Forking in Generic Structures

池田 宏一郎 (Koichiro IKEDA) * 法政大学経営学部

(Faculty of Business Administration, Hosei University)

Abstract

Baldwin の問題とは、superstable であるが ω -stable でない generic 構造が存在するか、という問題である([1]). この問題の部分的結果として、generic 構造が saturated のときは、理論が superstable ならば必ず ω -stable となることがわかった(定理 10).

1 Preliminaries

Many papers [2,3,4,8] have laid out the basics of generic structures. So we do not explain all of those details here.

Let L be a countable relational language and \mathbf{K}^* a class of the finite L-structures. Then $\delta: \mathbf{K}^* \to \mathbb{R}^+$ is said to be a *predimension*, if (i) for all $AB \in \mathbf{K}^*$, $\delta(A/B) \leq \delta(A/A \cap B)$; (ii) if $A \cong B \in \mathbf{K}^*$, then $\delta(A) = \delta(B)$; (iii) $\delta(\emptyset) = 0$; (iv) If $A \subset A', B \subset B', C \subset C'$ and A', B', C' are pairwise disjoint, then $\delta(B/A) - \delta(B/AC) \leq \delta(B'/A') - \delta(B'/A'C')$, where $\delta(A/B)$ denotes $\delta(AB) - \delta(B)$.

Let $A \subset B \in \mathbf{K}^*$. Suppose that A is finite. Then A is said to be *closed* in B (in symbol, $A \leq B$), if $\delta(X/A) \geq 0$ for any finite $X \subset B - A$. In general, A is said to be closed in B, if $A \cap X \leq B \cap X$. We define the *closure* of A in B by $\operatorname{cl}_B(A) = \bigcap \{C : A \subset C \leq B, |C| < \omega \}$. We define a *dimension* of A in B by $\operatorname{d}_B(A) = \delta(\operatorname{cl}_B(A))$.

Let K be a subclass of K^* that is closed under substructures, and M a saturated K-generic structure.

K is said to have *finite closures*, if there are no chains $A_0 \subset A_1 \subset \cdots$ of elements of **K** with $\delta_{\alpha}(A_{i+1}) < \delta_{\alpha}(A_i)$ for each $i < \omega$. If **K** has finite closures, then we can see that there exists a unique **K**-generic structure M, and moreover that any finite set of M has finite closures. On the other hand, it can be seen that if a **K**-generic structure M is saturated then **K** has finite closures. We summarize our situation.

^{*}Research partially supported by Grants-in-Aid for Scientific Research (no.16540123), Ministry of Education, Science and Culture.

Assumption $\mathbf{K} = (K, \leq)$ is derived from a predimension δ such that \mathbf{K} is closed under substructures. M is a saturated \mathbf{K} -generic structure.

2 Smallness of algebraic types

Definition Let AB be finite L-structure. Then

- (i) A pair (B, A) is said to be **K**-normal, if $A \leq AB \in \mathbf{K}$ and $A \cap B = \emptyset$.
- (ii) A K-normal pair (B, A) is said to be *minimal*, if $\delta(C/A) > \delta(B/A)$ for any non-empty proper subset C of B.
- (iii) A **K**-normal pair (B, A) is said to be weakly small, if whenever $A \subset C, B \subset D$ and (D, C) is **K**-normal, then $\delta(D/C) \geq \delta(B/C)$.
- (iv) A **K**-normal pair (B, A) is said to be *pseudo-small*, if whenever $A \subset C$ and (B, C) is **K**-normal, then $\delta(B/C) \geq \delta(B/A)$.
- (v) A **K**-normal pair (B, A) is said to be *small*, if whenever $A \subset C, B \subset D$ and (D, C) is **K**-normal, then $\delta(D/C) \geq \delta(B/A)$.

Note 1 A K-normal pair (B, A) is small if and only if it is weakly small and pseudo-small.

Lemma 2 Let (B,A) be **K**-minimal with $A \leq AB \leq M$. If tp(B/A) is algebraic, then (B,A) is weakly **K**-small.

Proof Suppose by way of contradiction that (B, A) is not weakly **K**-small. Then there are $C \supset A$ and $D \supset B$ such that (D, C) is **K**-normal and $\delta(D/C) < \delta(B/C)$.

Claim 1: There is a set $\{B_i\}_{i<\omega}$ of copies of B with the following conditions:

- (i) $B_i \cong_{CB_0...B_{i-1}} B$ for each $i < \omega$;
- (ii) $CB_0...B_i, CB_0...B_{i-1}D \leq CB_0...B_iD \in \mathbf{K}$ for each $i < \omega$;
- (iii) $D, B_0, B_1, B_2, ...$ are pairwise disjoint.

Proof of Claim 1: We construct $\{B_i\}_{i<\omega}$ inductively. Suppose that $\{B_i\}_{i\leq n}$ has been defined. By (ii), $CB_0...B_n \leq CB_0...B_nD \in \mathbf{K}$, and so we have $CB_0...B_n \leq CB_0...B_nB \in \mathbf{K}$. By the amalgamation property, we can take a copy B_{n+1} of B over $CB_0...B_n$ such that

(*) $CB_0...B_nD$, $CB_0...B_nB_{n+1} \leq CB_0...B_nB_{n+1}D \in \mathbf{K}$.

Hence B_{n+1} satisfies (i) and (ii). On the other hand, $B_0, B_1, ..., B_{n+1}$ are pairwise disjoint, since $B_{n+1} \cong_{CB_0...B_n} B$ and $B \subset D$. So, to see that (iii) holds it is enough to show that $B' = B_{n+1} \cap D = \emptyset$. If $B' = B_{n+1}$ would hold, then we have $B_{n+1} \subset D$, and so $CB_{n+1} \not\leq CD$, since $\delta(D/C) < \delta(B/C) = \delta(B_{n+1}/C)$. This contradicts (*), and hence we have $B' \neq B_{n+1}$. By (*) again, we have $CB_0...B_nD \leq CB_0...B_nB_{n+1}D$, and so $AB' \leq AB_{n+1}$. Since (B,A) is a minimal pair, we have $B' = \emptyset$. (End of Proof of Claim 1)

Claim 2: $AB, AB_j \leq AB_0...B_iB \in \mathbf{K}$ for $j \leq i < \omega$

Proof: We prove by induction on i. By (ii) of claim 1, $AB_0...B_iB \leq AB_0...B_{i+1}B$.

By induction hypothesis, we have $AB, AB_j \leq AB_0...B_iB$ for $j \leq i$. Hence $AB, AB_j \leq AB_0...B_{i+1}B$ for $j \leq i$. So, it is enough to show that $AB_{i+1} \leq AB_0...B_{i+1}B$. By induction hypothesis again, we have $AB \leq AB_0...B_iB$. From (i) of claim 1, it follows that $AB_{i+1} \leq AB_0...B_{i+1}$. By (ii) of claim 1, $AB_0...B_{i+1} \leq AB_0...B_{i+1}B$. Hence we have $AB_{i+1} \leq AB_0...B_{i+1}B$. (End of Proof of Claim 2)

We show that $\operatorname{tp}(B/A)$ is non-algebraic. By claim 2, we can assume that $AB, AB_j \leq ABB_0...B_i \leq M$ for each i, j with $j \leq i < \omega$. So we have $\operatorname{tp}(B_j/A) = \operatorname{tp}(B/A)$ for each $j \leq i$. By (iii) of claim 1, B_j 's are pairwise disjoint. Hence $\operatorname{tp}(B/A)$ is not algebraic.

Definition We say that **K** is *closed under* δ -substructures, if for any disjoint A, B, C with $ABC \in \mathbf{K}$, there is a copy B^* of B over A with $\delta(B^*/CA) = \delta(B^*/A)$.

Lemma 3 Assume that **K** is closed under δ -substructures. Let (B,A) be **K**-minimal with $A \leq AB \leq M$. If $\operatorname{tp}(B/A)$ is algebraic, then (B,A) is pseudo-**K**-small.

Proof Suppose by way of contradiction that (B, A) is not pseudo-**K**-small. Then there is $C \supset A$ such that (B, C) is **K**-normal and $\delta(B/C) < \delta(B/A)$. Claim: There is a set $\{B_i\}_{i < \omega}$ of copies of B over A with the following conditions:

- (i) $C \leq CB_j \leq CB_0B_1 \cdots B_i \in \mathbf{K}$ for each $j \leq i < \omega$
- (ii) $B_0, B_1, B_2, ...$ are pairwise disjoint.
- (iii) $B_i \cap C = \emptyset$ for each $i < \omega$;
- (iv) $\delta(B_i/C) = \delta(B_i/A)$ for each $i < \omega$.

Proof: Suppose that $\{B_i\}_{i\leq n}$ has been defined. By our assumption, we have $C\leq CB\in \mathbf{K}$, and by (i) we have $C\leq CB_0B_1...B_n\in \mathbf{K}$. So we can take a copy B^* of B over C such that $CB_0...B_n, CB^*\leq CB_0...B_nB^*\in \mathbf{K}$. By (iv), $\delta(B_i/C)=\delta(B_i/A)$ for each $i\leq n$. On the other hand, we have $\delta(B^*/C)<\delta(B^*/A)$. So we have $B_i\neq B^*$ for all $i\leq n$. Since (B,A) is \mathbf{K} -minimal, B and B_i 's are pairwise disjoint. Since \mathbf{K} is closed under δ -substructures, B_{n+1} with $B_{n+1}\cong_{AB_0B_1...B_n}B^*, CB_0B_1...B_nB_{n+1}\in \mathbf{K}$ and $\delta(B_{n+1}/C)=\delta(B_{n+1}/A)$. Then we can see that (i)-(iv) hold. (End of Proof of Claim)

By claim, we have $AB_j \leq AB_0...B_i \in \mathbf{K}$ for $j \leq i < \omega$. So we can assume that $AB_j \leq AB_0...B_i \leq M$ for each i,j with $j \leq i < \omega$. Thus we have $\operatorname{tp}(B_j/A) = \operatorname{tp}(B/A)$ for each $j \leq i$. By (ii) of claim, B_j 's are pairwise distinct. Hence $\operatorname{tp}(B/A)$ is not algebraic.

Lemma 4 If (B, A) and (C, BA) are **K**-small, then so is (BC, A).

Proof Take any **K**-normal pair (E, D) such that $BC \subset E$ and $A \subset D$. Then note that (E - B, BD) is **K**-normal. (Proof: Take any $X \subset E - B$. Note

that (XB,D) is **K**-normal since (E,D) is so. Since (B,A) is **K**-small, we have $\delta(X/BD) = \delta(XB/D) - \delta(B/D) \geq \delta(XB/D) - \delta(B/A) \geq 0$. Hence (E-B,BD) is **K**-normal.) Since (C,BA) is **K**-small, we have $\delta(E/BD) \geq \delta(C/BA)$. On the other hand, since (B,A) is **K**-small and (B,D) is **K**-normal, we have $\delta(B/D) = \delta(B/A)$. It follows that $\delta(BC/A) = \delta(C/AB) + \delta(B/A) \leq \delta(E/BD) + \delta(B/D) = \delta(E/D)$. Hence (BC,A) is **K**-small.

Thoerem 5 Assume that **K** is closed under δ -substructures. Let (B, A) be **K**-normal with $AB \leq M$. If $\operatorname{tp}(B/A)$ is algebraic, then (B, A) is **K**-small.

Proof Let tp(B/A) be algebraic. Take a sequence $A = B_0 \le B_0B_1 \le ... \le B_0B_1...B_n = AB$ with (B_{i+1}, B_i) **K**-minimal for each *i*. Since each $tp(B_{i+1}/B_0...B_i)$ is algebraic, it is **K**-small by lemma 2 and 3. So, by lemma 4, $(B, A) = (B_0B_1...B_n, B_0)$ is **K**-small.

3 Forking and dimension

In this section, we assume that **K** is closed under δ -substructures.

Lemma 6 Let $A \subset B$. If B is closed, then so is $B \cup acl(A)$.

Proof We can assume that A,B are finite. It is enough to show that BA^* is closed for any finite A^* with $A \subset A^* \leq \operatorname{acl}(A)$. Let $A' = A^* \cap B$. Since $\operatorname{tp}(A^*/A')$ is algebraic and $A' \leq A^*$ is closed, $(A^* - A', A')$ is small. Then we can see that BA^* is closed as follows. If not, then there is finite $X \subset N - BA^*$ with $\delta(X/BA^*) < 0$. Then we have $0 \leq \delta(XA^*/B) = \delta(X/BA^*) + \delta(A^*/B) < \delta(A^*/B) \leq \delta(A^*/A')$. This contradict that $(A^* - A', A')$ is small.

Fact([7], [8]) Let B, C be closed and $A = B \cap C$ algebraically closed. Then the following are equivalent.

- (i) d(B/A) = d(B/C);
- (ii) B and C are free over A, and BC is closed;
- (iii) tp(B/C) does not fork over A.

Lemma 7 Assume that **K** is closed under δ -substructures. Let B, C be closed and $A = B \cap C$. If B, C are free over A and BC is closed, then $\operatorname{tp}(B/C)$ does not fork over A.

Proof By lemma 6, Bacl(A), Cacl(A) is closed. Since BC is closed, by lemma 6 again, BCacl(A) is closed. So, by fact, to show that tp(B/C) does not fork over A, it is enough to prove that acl(A)B, acl(A)C are free over acl(A). Take finite closed $B_0 \subset B$, $C_0 \subset C$ such that B_0C_0 is closed. Let $A_0 = B_0 \cap C_0$. Take

finite closed $A^* \subset \operatorname{acl}(A_0)$. Let $D = A^* - B_0C_0$ and $A' = A^* \cap B_0C_0$.

Claim 1: $\delta(B_0C_0/A^*) = \delta(B_0C_0/A')$.

Proof: Since $\operatorname{tp}(D/A')$ is algebraic and (D, A') is normal, (D, A') is small. So we have $\delta(D/B_0C_0) = \delta(D/A')$. Then $\delta(B_0C_0/A^*) - \delta(B_0C_0/A') = \delta(D/B_0C_0) - \delta(D/A') = 0$. (End of Proof of Claim 1)

Claim 2: $\delta(B_0/C_0A^*) = \delta(B_0/A^*)$.

Proof: Since B, C are free over A, we can see that $\delta(C_0/A'B_0) = \delta(C_0/A')$. Then $\delta(B_0/C_0A^*) = \delta(B_0C_0/A^*) - \delta(C_0/A^*) = \delta(B_0C_0/A') - \delta(C_0/A'B_0) = \delta(B_0/A') \ge \delta(B_0/A^*)$. Hence $\delta(B_0/C_0A^*) = \delta(B_0/A^*)$.

By claim 2, Bacl(A), Cacl(A) is free over acl(A).

Lemma 8 Assume that **K** is closed under δ -substructures. Let A, B, C be such that B, C are closed and $A = B \cap C$. Suppose that $\operatorname{tp}(B/C)$ does not fork over A. Then

- (i) B, C are free over A (,and moreover acl(B), acl(C) are free over acl(A));
- (ii) $B \cup C \cup \operatorname{acl}(A)$ is closed.

Proof Let $A^* = \operatorname{acl}(A), B^* = \operatorname{acl}(B)$ and $C^* = \operatorname{acl}(C)$. Clearly $\operatorname{tp}(B^*/A^*)$ does not fork over A^* , and so $B^* \cap C^* = A^*$.

(i) By fact, B^* and C^* are free over A^* . So we obtain that B and C are free over A^* . Let $B' = B \cap A^*$, $C' = C \cap A^*$. Note that $\delta(B/B'C) = \delta(B/B'C')$. First we show that B' and C are free over A. If not, then there are finite closed $A_0 \subset A, B_0' \subset B', C_0 \subset C$ such that B_0', C_0 are not free over $A_0 = B_0' \cap C_0$. We can assume that $tp(B_0'/A_0)$ is algebraic. By theorem 5, $(B_0'-A_0,A_0)$ is small. So we have $\delta(B_0'/A_0) = \delta(B_0'/C_0)$. This contradicts that B_0' and C_0 are not free over A_0 . Thus B' and C are free over A. Similarly we see that Band C' are free over A. Then $\delta(B/C) = \delta(BB'/C) = \delta(B/B'C) + \delta(B'/C) =$ $\delta(B/B'C') + \delta(B'/C') = \delta(B/C') = \delta(B/A)$. Hence B and C are free over A. (ii) By fact, we obtain that B^*C^* is closed. If BCA^* is not closed, then there are finite $X\subset B^*C^*-BCA^*, B_0\subset B, C_0\subset C, A_0^*\subset A^*$ such that $\delta(X/B_0C_0A_0^*)<$ 0. By lemma, BA^* , CA^* are closed, and hence we can assume that $B_0A_0^*$, $C_0A_0^*$ are closed. Let $X_B=X\cap B^*$ and $X_C=X\cap C^*$. Then $\delta(X_B/B_0C_0X_CA_0^*)=$ $\delta(X_B/B_0A_0^*)$ and $\delta(X_C/B_0C_0A_0^*)=\delta(X_C/C_0A_0^*)$ since B^*,C^* are free over A^* . Therefore we have $\delta(X/B_0C_0A_0^*) = \delta(X_B/B_0C_0X_CA_0^*) + \delta(X_C/B_0C_0A_0^*) =$ $\delta(X_B/B_0A_0^*) + \delta(X_C/C_0A_0^*) \ge 0 + 0 = 0$. A contradiction.

Lemma 9 Assume that Th(M) is superstable. Then for any countable model N and $p \in S(N)$ there is finite $A \subset N$ such that p|A is stationary.

Proof Take a realization \bar{b} of p. By superstability, there is finite $X \subset N$ such that p does not fork over X. Let $B = \operatorname{cl}(X\bar{b})$ and $A = B \cap N$. Clearly $\operatorname{tp}(\bar{b}/N)$ does not fork over A. We show that $\operatorname{tp}(\bar{b}/A)$ is stationary. Take any \bar{b}' such

that $\operatorname{tp}(\bar{b}'/A) = \operatorname{tp}(\bar{b}/A)$ and $\operatorname{tp}(\bar{b}'/N)$ does not fork over A. Let $B' = \operatorname{cl}(\bar{b}'A)$. Then we have $B \cong_A B'$. Note that $B' \cap N = A$. By lemma 8, B, N and B', N are free over A respectively, and so we have $B \cong_N B'$. By lemma 8 again, BN, B'N are closed since $\operatorname{acl}(A) \subset N$. It follows that $\operatorname{tp}(BN) = \operatorname{tp}(B'N)$ and hence $\operatorname{tp}(b/N) = \operatorname{tp}(b'/N)$.

By lemma 9, we have the following theorem.

Theorem 10 Let L be a countable relational language. Let $\mathbf{K} = (K, \leq)$ be a class of finte L-structures that is derived from a predimension δ and that is closed under substructures. Let M be a saturated K-generic structure. If Th(M) is superstable, then it is ω -stable.

Reference

- [1] J. T. Baldwin, Problems on pathological structures, In Helmut Wolter Martin Weese, editor, Proceedings of 10th Easter Conference in Model Theory (1993) 1–9
- [2] J. T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and Applied Logic 79 (1996) 1–35
- [3] David M. Evans, \aleph_0 -categorical structures with a predimension, Annals of Pure and Applied Logic 116 (2002), no. 1-3, 157-186
- [4] J. Goode, Hrushovski's geometries, In Helmut Wolter Bernd Dahn, editor, Proceedings of 7th Easter Conference on Model Theory (1989) 106–118
- [5] E. Hrushovski, A stable No-categorical pseudoplane, preprint, 1988
- [6] K. Ikeda, A remark on the stability of saturated generic graphs, to appear in Journal of the Mathematical Society of Japan, vol.57, no.4 (2005)
- [7] V. Verbovskiy and I, Yoneda, CM-triviality and relational structures, Annals of Pure and Applied Logic 122 (2003), 175–194
- [8] F. O. Wagner, Relational structures and dimensions, Kaye, Richard (ed.) et al., Automorphisms of first-order structures. Oxford: Clarendon Press. 153-180 (1994)

Faculty of Business Administration Hosei University 2-17-1, Fujimi, Chiyoda Tokyo, 102-8160 JAPAN ikeda@i.hosei.ac.jp