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1

Let p be a prime and let O be a complete discrete valuation ring with an alge-
braically closed residue field k of characteristic p. Let G be finite group and b be
a block of G with maximal (G.b)-subpair (P.ep) where b is a block idempotent of
OG. For any subgroup Q of P. let (Q.eg) be a unique (G.b)-subpair contained in
(P.ep). Following Kessar. Linckelmann and Robinson [4]. we denote by Fip.,(G.b)
the category whose objects are subgroups of P and for Q. R < P, whose set of mor-
phisms from @ to R are the set of group homomorphisms v : @ — R such that
there exists x € G such that “(Q.eq) C (R.eg) and p(u) = ruxr~t for all u € Q.
We call Fip.p)(G.b) the Brauer category of b. Let Be(b) be the Brauer category
of b in the sense of Thévenaz [10]. § 47. The categories F(pe,)(G.b) and Bg(b) are
equivalent. Let R be a normal subgroup of P such that Ng(P) C Ne{R) and ¢
bhe the Brauer correspondent of b in N (R). that is. ¢ is a unique block of Ng(R)
such that Brp(c) = Brp(b) where Brp is the Brauer homomorphism from (0OG)F
onto kCg(P). Set N = Ng(R). The notations R. ¢ and N are fixed. Thus b = v
and (P, ep) is a maximal (¥, ¢)-subpair. The arguments in the proof of Theorem in
Kessar-Linckelmann [5] imply the following.

Theorem 1 Assume that G is p-solvable. With the above notations. suppose that
Fipep)(G.b) = Fipep)(N. ¢). Then there is an indecomposable OGb-ON ¢-bimodule
M which satisfies the following.
(i) M and its O-dual M* induce a Morita equivalence between OGb and ONc.
(ii) As an O(G x N)-module M has o vertex AP and an endo-permutation
O(AP)- module as a source where AP = {{u,u) | u € P}.

Let Hp.,,y(G,b) be the cohomology ring of b in the sense of Linckelmann([6], [7],
that is, HFP,ep)(G’ b) is the subring of H*(P, k) consisting of ¢ € H*(P, k) satisfying
resg ¢ = Iresg ¢ for all @ < P and, for all g € Ng(Q,eq). We prove the following.

Theorem 2 Assume that G is p-solvable. With the above notations, z'fH(*P)eP)(G, b) =
HEKP,@P)(Na C): then f(P,ep)(G,b) = f(p,ep)(N, C).
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We prove Theorem 1 using the following.

Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p- solvable. For
any p-subgroup Q of G, we have Oy (Ng(Q)) = Oy (G)NNG(Q) = Ox(G)NCG(Q) =
Oy (Cs(Q)-

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iil)) Let G be a p-solvable
group and b be a block of G such that b covers a G-invariant block of Oy (G). Thend
is of principal type. that is. for any p-subgroup Q of G. Brg(b) is a block of kC(Q).

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G
with defect group P. Then the following holds.

(i) There is a subgroup H of G and an H-invariant block e of Oy {(H) such that
0,(G)P C H and OGh = Ind%;(OHe) as interior G-algebras.

(ii) P 4s a Sylow p-subgroup of H and P is a defect group of e as a block of H.
Moreover let (P.e':) be a mazimal (H.e)-subpair and let ep = Trgi((};))(e;;). Then
(P.ep) is @ marimal (G.b)-subpair.

Note that in the above proposition Fipep)(G.b) = .T(p‘ef},)(H.e) since OGb =
Ind% (OHe) as interior G-algebras.

Proposition 3 ([5]. Proposition 6) With the notations in the above proposition. let
R be a subgroup of P such that Ng(P) C Ng(R). Denote by ¢ the Brauer corre-
spondent of b in Ng(R). and by f the Brauer correspondent of e in Ny(R). Then f
is an Ny(R)-invariant block of Oy(Ny(R)) and ONg(R)c = Indy°V 0 (ONy(R) )
as interior Ng(R)-algebras.

The following is shown in the proof of Theorem in [5].

Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of
G with defect group P. Let R be a subgroup of P such that Ng(P) C Ng(R) and
let ¢ be the Brauer correspondent of b in N where we set N = Ng(R). If b covers a
G-invariant block of Oy (G) and if G = O,(G)N, then there is an indecomposable
OGb-ONc-bimodule M which satisfies the following.

(i) M and its O-dual M* induce ¢ Morita equivalence between OGb and ONc.

(ii) As an O(G x N)-module M has a vertex AP and an endo-permutation
O(AP )- module as a source.

Proof of Theorem 1. We prove by induction on |G|. Let H, e, €} and ep be
as in Proposition 2, and let f be as in Proposition 3. We may assume that ep’s

in Theorem 1 and Proposition 2 are equal by replacing H, €, ¢} and f, by H*, e*,
(€)* and f* respectively for some z € Ng(P) if necessary. By Proposition 2,

F(p,ep)(G, b) = f(p’efP)(H, 6).



By Proposition 3, (P.€)) is a maximal (Ng(R), f)-subpair and
-F(P,ep}(jV% C) = F(P,e’P) (]VH(R)7 f)

So by the assumption we have Fipey(H.e) = Fipe,)(Nu(R), f). Since OGb =
Ind$ (OHe) as interior G-algebras, the OGb-OHe-bimodule bOGe = OGe and the
O He-OGb- bimodule eOG induce a Morita equivalence between OGb and OHe.
Similarly the ONc-ONy(R) f-bimodule ONf and the ONg(R)f-ONc-bimodule
fON induce a Morita equivalence between ON¢ and ONg(R)f. Suppose that
H < G. By the induction hypothesis for H and e, there is an indecomposable OHe-
ONy(R) f- bimodule My such that Mp and MY induce a Morita equivalence between
OHe and ONg(R)f. and that M as an O(H X Ny (R))-module has a vertex AP and
an endo-permutation O(AP)-module as a source. Set 1] = bOG Qovne Mo Qony(r)f
ONe = M™Y. Then M satisfies (i) and (ii) in Theorem 1. Therefore we may
assume that H = G. Then b=e.

Let Y = Oy ,(G). Then b is a G-invariant block of ¥ because ¥Y/O,(G) is a
p-group. Furthermore we have ¥ = O,(G)(Y N P). Set ¢ = PNY. Then Q is
a defect group of b as a block of Y. Now since G is constrained, Cy(Q) = C5(Q).
Therefore we see that (@, eg) is a maximal (Y. b)-subpair. By the Frattini argument
and the assumption that Fip.,)(G.b) = Fipe,p)(N.c).

G = Ng(Q.eq)Y T Ny (Q)Cu(Q)Y € NY C NOL(G).
So we have G = NO,(G). This and Theorem 3 complete the proof.

Proof of Theorem 2. We prove by induction on |G|. Let H. e, € and ep be
as in Proposition 2, and let f be as in Proposition 3. We may assume that ep'’s
in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since
Fipep)(G,0) = Fipey(H. e) and Fipepy)(N.c) = .7:(]31633)(17\’—1_;(}%),]() we have

Hip,py(G.b) = Hp y(H, e).

Hip (N.c) = H(*P,e'},g(NH(Rl f).

From the assumption, we have H(*P)G,P)(H, e) = H(”‘P‘C,P)(NH(R),J‘). Suppose that
H < G. Then by the induction hypothesis, Fipe,)(H,¢) = Fpep)(Nu(R), f), and
hence F(pep) (G, b) = Fpepy(IN.c). Therefore we may assume that I = G. Then b
covers a G-invariant block of O, (G) and P is a Sylow p-subgroup of G. Note that
the element b € 00, (G).

From Proposition 1, b is of principal type. On the other hand, by Lemma 1,
Bry(b) is an N-invariant block idempotent of kOy(N) and c is a lifting of Brg(b)
to ON. So by Proposition 1, ¢ is also of principal type. So we may assume that
is a principal block. Therefore by a theorem of Mislin [8], we obtain Fip) (G, b) =
Fipep)(N,c). This completes the proof. '
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