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Forking in Generic Structures
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1 Preliminaries

Many papers [2,3,4,8] have laid out the basics of generic structures. So we do
not explain all of those details here.

Let L be a countable relational language and X* a class of the finite L-
structures. Then & : K* — R™ is said to be a predimension, if (i) for all AB €
K*,§(A/B) < §(A/ANB); (i) if A= B € K*, then §(4) = §(B); (iii) §(f) =
0; iv)If AcC A',B C B',C C C" and A',B',C’ are pairwise disjoint, then
d(B/A) — §(B/AC) < §(B'/A") — §(B'/A'C"), where §(A/B) denotes é(AB) —
4(B).

Let A C B € K*. Suppose that A is finite. Then A is said to be closed in
B (in symbol, A < B), if §(X/A) > 0 for any finite X C B — A. In general, 4
is said to be closed in B, if ANX < BN X. We define the closyre of A in B
by clg(4) ={C : A C C < B,|C| < w}. We define a dimension of A in B by
dB(A) = 6(C13(A))

Let K be a subclass of K* that is closed under substructures, and M a
saturated K-generic structure.

K is said to have finite closures, if there are no chains Ag C A1 C «- - of
elements of K with d,(A4;41) < 6,(A4;) for each ¢ < w. If K has finite closures,
then we can see that there exists a unique K-generic structure M, and moreover
that any finite set of M has finite closures. On the other hand, it can be seen
that if a K-generic structure M is saturated then K has finite closures. We
summarize our situation.
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Assumption K = (K, <) is derived from a predimension é such that K is
closed under substructures. M is a saturated K-generic structure.

2 Smallness of algebraic types

Definition Let AB be finite L-structure. Then

(i) A pair (B, 4) is said to be K-normal, if A< AB €K and ANB = 0.

(i) A K-normal pair (B, 4) is said to be minimal, if (C/A) > §(B/A) for any
non-empty proper subset C of B. .
(iii) A K-normal pair (B, A) is said to be weakly small, if whenever A C C,B C
D and (D, C) is K-normal, then §(D/C) > é(B/C).

(iv) A K-normal pair (B, 4) is said to be pseudo-small, if whenever A C C and
(B, C) is K-normal, then §(B/C) > §(B/A).

(v) A K-normal pair (B, A) is said to be small, if whenever A C C, B C D and
(D, C) is K-normal, then §(D/C) > §{B/A).

Note 1 A K-normal pair (B, A) is small if and only if it is weakly small and
pseudo-small.

Lemma 2 Let (B,A) be K-minimal with 4 < AB < M. If tp(B/A) is
algebraic, then (B, A) is weakly K-small.

Proof Suppose by way of contradiction that (B, A) is not weakly K-small.
Then there are C D A and D D B such that (D, C) is K-normal and §(D/C) <
§(B/C).

Claim 1: There is a set {B;};<. of copies of B with the following conditions:
(i) B; =¢B,...p;.. B for each i < w; '

(ii) CBo...B;, CBy...B;—1D < CBy...B;D € K for each 1 < w;

(i) D, Bg, By, Bs, ... are pairwise disjoint.

Proof of Claim 1: We construct {B;}i<» inductively. Suppose that {Bi}i<n has
been defined. By (ii), CBy...B, < CByg...B,D € K, and so we have CBg...By, <
CBy...B,B € K. By the amalgamation property, we can take a copy Bpy1 of
B over CBy...B,, such that

(*) CBy...BaD, CBo...ByBpy1 < CBo...BaBri1D € K.

Hence Bpy1 satisfies (i) and (ii). On the other hand, By, By, ..., Bpy1 are
pairwise disjoint, since Bpy1 Z¢g,..5, B and B C D. So, to see that (iii) holds
it is enough to show that B’ = Bry1ND = @. If B’ = Bpy41 would hold, then we
have Bpy1 C D, and so CBpy1 £ CD, since §(D/C) < §(B/C) = §(Bn+1/C).
This contradicts (*), and hence we have B’ # Bny1. By (*) again, we have
CBy...ByD < CBy...BpBni1D, and so AB' < ABp41. Since (B, A) is a mini-
mal pair, we have B’ = §. (End of Proof of Claim 1)

Claim 2: AB, AB; < ABy..B;B(€ K) for j <i<w

Proof: We prove by induction on . By (ii) of claim 1, ABo...BiB < ABy...Bi1B.
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By induction hypothesis, we have AB,AB; < ABy...B;B for j < i. Hence
AB,AB; < ABg...B;11B for j < i So, it is enough to show that AB;11 <
ABg.. B,_HB By induction hypothe51s again, we have AB < ABy...B; B.
From (i) of claim 1, it follows that AB;+1 < ABgp...Biq1. By (ii) of claim
1, ABy...Bjp1 < ABO...BH,lB. Hence we have AB;;; < ABg...B;+1B. (End of
Proof of Claim 2)

We show that tp(B/A) is non-algebraic. By claim 2, we can assume that
AB,AB; < ABB,y...B; < M for each 4,5 with 7 < 7 < w. So we have
tp(B; /A) = tp(B/A) for each j < i. By (iii) of claim 1, B;’s are pairwise
disjoint. Hence tp(B/A) is not algebraic.

Definition We say that K is closed under &-substructures, if for any disjoint
A, B,C with ABC € K, there is a copy B* of B over A with §(B*/CA) =
§(B*/A).

Lemma 3 Assume that K is closed under §-substructures. Let (B, A) be
K-minimal with A < AB < M. If tp(B/A) is algebraic, then (B, A4) is pseudo-
K-small.

Proof Suppose by way of contradiction that (B, A) is not pseudo-K-small.

Then there is C D A such that (B, C) is K-normal and §(B/C) < §(B/A).

Claim: There is a set {B;};«<w of copies of B over A with the following conditions:

(i) C<CBj <CByB;---BieKforeach j<i<w

(i) Bg,B1, Bs, ... are pairwise disjoint. |

(i) B; N C = § for each i < w;

(iv) 8(B;/C) = 6(B;/A) for each i < w.

Proof: Suppose that {B;}i<n has been defined. By our assumption, we have

C < CB € K, and by (i) we have C < CByBj...B, € K. So we can take a

copy B* of B over C such that CBy.. .B,,CB* < CBy...B,B* € K. By (iv),
§(B;/C) = §(B;/A) for each i < n. On the other hand, we have §(B*/C) <
§(B*/A). So we have B; # B” for all i < n. Since (B, A) is K-minimal, B and

B;’s are pairwise disjoint. Since K is closed under §-substructures, By41 with

Bni1 Z4B.8,..8, B*,CBoB1..ByBnt1 € K and §(Bny1/C) = §(Bnt1/A4).

Then we can see that () (iv) hold. (End of Proof of Claim)

By claim, we have AB; < ABy...B;(€ K) for j <i <w. So we can assume
that AB; < AByg...B; < M for each ¢,j with j < 7 < w. Thus we have
tp(B; /A) = tp(B /A) for each j < i. By (11) of claim, B;’s are pairwise distinct.
Hence tp(B/A) is not algebraic.

Lemma 4 If (B, A) and (C, BA) are K-small, then so is (BC, A).

Proof Take any K-normal pair (E, D) such that BC C E and A C D. Then
note that (E — B,BD) is K-normal. (Proof: Take any X C E — B. Note



that (XB, D) is K-normal since (E, D) is so. Since (B, A) is K-small, we
have §(X/BD) = §(XB/D) — §(B/D) > §(XB/D) — §(B/A) > 0. Hence
(E — B,BD) is K-normal.) Since (C,BA) is K-small, we have §(E/BD) >
§(C/BA). On the other hand, since (B, A) is K-small and (B, D) is K-normal,
we have 8(B/D) = §(B/A). 1t follows that §(BC/A) = §(C/AB)+4(B/A) <<
§(E/BD)+§(B/D)=4§(E/D). Hence (BC, A) is K-small.

Thoerem 5 Assume that K is closed under §-substructures. Let (B, A) be
K-normal with AB < M. If tp(B/A) is algebraic, then (B, A) is K-small.

Proof Let tp(B/A) be algebraic. Take a sequence A = By < BpB1 <
.. < ByBj..B, = AB with (B;41,B;) K-minimal for each i. Since each
tp(Biy1/Bo...B;) is algebraic, it is K-small by lemma 2 and 3. So, by lemma 4,
(B, A) = (ByB,...By, By) is K-small.

3 Forking and dimension

In this section, we assume that K is closed under d-substructures.
Lemma 6 Let A C B. If B is closed, then so is B U acl(4).

Proof We can assume that A, B are finite. It is enough to show that BA*
is closed for any finite A* with A C A* < acl{4). Let A’ = A* N B. Since
tp(A*/A") is algebraic and A’ < A* is closed, (A* — A’, A’) is small. Then we
can see that BA* is closed as follows. If not, then there is finite X C N — BA*
with §(X/BA*) < 0. Then we have 0 < §(XA*/B) = §(X/BA*) +6(A"/B) <
§(A*/B) < §(A*/A"). This contradict that (4* — 4’, A') is small.

Fact([7], [8]) Let B, C be closed and A = BN C algebraically closed. Then
the following are equivalent.

() d(B/A) = d(B/C);

(ii) B and C are free over A, and BC is closed;

(iii) tp(B/C) does not fork over A.

Lemma 7 Assume that K is closed under §-substructures. Let B, C be closed -

and A= BNC. If B,C are free over A and BC is closed, then tp(B/C) does
not fork over A.

Proof By lemma 8, Bacl{4), Cacl(A) is closed. Since BC is closed, by lemma
6 again, BCacl(A) is closed. So, by fact, to show that tp(B/C) does not fork
over A, it is enough to prove that acl(4)B, acl(4)C are free over acl(A). Take
finite closed By C B,Cp C C such that BoCp is closed. Let Ay = BgnCy. Take
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finite closed A* C acl(4g). Let D = A* — BoCp and A’ = A* N ByCh.
Claim 1: §(BoCo/A*) = 6(BoCo/A").
Proof: Since tp(D/A’) is algebraic and (D, 4') is normal, (D, A') is small. So we
have §(D/BoCo) = 6(D/A"). Then §(BoCo/A*) — §(BoCo/A") = §(D/BoCh) -
6(D/A") = 0. (End of Proof of Claim 1)
Claim 2: §(Bo/CoA*) = §(Bo/A*).
Proof: Since B,C are free over A, we can see that §(Co/A'By) = §(Co/A’).
Then 6(Bo/Cod”) = 6(BoCo/A*) — 5(Co/A") > 6(BoCo/A") = 6(Co/A') =
§{BoCo/A') — §(Co/A'By) = 8(Bo/A") > §(Bo/A*). Hence §(Bp/CoA*) =
§(Bo/A*).

By claim 2, Bacl(A), Cacl(A) is free over acl(4).

Lemma 8 Assume that K is closed under é-substructures. Let A,B,C be
such that B, C are closed and A = BN C. Suppose that tp(B/C) does not fork
over A. Then

(i) B,C are free over A (,and moreover acl(B), acl(C) are free over acl(4));
(i) BUC Uacl(4) is closed.

Proof Let A* = acl(4),B* = acl(B) and C* = acl(C). Clearly tp(B*/A4*)
does not fork over A*, and so B* N C* = A*.

(i) By fact, B* and C* are free over A*. So we obtain that B and C are free
over A*. Let B' = BN A*,C' = C n A*. Note that §(B/B'C) = §(B/B'C’).
First we show that B’ and C are free over A. If not, then there are finite closed
Ag C A, B} C B',Cy C C such that B}, Cp are not free over 4p = Bg N Co.
We can assume that tp(By/A4g) is algebraic. By theorem 5, (Bp — Ag, Ap) is
small. So we have §(B}/Ao) = 6(B}/Co). This contradicts that By and Cp
are not free over Ag. Thus B’ and C are free over A. Similarly we see that B
and C' are free over A. Then §(B/C) = §(BB'/C) = §(B/B'C)+4(B'/C) =
§(B/B'C") +6(B'/C") = §(B/C") = §(B/A). Hence B and C are free over A.

(ii) By fact, we obtain that B*C* is closed. If BC A* is not closed, then there are
finite X ¢ B*C*~BCA*, By C B,Cy C C, A} C A* such that 8(X/BgCoAg) <
0. By lemma, BA*, CA* are closed, and hence we can assume that BoAg, Co4g
are closed. Let Xp = X N B* and X¢ = X N C*. Then §(X5/BoCoXcAp) =
§(X/BoAy) and 6(X¢/BoCoAl) = 6(X¢/CoAg) since B*, C* are free over A,
Therefore we have §(X/BoCodf) = §(Xp/BeCoXcAf) + 8(Xo/BoCoAp) =
8(Xp/BoA}) + (X /CoAf) > 0+ 0=0. A contradiction.

Lemma 9 Assume that Th{}) is superstable. Then for any countable model
N and p € S(N) there is finite A C N such that p|4 is stationary.

Proof Take a realization b of p. By superstability, there is finite X C N such
that p does not fork over X. Let B = cl(Xb) and A = BN N. Clearly tp(b/N)
does not fork over A. We show that tp(b/A) is stationary. Take any b’ such



91

that tp(b'/A) = tp(b/A) and tp(¥'/N) does not fork over A. Let B’ = cl(b’A).
Then we have B =4 B’. Note that B NN = 4. By lemma 8, B, N and B’ N
are free over A respectively, and so we have B =y B'. By lemma 8 again,
BN, B'N are closed since acl(4) C N. It follows that tp(BN) = tp(B’'N) and
hence tp(b/N) = tp(b'/N).

By lemma 9, we have the following theorem.

Theorem 10 Let L be a countable relational language. Let K = (K, <) be
a class of finte L-structures that is derived from a predimension § and that
is closed under substructures. Let M be a saturated K-generic structure. If
Th(M) is superstable, then it is w-stable.
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