Note on blocks of *p*-solvable groups with same Brauer category

熊本大学理学部 渡辺アツミ (Atumi Watanabe) Department of Mathematics. Faculty of Science Kumamoto University

1

Let p be a prime and let \mathcal{O} be a complete discrete valuation ring with an algebraically closed residue field k of characteristic p. Let G be finite group and b be a block of G with maximal (G, b)-subpair (P, e_P) where b is a block idempotent of $\mathcal{O}G$. For any subgroup Q of P. let (Q, e_Q) be a unique (G, b)-subpair contained in (P, e_P) . Following Kessar, Linckelmann and Robinson [4], we denote by $\mathcal{F}_{(P,e_P)}(G,b)$ the category whose objects are subgroups of P and for $Q, R \leq P$, whose set of morphisms from Q to R are the set of group homomorphisms $\varphi:Q\to R$ such that there exists $x \in G$ such that $x(Q, e_Q) \subseteq (R, e_R)$ and $\varphi(u) = xux^{-1}$ for all $u \in Q$. We call $\mathcal{F}_{(P,e_P)}(G,b)$ the Brauer category of b. Let $\mathbf{B}_G(b)$ be the Brauer category of b in the sense of Thévenaz [10]. § 47. The categories $\mathcal{F}_{(P,\epsilon_P)}(G,b)$ and $\mathbf{B}_G(b)$ are equivalent. Let R be a normal subgroup of P such that $N_G(P) \subseteq N_G(R)$ and c be the Brauer correspondent of b in $N_G(R)$, that is, c is a unique block of $N_G(R)$ such that $\operatorname{Br}_P(c) = \operatorname{Br}_P(b)$ where Br_P is the Brauer homomorphism from $(\mathcal{O}G)^P$ onto $kC_G(P)$. Set $N = N_G(R)$. The notations R, c and N are fixed. Thus $b = c^G$ and (P, e_P) is a maximal (N, c)-subpair. The arguments in the proof of Theorem in Kessar-Linckelmann [5] imply the following.

Theorem 1 Assume that G is p-solvable. With the above notations, suppose that $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$. Then there is an indecomposable $\mathcal{O}Gb$ - $\mathcal{O}Nc$ -bimodule M which satisfies the following.

- (i) M and its O-dual M* induce a Morita equivalence between OGb and ONc.
- (ii) As an $\mathcal{O}(G \times N)$ -module M has a vertex ΔP and an endo-permutation $\mathcal{O}(\Delta P)$ module as a source where $\Delta P = \{(u, u) \mid u \in P\}$.

Let $H^*_{(P,e_P)}(G,b)$ be the cohomology ring of b in the sense of Linckelmann[6], [7], that is, $H^*_{(P,e_P)}(G,b)$ is the subring of $H^*(P,k)$ consisting of $\zeta \in H^*(P,k)$ satisfying $\operatorname{res}_Q \zeta = {}^g\operatorname{res}_Q \zeta$ for all $Q \leq P$ and, for all $g \in N_G(Q,e_Q)$. We prove the following.

Theorem 2 Assume that G is p-solvable. With the above notations, if $H_{(P,e_P)}^*(G,b) = H_{(P,e_P)}^*(N,c)$, then $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$.

We prove Theorem 1 using the following.

Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p- solvable. For any p-subgroup Q of G, we have $O_{p'}(N_G(Q)) = O_{p'}(G) \cap N_G(Q) = O_{p'}(G) \cap C_G(Q) = O_{p'}(C_G(Q))$.

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iii)) Let G be a p-solvable group and b be a block of G such that b covers a G-invariant block of $O_{p'}(G)$. Then b is of principal type, that is, for any p-subgroup Q of G, $\operatorname{Br}_Q(b)$ is a block of $kC_G(Q)$.

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G with defect group P. Then the following holds.

- (i) There is a subgroup H of G and an H-invariant block e of $O_{p'}(H)$ such that $O_{p'}(G)P \subseteq H$ and $\mathcal{O}Gb \cong \operatorname{Ind}_H^G(\mathcal{O}He)$ as interior G-algebras.
- (ii) P is a Sylow p-subgroup of H and P is a defect group of e as a block of H. Moreover let (P, e'_P) be a maximal (H, e)-subpair and let $e_P = \operatorname{Tr}_{C_H(P)}^{C_G(P)}(e'_P)$. Then (P, e_P) is a maximal (G, b)-subpair.

Note that in the above proposition $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P')}(H,e)$ since $\mathcal{O}Gb \cong \operatorname{Ind}_H^G(\mathcal{O}He)$ as interior G-algebras.

Proposition 3 ([5]. Proposition 6) With the notations in the above proposition, let R be a subgroup of P such that $N_G(P) \subseteq N_G(R)$. Denote by c the Brauer correspondent of b in $N_G(R)$, and by f the Brauer correspondent of e in $N_H(R)$. Then f is an $N_H(R)$ -invariant block of $O_{p'}(N_H(R))$ and $\mathcal{O}N_G(R)c \cong \operatorname{Ind}_{N_H(R)}^{N_G(R)}(\mathcal{O}N_H(R)f)$ as interior $N_G(R)$ -algebras.

The following is shown in the proof of Theorem in [5].

Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of G with defect group P. Let R be a subgroup of P such that $N_G(P) \subseteq N_G(R)$ and let c be the Brauer correspondent of b in N where we set $N = N_G(R)$. If b covers a G-invariant block of $O_{p'}(G)$ and if $G = O_{p'}(G)N$, then there is an indecomposable $\mathcal{O}Gb$ - $\mathcal{O}Nc$ -bimodule M which satisfies the following.

- (i) M and its \mathcal{O} -dual M^* induce a Morita equivalence between $\mathcal{O}Gb$ and $\mathcal{O}Nc$.
- (ii) As an $\mathcal{O}(G \times N)$ -module M has a vertex ΔP and an endo-permutation $\mathcal{O}(\Delta P)$ module as a source.

Proof of Theorem 1. We prove by induction on |G|. Let H, e, e'_P and e_P be as in Proposition 2, and let f be as in Proposition 3. We may assume that e_P 's in Theorem 1 and Proposition 2 are equal by replacing H, e, e'_P and f, by H^x , e^x , $(e'_P)^x$ and f^x respectively for some $x \in N_G(P)$ if necessary. By Proposition 2,

$$\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P')}(H,e).$$

By Proposition 3, (P, e'_P) is a maximal $(N_H(R), f)$ -subpair and

$$\mathcal{F}_{(P,e_P)}(N,c) = \mathcal{F}_{(P,e_P')}(N_H(R),f).$$

So by the assumption we have $\mathcal{F}_{(P,e'_P)}(H,e) = \mathcal{F}_{(P,e'_P)}(N_H(R),f)$. Since $\mathcal{O}Gb \cong \operatorname{Ind}_H^G(\mathcal{O}He)$ as interior G-algebras, the $\mathcal{O}Gb$ - $\mathcal{O}He$ -bimodule $b\mathcal{O}Ge = \mathcal{O}Ge$ and the $\mathcal{O}He$ - $\mathcal{O}Gb$ - bimodule $e\mathcal{O}G$ induce a Morita equivalence between $\mathcal{O}Gb$ and $\mathcal{O}He$. Similarly the $\mathcal{O}Nc$ - $\mathcal{O}N_H(R)f$ -bimodule $\mathcal{O}Nf$ and the $\mathcal{O}N_H(R)f$ - $\mathcal{O}Nc$ -bimodule $f\mathcal{O}N$ induce a Morita equivalence between $\mathcal{O}Nc$ and $\mathcal{O}N_H(R)f$. Suppose that H < G. By the induction hypothesis for H and e, there is an indecomposable $\mathcal{O}He$ - $\mathcal{O}N_H(R)f$ - bimodule M_0 such that M_0 and M_0^* induce a Morita equivalence between $\mathcal{O}He$ and $\mathcal{O}N_H(R)f$, and that M_0 as an $\mathcal{O}(H \times N_H(R))$ -module has a vertex ΔP and an endo-permutation $\mathcal{O}(\Delta P)$ -module as a source. Set $M = b\mathcal{O}G \otimes_{\mathcal{O}He} M_0 \otimes_{\mathcal{O}N_H(R)f} \mathcal{O}Nc \cong M_0^{G \times N}$. Then M satisfies (i) and (ii) in Theorem 1. Therefore we may assume that H = G. Then b = e.

Let $Y = O_{p',p}(G)$. Then b is a G-invariant block of Y because $Y/O_{p'}(G)$ is a p-group. Furthermore we have $Y = O_{p'}(G)(Y \cap P)$. Set $Q = P \cap Y$. Then Q is a defect group of b as a block of Y. Now since G is constrained, $C_Y(Q) = C_G(Q)$. Therefore we see that (Q, e_Q) is a maximal (Y, b)-subpair. By the Frattini argument and the assumption that $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$.

$$G = N_G(Q, e_Q)Y \subseteq N_N(Q)C_G(Q)Y \subseteq NY \subseteq NO_{p'}(G).$$

So we have $G = NO_{p'}(G)$. This and Theorem 3 complete the proof.

Proof of Theorem 2. We prove by induction on |G|. Let H, e, e'_P and e_P be as in Proposition 2, and let f be as in Proposition 3. We may assume that e_P 's in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e'_P)}(H,e)$ and $\mathcal{F}_{(P,e_P)}(N,c) = \mathcal{F}_{(P,e'_P)}(N_H(R),f)$ we have

$$H_{(P,e_P)}^*(G,b) = H_{(P,e_P)}^*(H,e).$$

$$H_{(P,e_P)}^*(N,c) = H_{(P,e_P)}^*(N_H(R),f).$$

From the assumption, we have $H^*_{(P,e'_P)}(H,e) = H^*_{(P,e'_P)}(N_H(R),f)$. Suppose that H < G. Then by the induction hypothesis, $\mathcal{F}_{(P,e'_P)}(H,e) = \mathcal{F}_{(P,e'_P)}(N_H(R),f)$, and hence $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$. Therefore we may assume that H = G. Then b covers a G-invariant block of $O_{p'}(G)$ and P is a Sylow p-subgroup of G. Note that the element $b \in \mathcal{O}O_{p'}(G)$.

From Proposition 1, b is of principal type. On the other hand, by Lemma 1, $\operatorname{Br}_R(b)$ is an N-invariant block idempotent of $kO_{p'}(N)$ and c is a lifting of $\operatorname{Br}_R(b)$ to $\mathcal{O}N$. So by Proposition 1, c is also of principal type. So we may assume that b is a principal block. Therefore by a theorem of Mislin [8], we obtain $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$. This completes the proof.

References

- [1] P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98(1961). 263-284.
- [2] M.E. Harris and Linckelmann, Splendid derived equivalences for blocks of finite p-solvable groups, J. London Math. Soc. (2) **62**(2000), 85-96.
- [3] M.E. Harris and Linckelmann, On the Glauberman and Watanabe correspondences for blocks of finite p-solvable groups. Trans. Amer. Math. Soc. 354(2002), 3435-3453.
- [4] R. Kessar, M. Linckelmann and G.R. Robinson, Local control in fusion systems of p-blocks of finite groups, J. Algebra **257**(2002). 393-413.
- [5] R. Kessar and M. Linckelmann, On blocks of strongly *p*-solvable groups, D. Benson: Groups, Representations and Cohomology Preprint Archive.
- [6] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups. Algebr. Represent. Theory 2 (1999). 107-135.
- [7] M. Linckelmann, Varieties in block theory. J. Algebra 215(1999), 460-480.
- [8] G. Mislin, On group homomorphisms inducing mod p-cohomology isomorphism. Comment. Math. Helv. **65**(1990). 454-461.
- [9] L. Puig. Local block theory in *p*-solvable groups, Proceedings of Symp. Pure Math. **37**(1980), 385-388.
- [10] J. Thévenaz, "G-algebras and modular representation theory", Oxford Sci. Publ., Clarendon Press, Oxford, 1955.