta}(f)$ exists and is

represented in the following form:

$\mathrm{I}_{1/2}(f)=\frac{1}{2}\int_{0}^{1}\frac{\partial}{\partial W_{t}}fdt+\int_{0}^{1}f(t, \omega)dW_{t}$

3,2 Noncausal stochastic integral

Given a random function $f(t, \omega)\in \mathrm{H}$ and an arbitrary complete orthonormal system
$\{\varphi_{n}\}$ in $L^{2}([0,1])$ , we consider the formal random series

$\sum_{n}^{\infty}\oint_{0}^{1}f(t, \omega)\varphi_{n}(t)dt\oint_{0}^{1}\varphi_{n}(t)dW_{t}$ .

The stochastic integral of noncausal type introduced by the author in 1979 ([23]), is
given in the following way,

Definition 1: A random function $f(t, \omega)\in\dot{\mathrm{H}}$ is said to be integrable with respect to
the basis $\{\varphi_{n}\}$ (or $\varphi$ -integrable) when the random series above converges in probability

and the sum, denoted by $\int_{0}^{1}f(t, \omega)d_{\varphi}W_{t}$ , is called the stochastic integral of noncausal

type with respect to the basis $\{\varphi_{n}\}$ .

Remark 2 The validity of the above definition is not limited to the case of Brownian
motion or to other square integrable semi-martingales. Indeed it can apply even to
the case of general square integrable processes say $Z_{t}$ that do not posses the property

of semi-martingale, as long as the quantities

$\int_{0}^{1}\varphi_{n}(t)dZ_{t}$

are well defined. The simplest example is when toe employ the system of Haar furtc-
tions $\{H_{0,0}(t), H_{n,i}(t))0\leq \mathrm{i}\leq 2^{n-1} -- 1, n\in \mathrm{N}\}$ as orthonorrmal basis. Let us
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remembre that the $H_{n,i}(t)$ are as follows;

$H_{0,0}(t)=1$ ,

$H_{n,i}(t)=2^{(n-1\rangle/2}\{1_{[2^{-n}2i,2^{-n}(2i+1))}(t)-1_{[2^{-n}(2i+1),2^{-n}2(i+1))}(t)\}$ (10)

$0\leq i\leq 2^{n-1}-1$ , $n\geq 1$ .

In this case the quantity above is defined in the natural way as follows;

$\int_{0}^{1}H_{0,0}(t)dZ_{t}=Z(1)$ $-Z(0)$ ,
(11)

$\int_{0}^{1}H_{n,i}(t)dZ_{t}=2^{n/2}[\{Z(\frac{2\mathrm{i}+1}{2^{n}})-Z(\frac{2\mathrm{i}}{2^{n}})\}-\{Z(\frac{2\mathrm{i}+2}{2^{n}})-Z(\frac{2\mathrm{i}+1}{2^{n}})\}]$

The noncausal integral with respect to the fractional Brownian motion can be intro-
duced by this way (of. [8]).

In general case, the way of convergence of the random series being conditional, the
integrability and the sum should depend on the basis, even on the order of the same
complete system of orthonormal functions. On the relation between the noncausal
integrals with respect to different bases, very few is known except the following,

Theorem 3,2 (1984,[21j) If the random function $f(t, \omega)\in \mathrm{H}$ is integrable in the
$L^{1}-$ sense ($\mathrm{i}e$ . convergent in $L^{1}$ ( $\Omega$ , $P$) sense) with respect to the system of trigono-

metric functions,
{1,a$\cos 2n$ , $\sqrt{2}\sin 2n\pi x;n\in \mathrm{N}$}.

Then the $f$ is integrable with respect to the system of Haar functions and the value of
trno integrals coincide.

If the function is integrable with respect to any basis $\{\varphi_{n}\}$ and the sum does
not depend on the choice of the basis, we will say that the function is universally

integrable (or shortly u-integrable).

3.3 Equivalent expressions and variants

Here are some equivalent expressions and a possible variation of the above definition,

which are worth to be remarked so that we can have a better understanding of the

nature of our noncausal integral.

(a) As a limit of the sequence of random Stieltjes integrals:
Given the pair $(W_{t}, \{\varphi_{n}\})$ we introduce the sequence of approximation processes
$W_{n}^{\varphi}(t)$ in the following way.

$W_{n}^{\varphi}(t)= \sum_{k=1}^{n}\int_{0}^{t}\varphi_{k}(s)ds\int_{0}^{1}\varphi_{k}(s)dW_{s}$ . (12)
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It is immediate to see that this gives a pathwise smooth approximation of the Brow-
nian motion $W(t, \omega)$ . Moreover, by virtue of the famous theorem due to K.It6 and
M.Nishio [2], we know that for any choice of the basis $\{\varphi_{n}\}$ the sequence $\{W_{n}^{\varphi}(t)\}$

converges uniformly in $t\in[0, 1]$ as $narrow\infty$ with probability one. Now we notice that
our noncausal integral can be expressed as the limit (in probability) of the sequence
of random Stieltjes integrals;

Proposition 3.1 It holds that,

$\mathrm{Q}^{1}fd_{\varphi}W_{t}:=$ Jim $\int_{0}^{1}fdW_{n}^{\varphi}(t)$ (in probability).

(b) Riemannian definition:
Let us take the Haar functions $\{H_{n,\iota}(t)\}$ for basis $\{\varphi_{n}\}$ . This is a case of special
interest because we have the following,

Lemma 3.1 (1984 [21]) Let us define the approximation process $W_{n}^{H}(t)$ for this
case by the following formula,

$W_{n}^{H}(t)= \sum_{k\leq n}\sum_{i=0}^{2^{k}-1}\int_{0}^{1}H_{k,i}(s)dW_{s}\oint_{0}^{f}H_{k,i}(s)ds$ .

Then each $W_{n}^{H}(t)$ is the Conchy polygonal approximation of the process $W_{t}$ taken over
the set of dyadic points $\{k/2^{n};0\leq k\leq 2^{n}\}$, that is,

$W_{n}^{H}(t)=W( \frac{k}{2^{n}})+2^{n}\{W(\frac{k+1}{2^{n}})-W(\frac{k}{2^{n}})\}(t-\frac{k}{2^{n}})$ , for $t \in[\frac{k}{2^{n}}, \frac{k+1}{2^{n}})$ . (13)

To check this, we introduce the indicator function, $\chi_{n,i}(t)=2^{n/2}1[2^{-n}i,2^{-n}(i+1))(t)$ . It
is immed iate to see that

$(\chi_{n},, {}_{i}H_{m,k})=0$ for $\forall(m, k)$ with $m\geq n+1$ ,

here the symbol $(\cdot, \cdot)$ denotes the inner product in $L^{2}(0,1)$ .

Therefore each $\chi_{n,i}$ should be represented as linear combination of the membres
$\{H_{m,k_{?}}m\leq n\}$ , say;

$\chi_{n,i}(t)=C(n,j;0, 0)H_{0,0}+\sum_{1\leq m\leq n}\sum_{k=0}^{2^{(}m-1)-1}C(n, \mathrm{i};m, k)H_{m,k}(t)$ .

$C(n, \mathrm{i};m, k)=(\chi_{n},, {}_{i}H_{m,k})$ .

It is also easy to see that we have the following relation;

$\sum_{i=0}^{2^{n}-1}C(n, \mathrm{i},\cdot m, k)C(n, \mathrm{i};l, j)=\delta_{m,l}\delta_{k,\mathrm{j}}$ .
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Based on this relation we can get the following equality,

$W_{n}^{H}(t)= \sum_{k=0}^{2^{n}1}\triangle_{k}^{n}W\chi_{n_{1}k}(t)-$ , $\triangle_{k}^{n}W=W(\frac{k+1}{2^{n}})-W(\frac{k}{2^{n}})$ ,

and this is what we want to see.

Now applying this result to the expression given in the Proposition 3.1 of (a), we
see that in this case the defining formula of the noncausal integral is given as the
Riemannian sum,

$\int_{0}^{1}fd_{H}W_{t}=\lim_{narrow\infty}\mathrm{I}$ $2^{n} \int_{2^{-n}i}^{2^{-n}(i+1\rangle}f(s)ds\cdot$ $\{W(2^{-n}(\mathrm{i}+1))-W(2^{-n}\mathrm{i})\}$ . (14) -

This type of definition can be found in recent publications of some authors. But
as we have seen in here ([21]), this is merely a special case of our integral.

(c) Let $D_{n}(t, s)$ be the kernel given by, $D_{n}(t, s)= \sum_{k=1}^{n}\varphi_{k}(t)\varphi_{k}(s)$ , $(t, s\in[0, 1])$ .

Then we have the following representation for the noncausal integral,

$l^{1}fd_{\varphi}W(t)= \lim_{narrow\infty}\oint_{0}^{1}dt\oint_{0}^{1}/(\mathrm{t}, \omega)D_{n}(t, s)dW_{s}$ (limit in probability).

For the case of trigonometric functions, the kernel $D_{n}(t, s)$ is the Dirichlet kernel
appearing in the theory of Fourier series.

(d) A generalization of the ab ove view: Replace the kernels $\{D_{n}(t_{7}s)\}$ in the
above interpretation by any $\delta-$ sequence say $\{K_{n}(t, s)\}$ , then we will get a generalized
formula for the noncausal integral:

$j^{1}fd_{K}W:= \lim_{narrow\infty}\oint_{0}^{1}dt\int_{0}^{1}f(t,\omega)K_{n}(t, s)d,W_{s}$

3,4 Condition for the integrability - in the framework of the
Homogeneous Chaos theory

Let $\mathrm{H}_{0}$ be the totality of all random functions $f(t,\omega)\in \mathrm{H}$ such that, $E \oint_{0}^{1}|f(t, \omega)|^{2}dt$

$<\infty$ . By Wiener-It6’s theory of Homogeneous Chaos, we know that such function
$f\in \mathrm{H}_{0}$ can be decomposed into the sum of multiple Wiener integrals, that is:

There exists a set of kernels, say $\{k_{n}^{f}(t;t_{1}, \cdots,t_{n})\}_{n=0}^{\infty}$ , such that $k_{n}^{f}\in L^{2}([0,1]^{n+1})$
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with $\sum_{n}n!||k_{n}^{f}||_{n+1}^{2}<\infty$, symmetric in $n$-parameters
$(t_{1}, \cdot, t_{n})\in[0, 1]^{n}$

and that,

We will denote by $\mathrm{H}_{1}$ the totality of all Ho- functions $f(t,\omega)$ such that,

$\sum_{n=1}^{\infty}nn!||k_{n}^{f}||_{n+1}^{2}<\infty$ . Given a function $f\in \mathrm{H}_{1}$ we introduce its stochastic

derivative $\prime Df$ by the following formula,

$Df(t, s)= \sum_{n=1}^{\infty}nI_{n-1}(k_{n}^{f}(t;s, \cdot))$ .

Since $E \int_{0}^{1}\int_{0}^{1}(Df(t, s))^{2}dtds=\sum nn!||k_{n}^{f}||_{n+1}^{2}$ , we notice that thle stochastic

derivative $Df(t, s)$ is well defined for the $f\in \mathrm{H}_{1}$ . Now we can state the condition
for the qintegrability of the $\mathrm{H}_{1}$ -class functions in the following theorem that was
obtained by the author in 1984.

Theorem 3.3 ([22]) Let $f\in \mathrm{H}_{1}$ and let $\{\varphi_{n}\}$ be an arbitrary orthonormal
basis. Then the necessary and sufficient condition for the random function $f$ to be

$\varphi$-integrable is that the $\lim_{narrow\varpi}\int_{0}^{1}\oint_{0}^{1}Df(t, s)D_{n}(t, s)dtds$ exists in probabil$ity$ .

3,5 Relation between symmetric and noncausal integrals

We call a random function $f(t, \omega)$ semi martingale when it admits the decomposition,

$f(t, \omega)=a(t, \omega)+\int^{t}\hat{f}dW_{s}$ where $\hat{f}\in \mathrm{M}$ and $a(t)$ is such that almost every sample

path is of bounded variation in $t$ over $[0, 1]$ . Notice that if $\sup$ $E|a(t)-a(s)|^{2}=$
$t,s|t-s|<h$

$o(h)$ then $f$ is B-differentiable.

The followings are the basic results concerning the relation between the symmetric
integrals with the noncausal integral.

Theorem 3,4 ([18]) Every causal B- differentiable function is integrable in non-
causal sense with respect to the system of Haar functions and the sum coincides with
that of the symmetric in tegrals:

$\int_{0}^{1}fd_{H}W=\oint_{0}^{1}fdW+\frac{1}{2}\int_{0}^{1}\hat{f}dt$

We say that an orthonoral basis $\{\varphi_{n}\}$ is regular provided that it satisfies the next
condition :

$\sup_{n}||u_{n}||_{2}<\infty$ , where $u_{n}(t)= \sum_{k\leq n}\varphi_{k}(t)\int_{0}^{t}\varphi_{k}(s)ds$ (15)
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Remark 3 Notice that this condition (15) is equivalent to the fact that,

$w- \lim_{narrow\infty}u_{n}=\frac{1}{2}$ (in $L^{2}$ )

namely to the fact that, for any $f(t)\in L^{2}(0,1)$ it holds the following,

$\lim_{narrow\varpi}\oint_{0}^{1}u_{n}(t)f(t)dt=\frac{1}{2}\oint_{0}^{1}f(t)dt$

Theorem 3.5 ([18]) Every semi martingale (causal or not) becomes $\varphi$-irrtegrable,

iff the basis $\{\varphi_{n}\}$ is regular. In this case the noncausal integral coincides with the
symmetric integrals.

Related to this result is a natural and interesting question asking whether there can or
can not be a basis $\{\varphi_{n}\}$ which is not regular. This question is affirmatively answered
by P.Mayer and M.Mancino [4]. We can go on further. The next result shows that
a smoothness in $W_{t}$ of the integrand ensures the integrability with respect to any
orthonormal basis.

Theorem 3.6 ([18]) Everry semi martingale that is twice $B$-differentiable, namely
the $B$-derivative $\hat{f}$ is again a semi martingale, is u-integrable.

In their articles [7], [5], of the authors M.Zakai and D.Nualart, the noncausal integral
was referred as the intr insic Ogawa integral. We like to remark at this stage that,
precisely saying what they referred there was our noncausal integral for the case of
$\mathrm{u}$-integrable functions,

Now let us finish this paragraph by giving another result on the way of convergence
of noncausal intgerals for semi-martingales, for its usefullness in appications.

Proposition 3.2 (1985,[18]) If the $B$-derivative $\hat{f}$ of the semi-martingale f,
$df=f^{\mathrm{A}}dW_{t}+\mathrm{f}(\mathrm{t})\omega)dt$, satisfies the following condition,

$P \{\oint_{0}^{1}\hat{f}^{4}(t)dt<\infty\}=1$ .

Then the noncausal integral $\int_{0}^{t}fdWt$ rnith respect to the regular basis converges uni-

fomely in $t\in[0, 1]$ .
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4 Applications to the noncausal SDEs

Now we like to show basic results concerning the Cauchy problem of the noncausal

SDEs and the validity of the noncausal It6 formula, which will give us at the same
time the appropriate answers to those noncausal problems listed in the Paragraph 2.

4.1 Noncausal Cauchy problem

First notice that the SDE in (3) becomes meaningful in the framework of the noncausal
stochastic calculus, that is:

$dX_{\mathrm{t}}=a(t, X_{t}, \eta(\omega))dt+b(t, X_{t}, \eta(\omega))d_{\varphi}W_{t}$ , $t\in(0, T]$ ,
(16)

$X_{0}(\omega)=\xi(\omega)$

here the $\{\varphi_{n}\}$ is a regular basis in $L^{2}(0,1)$ , which we will fix throughout the discussion.

We notice at this stage that when the parameters $\xi(\omega)$ , $\eta(\omega)$ are not random and
the solution $X_{t}$ can be supposed to be causal, then by virtue of the Theorem 3.5 the
SDE in (16) is reduced to the usual SDE with symmetric integration,

$dX_{t}=a(t, X_{t}, \eta)dt+b(t, X_{t}, \eta)dW_{t}$ , $t\in(0, T]$ :
(17)

$X_{0}(\omega)=\xi$ .

The Cauchy problem for the noncausal SDE was first studied by the author [19]
for such simple case where the parameter $\eta$ is not random or does not appear in
$a(t_{7}x)7b(t, x)$ and only the initial data $\xi(\omega)$ arises as a noncausal factor.

$dX_{t}=\mathrm{a}(\mathrm{t}, X_{t})dt+\mathrm{b}(\mathrm{t}, X_{t})d_{\varphi}W_{t}$, $t\in(0, T]$ ,
(18)

$X_{0}(\omega)=\xi(\omega)$ .

For this case, the results on the existence and a kind of uniqueness properties of the
solution are proved under a milder assumption on the regularity of the coefficients
$a(\cdot)$ , $b(\cdot)$ as follows:

Assumption 1 The coefficients $a(t, x)$ , $b(t, x)$ are sufficiently regular in such sense
thai,

1. $a(t, x)$ , $\frac{\partial^{2}}{\partial x^{2}}b(t, x)$ are of $C^{1}$ -class,

2. $a(t, x)$ , $b(t, x)$ are sufficiently regular in the sense that the causal Cauchy prob-
lem 17 admits the unique strong solution $X(t, \omega;\xi)$ and that the $X(t,\omega;\xi)$ is
continuous in $(t, \xi)$ with probability one



245

Notice that under such conditions the composite

$\tilde{X}(t, \omega)=X(t, \omega;\xi(\omega))$

of the strong solution $X(t, \xi,\omega)$ of the (17) and the random variable $\xi(\omega)$ is well
defined, which we expect to be a solution of the noncausal Cauchy problem (18). In
fact we have the following,

Theorem 4.1 (1985 [19]) The composite $\tilde{X}(t,\omega)$ is a solution of the noncausal
Cauchy problem (18).

We have also found that this solution $\tilde{X}(t,\omega)$ verifies the It\^o formula of noncausal
type, that is:

Proposition 4.1 (1985, [17]) For any function $F(x)\in C^{4}$ it holds the equality,

$dF(\tilde{X}_{t})=F’(\overline{X}_{t})\{a(t,\tilde{X}_{t})dt+b(t,\tilde{X}_{t})d_{\varphi}W_{t}\}0\leq t\leq 1$

As an application of this we can show the following result that concerns the uniqueness
of the solution for the noncausal problem (18),

Corollary 4.1 ([17]) When the $b(x)\neq 0$ , the composed function $X\sim(t, \omega)=X(t, \omega;\xi(\omega))$

is the unique solution among all random functions verifying the It6 formula 4.1 of
noncausal type.

The proof of this together with that of the previously presented Proposition 4.1 will
be given in the next paragraph for a more general case.

4,2 Discussions for the more general cases
We are going to give in this paragraph the results on the Cauchy problem for the
more general case (16).

Assumption 2 We suppose that the coefficients $a(t,$x; $\eta)$ , $b(t,$x; $\eta)$ cvre sufficiently
regular in such sense that, for an arbitrary couple of parameters $(\xi, \eta)$ the ccruesal
Cauchy problem 17 admits the unique strong solution $X_{\backslash }^{[t,\omega;\xi,\eta)}$ and that the $X(t, \omega;\xi, \eta)$

is continuous in $(t, \xi, \eta)$ with probability one.

Remark 4 The assumption is satisfied when, for example, the $a(t,$x; $\eta)$ , $b(t,$x; $\eta)$ are

of the $C^{4}$ - class in x, of $C^{1}$ -class in $\eta$ and all derivatives are bounded on [0, 1] x $R^{1}$ .

We also notice that under the Assumption 2 the composite

$\tilde{X}(t, \omega)=X(t, \omega;\xi(\omega),$ $\eta(\omega))$

of the strong solution $X(t,\omega;\xi, \eta)$ of the (17) and the random variables $\xi(\omega)$ , $\eta(\omega)$ is
well defined, and as in the previous case we expect this composite $\tilde{X}(t,\omega)$ to be a
solution of the noncausal Cauchy problem (16). In fact we have the following,
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Theorem 4.2 The $\tilde{X}$ gives a noncausal solution of the noncausal Cauchy problem

16.

For the verification of this, we need some preparations.

Proposition 4.2 Let $f(t, \omega;\xi, \eta)(\xi, \eta\in[-A, A])$ be a semi-martingale such that for
each fixed $(\xi, \eta)$ ,

$df(t, \omega;\xi, \eta)=g(t, \omega;\xi, \eta)dt+h(t,\omega;\xi, \eta)dW_{t}$ (19)

where $g(\cdot)$ , $h(\cdot)$ are causal random functions satisfying the following condition,

$P[ \oint_{-A}^{A}d\xi\int_{-A}^{A}d\eta\int_{0}^{1}\{g^{2}(t,\omega,\cdot\xi, \eta)+h^{2}(t, \omega;\xi, \eta)\}dt<\infty]=1$

(i) Then for any regular basis $\{\varphi_{n}\}$ in $L^{2}(0,1)$ , it holds the following equality,

$\lim_{narrow\infty}\int_{-A}^{A}d\xi\oint_{-A}^{A}d\eta[\int_{0}^{1}f(t,\omega;\xi, \eta)\{d_{\varphi}W(t)-dW_{n}^{\varphi}(t)\}]^{2}=0$ ($\mathrm{i}r\dot{\iota}$ probability)

(20)

(ii) Moreover if the coefficient $h(t, \omega;\xi, \eta)$ in the decomposition (19) again becomes
a semi-martingale satisfying the same condition as the $f(\cdot)_{f}$ then the equality
(20) still holds true for any basis $\{\varphi_{n}\}$ .

(Proof) Put $f=f_{1}+f_{2}$ where,

$f_{1}(t, \omega;\xi, \eta)=f(0, \omega,\cdot\xi, \eta)+\oint_{0}^{t}g(s, \omega;\xi, \eta)ds$

and
$f_{2}(t, \omega;\xi, \eta)=\int_{0}^{t}h(s, \omega;\xi, \eta)dW_{s}$ .

Then we have for $f_{1}$ , the equality:

$\oint_{0}^{1}f_{1}(s, \omega;\xi, \eta)\{d_{\varphi}W(s)-dW_{n}^{\varphi}(s)\}$

$=f_{1}(1, \omega;\xi, \eta)\{W(1)-W_{n}^{\varphi}(1)\}-\int_{0}^{1}\{W(s)-W_{n}^{\varphi}(s)\}g(s, \omega;\xi, \eta)ds$

Hence with the help of the Theorem of Nishio-It6 we confirm that,

$\lim_{narrow\infty}\oint_{-A}^{A}d\xi\int_{-A}^{A}d\eta[\int_{0}^{1}f_{1}(t,\omega;\xi, \eta)\{d_{\varphi}W(t)-dW_{n}^{\varphi}(t)\}]^{2}=0$ (in probability)

For the term $f_{2}$ we have the decomposition,

$\int_{0}^{1}f_{2}(t,\omega;\xi, \eta)\{d_{\varphi}W(t)-dW_{n}^{\varphi}(t)\}=\sum_{i=1}^{4}I_{i,n}(\xi, \eta)$



247

where,

$I_{1,n}= \sum_{k=n+1}^{\infty}f_{2}(1, \omega;\xi, \eta)\tilde{\varphi}_{k}(1)Z_{k}$, $( \tilde{\varphi}_{k}(t)=\oint_{0}^{t}\varphi_{k}(s)ds)$

$I_{2,n}= \sum_{k=n+1}^{\infty}\oint_{0}^{1}\acute{\dot{\varphi}}_{k}(t)\varphi_{k}(t)h(t, \omega;\xi, \eta)dt$

$I_{3,n}= \sum_{k=n+1}^{\infty}.[_{0}^{1}\varphi_{k}(t)dW(t)\int_{0}^{t}\tilde{\varphi}_{k}(s)h(s, \omega;\xi, \eta)dW(s)$

$I_{4,n}= \sum_{k=n+1}^{\infty}\oint_{0}^{1}\tilde{\varphi}_{k}(t)h(t,\omega;\xi, \eta)dW(t)\int_{0}^{t}\varphi_{k}(s)dW(s)$

and, $Z_{n}= \oint_{0}^{1}\varphi_{n}(t)dW(t)$ .

We are to show that: $\lim_{narrow\infty}\int_{-A}^{A}d\xi\oint_{-A}^{\Lambda}I_{i,n}^{2}(\xi, \eta)=0$ (in probability), $(1 \leq \mathrm{i}\leq 4)$ .

Since for the quantities $I_{i,n}$ $(i=1,3, 4)$ this could be easily done by a usual routine,
it would suffice to show the result only for the term $\mathrm{J}2|\mathrm{n}.$ .
By taking the Remark3 into account, we see that for each fixed $(\xi, \eta)$ we have,

$\lim_{narrow\infty}I_{2,n}(\xi, \eta)=\lim_{narrow\infty}\int_{0}^{1}h(t,\omega;\xi, \eta)\{\frac{1}{2}-u_{n}(t)\}dt=0$

On the other hand we have,

$I_{2,n}^{2} \leq(\frac{1}{2}+2U^{2})\oint_{0}^{1}h^{2}(t, \omega;\xi, \eta)dt$ where, $U= \sup_{n}||u_{n}||_{L^{2}}<\infty_{\sim}$

Since we confirm the result $\lim_{narrow\infty}\oint_{-A}^{A}\oint_{-A}^{A}I_{2,n}^{2}(\xi, \eta)d\xi d\eta=0$ $\square$

Now given the unique solution $X(t, \omega;\xi, \eta)$ of the causal problem 17, we introduce
the sequence of random functions in the following way,

$X_{n}^{\varphi}(t, \omega;\xi,\eta)=\xi+\oint_{0}^{t}a(s,X(s,\omega;\xi,\eta);\eta)ds+\int_{0}^{t}b(s,X(s,\omega;\xi,\eta)_{)}.\eta)dW_{n}^{\varphi}(s)(21)$

where $W_{n}^{\varphi}$ is the approximate process of the Brownian motion introduced in the pre-
vious paragraph.

We easily see by the Theorem 3.5 that for each fixed $t$ , $(\xi, \eta)$ , we have $\lim_{narrow\infty}X$: $(t, \omega,\cdot\xi, \eta)=$

$\mathrm{X}\{\mathrm{t},$ $\omega;\xi,$
$\eta$), (in probablity). Moreover we can see that this convergence is uniform

in $(\xi, \eta)$ on every finite set $C_{A}=[-A, A]\cross$ $[-A, A]$ .

Proposition 4.3 For an arbitrarily large A $>0$ it holds the following relation at
each fixed t $\in[0,$ 1],

$\lim_{narrow\infty}\sup(\xi,\eta)\in C_{A}|X_{n}^{\varphi}(t, \omega;\xi, \eta)-\mathrm{X}\{\mathrm{t},$

$\omega;\xi,$
$\eta$) $|=0$ (in probability)
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(Proof) Put
$\triangle_{n}(t, \omega;\xi, \eta)=X_{n}^{\varphi}(t, \omega;\xi, \eta)-X(t, \omega;\xi, \eta)$

Prom equations (17),(21) we obtain the following:

$\triangle_{n}(t, \omega;\xi, \eta)=\oint_{0}^{t}b(X(s;\xi, \eta);\eta)\{dW_{n}^{\varphi}(s)-d_{\varphi}W(s)\}$ (22)

On the other hand we have the following expression,

$\triangle_{n}(t, \omega\cdot\xi\}’ \eta)=\int_{-A}^{\xi}d\xi_{1}\int_{-A}^{\eta}\frac{\partial^{2}}{\partial\xi\partial\eta}\triangle_{n}(t, \omega;\xi_{1}, \eta_{1})d\eta_{1}$

$+ \oint_{-A}^{\xi}\frac{\partial}{\partial\xi}\triangle_{n}(t, \omega;\xi_{1}, -A)d\xi_{1}+\int_{-A}^{\eta}\frac{\partial}{\partial\eta}\triangle_{n}(t,\omega;-A, \eta_{1})d\eta_{1}+\triangle_{n}(t,\omega;-A, -A)$

which implies that,

$(\xi,\eta)\in C_{A}\mathrm{s}\mathrm{u}\mathrm{p}|\triangle_{n}(t, \omega;\xi, \eta)|\leq J_{1}(n)+J_{2}(n)+J_{3}(n)$

where

$J_{1}(n)=4A^{2} \oint_{-A}^{A}d\xi_{1}\int_{-A}^{A}d\eta_{1}|\frac{\partial^{2}}{\partial\xi\partial\eta}\triangle_{n}(t,\omega;\xi_{1}, \eta_{1})|^{2}+|\triangle_{n}(t, \omega;-A, -A)|$

$J_{2}(n)=2A \int_{-A}^{A}|\frac{\partial}{\partial\xi}\triangle_{n}(t, \omega;\xi_{1}, -A)|^{2}d\xi_{1}$, $J_{3}(n)=2A \oint_{-A}^{A}|\frac{\partial}{\partial\eta}\triangle_{n}(t,\omega;-A, \eta_{1})|^{2}d\eta_{1}$

We are to show that for each fixed $t$ these $J_{1}(n)$ , $J_{2}(n)$ , $J_{3}(n)$ tend to zero in proba-
bility as $narrow\infty$ . Since at this stage the parameters $\xi$ , $\eta$ remain as deterministic
constants, we notice that the $X(?, \omega;\xi, \eta)$ is causal and derivable in $\xi$ , $\eta$ . In fact under
the assumption (4) on the regularity of the coefficients $a(\cdot)$ , $b(\cdot)$ it is easy to verify
that the derivatives,

$X_{1}(t)= \frac{\partial}{\partial\xi}X(t,\omega;\xi, \eta)$ , $X_{2}(t)= \frac{\partial}{\partial\eta}X(t, \omega;\xi, \eta)$ , $X_{3}(t)= \frac{\partial^{2}}{\partial\xi\partial\eta}X(t, \omega;\xi, \eta)$ ,

are given as the solutions of the following symmetric type SDEs, which can be solved
explicitly:

$\{$

$dX_{1}(t)$ $=a_{x}(t, X,\eta)X_{1}(t)dt+b_{x}(t, X, \eta)X_{1}(t)dW_{t}$ ,

$X_{1}(0)$ $=1$

$\{$

$dX_{2}(t)$ $=\{a_{\eta}(t, X, \eta)dt+\mathrm{b}\mathrm{x}(\mathrm{t},X, \mathrm{r}\mathrm{j})\mathrm{d}\mathrm{W}\mathrm{t}\}$

$+\{a_{x}(t, X, \eta)X_{2}(t)dt+b_{x}(t, X, \eta)X_{2}(t)dW_{t}\}$ ,

$X_{2}(0)$ $=0$ ,
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$\{$

$\mathrm{d}\mathrm{X}\mathrm{z}(\mathrm{t})$ $=\{a_{xx}(t, X, \eta)X_{2}(t)+a_{x,\eta}(t, X, \eta)\}X_{1}(t)dt$

$+${ $b_{xx}$ ( $t$ , $X$ : $\eta$) $X_{2}(t)+b_{x,\eta}(t$ : $X$, y7 )} $X_{l}(t)dW_{t}$

$+a_{x}(t, X, \eta)X_{3}(t)d\partial+b_{x}(t, X, \eta)X_{3}(t)dW_{t}$ ,

$X_{3}(0)$ $=0$

This combined with the expression (22) would imply that the quantity $\triangle_{n}(t, \omega;\xi, \eta)$

is derivable in $\xi$ , $\eta$ and that the order of the derivation in 4, $\eta$ and the integration is
exchangeable. For example,

$\frac{\partial^{2}}{\partial\xi\partial\eta}\triangle_{n}=\oint_{0}^{t}\frac{\partial^{2}}{\partial\xi\partial\eta}b(s, X(s;\xi, \eta))\{dW_{n}^{\varphi}(s)-dW_{\varphi}(s)\}$

Hence by virtue of the Proposition 4.2 we only need to show that the following
quantities ,

$\frac{\partial^{2}}{\partial\xi\partial\eta}b(X(t;\xi, \eta);\eta)$ , $\frac{\partial}{\partial\xi}b(X(t;\xi, -A);-A)$ , $\frac{\partial}{\partial\eta}b(X(t;-A, \eta);\eta)$

are semi-martingales satisfying the condition in that Proposition. Since this can be
verified by a simple routine work, we see that we are done. $\square$

Now we are going to give the proof for our Theorem,

(Proof) Fix a positive $A$ in an arbitrary way and put,

$\xi_{A}(\omega)=\xi(\omega)1_{C_{A}}(\xi(\omega))-A1_{(-\infty,-A]}(\xi(\omega))+A1_{[A,\infty)}(\xi(\omega))$

$\eta_{A}(\omega)=\eta(\omega)1_{C_{A}}(\eta(\omega))-$ Al $(-\infty,-A](\eta(\omega))+A1_{[A,\infty)}(\eta(\omega))$

For an arbitrary positive $\epsilon$ we have,

$P\{|X_{n}^{\varphi}(t, \omega;\xi(\omega), \eta(\omega))-X(t, \omega;\xi(\omega), \eta(\omega))|>\epsilon\}$

$\leq P\{|X_{n}^{\varphi}(t,\omega;\xi_{A}(\omega)_{1}\eta_{A}(\omega))-X(t, \omega;\xi_{A}(\omega), \eta_{A}(\omega, ega))|>\epsilon\}$

$+P(|\xi(\omega)|>A)+P(|\eta(\omega)|>A)$

Since $|\xi_{A}(\omega)|$ , $|\eta_{A}(\omega)|\leq A$ , we see that

$\lim_{narrow\infty}P\{|X_{n}^{\varphi}(t,\omega;\xi_{A}(\omega), \eta_{A}(\omega))-X(t, \omega;\xi_{A}(\omega), \eta_{A}(\omega))|>\epsilon\}=0$

by virtue of the Proposition 4.3. The $A$ being arbitrary this implies that,

$\lim_{narrow\infty}P\{|X_{n}^{\varphi}(t,\omega;\xi(\omega))\eta(\omega))-X(t, \omega;\xi(\omega), \eta(\omega))|>\epsilon\}=0$
$\square$
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5 Question of uniqueness – Noncausal It6 formula

The noncausal solution of the problem (16), $\tilde{X}(t, \omega)=X(t, \omega;\xi(\omega),$ $\eta(\omega))$ constructed
in the Theorem 4.2, has a remarkable property as stated in the next,

Theorem 5.1 (Noncausal It6 formula) For any random variable $\zeta(\omega)$ and any

Junction $F(x, y)$ ; which is differentiate in $(x, y)$ and of $C^{4}$ -class in $x$ with bounded
derivatives, it holds the following equality:

$dF(\tilde{X}_{t}, \zeta(\omega))=(\partial_{x}F)(\tilde{X}_{t}, \zeta(\omega))\{a(\tilde{X}_{t};\eta(\omega))dt+b(\tilde{X}_{t};\eta(\omega))d_{\varphi}W_{t}\}$ (23)

(Proof) Let $X(t, \omega;\xi, \eta)$ be the unique solution of the causal SDE (17) with de-
terministic parameters $(\xi, \eta)$ . Then by the usual It6 formula for causal functions, we
have for each fixed deterministic parameters $(\xi, \eta, \langle)$ , the following relation:

$F(X(t;\xi, \eta)$ , $\zeta)=\mathrm{F}(\mathrm{Z}, \zeta)+\int_{0}^{t}(\partial_{x}F)(X(s,\omega;\xi,\eta), \zeta)\{a(X_{s};\eta)ds+b(X_{\mathit{8}};\eta)dW_{s}\}$

(24)

Here the stochastic integral $\int dW_{t}$ stands for the causal symmetric integral

Given this we introduce the approximation sequence as follows,

$F^{n}(t, \omega;\xi, \eta, \zeta)=F(\xi, \zeta)+\int_{0}^{t}(\partial_{x}F)(X(s,\omega;\xi, \eta), \zeta)\{a(X_{s};\eta)ds+b(X_{s};\eta)dW_{n}^{\varphi}(s)\}$

(25)

Following the same argument as in the proof of Proposition 4.2, we would eas-
ily verify that for each fixed $t\in[0, 1]$ the sequence $F^{n}(t, \omega;\xi, \eta, \zeta)$ converges to
$F(X(t,\omega;\xi, \eta), \zeta)$ in probability as $narrow\infty$ , uniformly in $(\xi_{:}\eta, \langle)$ $\in C_{A}’$ on any finite
set $C_{A}’=[-A, A]^{3}$ . Hence we confirm, again following the same argument as in the
proof of the Theorem 4.2, that for each fixed $t$ the sequence $F^{n}(t, \omega;\xi(\omega),$ $\eta(\omega)$ , $\zeta(\omega))$

converges in probability to the $F(X(t,\omega;\xi(\omega),$ $\eta(\omega)$ , $\zeta(\omega))=F(\tilde{X}(t,\omega)$ , $\zeta(\omega))$ . Now
from the equation (25) we see that the following limit,

$\lim_{narrow\infty}\int_{0}^{t}(\partial_{x}F)(X(s, \omega;\xi(\omega)$ , $\eta(\omega))$ , $\zeta(\omega))b(X(s,\omega;\xi(\omega),$ $\eta(\omega));\eta(\omega))dW_{n}^{\varphi}(s)$

should converge in probability to the limit,

$\int_{0}^{t}(\partial_{x}F)(\tilde{X}(s,\omega),$ $\zeta(\omega))b(\tilde{X}(s, \omega);\eta(\omega))dW_{\varphi}(s)$

by definition of the $\tilde{X}(t, \omega)$ and by definition of the noncausal integral with respect
to the basis $\{\varphi_{n}\}$ .
Thus from this fact we get the desired equality (23 ), by letting $narrow$ oo on both side
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of the equality (25). $\square$

As we have mentioned in the previous paragraph, this fact that the solution $\tilde{X}(t, \omega)=$

$X(t, \omega;\xi(\omega)7\eta(\omega))$ of the noncausal problem (16) satisfies the It6 formula of noncausal
type (23) would give us a partial answer to the question of uniqueness of the solution
of our noncausal problem. In fact we have the following result that is valid for the
case of 1-dimensional SDE.

Corollary 5.1 if the $b(t, x;\eta)$ does not depend on the $t$ and $b(x;\eta)>0$ $(or<0)$ for
all $(t, x, \eta)$ , then the solution $\tilde{X}(t,\omega)$ is unique among the all random functions that
verify the noncausal It\^o formula (23). We will call such solution the regular solution
of the Ccvuchy problem.

(Proof) Without loss of generality we suppose that $b(\cdot)>0$ . Put $Y(t)=F(\tilde{X}(t))$

where $F(x)$ is as follows,
$F(x)= \oint_{0}^{x}\frac{dy}{b(y,\eta)}$ .

Then we have, $\tilde{X}(t, \omega)=F^{-}$ ’ $(Y(t, \omega))$ . By applying the noncausal It6 formula to the
function $Y(t)$ we get,

$Y(t)=F( \xi(\omega))+l^{t}(\frac{a}{b})(F^{-1}(Y(s));\eta(\omega))ds+W(t)$

Since this is merely a family of ordinary integral equations parametrized by the $\omega$ ,

we see the uniqueness of its solution $Y(t)$ for each fixed and hence the uniqueness of
the $\tilde{X}(t, \omega)$ . This completes the proof. $\square$
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