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In [5] and [6], we have investigated the logical strength of the determinacy of
infinite games in the Baire space up to AJ. In this paper we consider infinite games
in the Cantor space. Let Det* (resp. Det) stand for the determinacy of infinite
games in the Cantor space (resp. the Baire space). In Section 2, we show that
AY-Det*, £9-Det* and WKLy are pairwise equivalent over RCAp. In Section 3, we
show that RCAg + (X9 A TI9)-Det* is equivalent to ACAp. Then, we deduce that
RCAg + A%-Det* is equivalent to ATRg. In the last section, we show some more
equivalences among stronger assertions without details, which will be thoroughly

treated elsewhere.

1 Preliminaries

In this section, we recall some basic definitions and facts about second order
arithmetic. The language Ly of second order arithmetic is a two-sorted language
with number variables z,y, z, . . . and unary function variables f,g,%, ..., consisting
of constant symbols 0,1,+, -, =, < . We also use set variables X,Y,Z,..., intending
to range over the set of {0,1}-valued functions, that is, characteristic functions of
sets.

The formulae can be classified as follows:

¢  is bounded (TI3) if it is built up from atomic formulae by using propositional
connectives and bounded number quantifiers (Vz < t), (3z < t), where ¢ does

not contain z.
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@ is Hfl, if it does not contain any function quantifier. IT} formulae are called

arithmetical formulae.
o —pis B¢ if v is a IT, formula (i € {0,1},n € w).

o Yoy Vagpp s IO, if ¢ is a TY formula (n € w),

ViV is H}L_H if ¢ is a T} formula (n € w).

Using above classification, we can define schemata of comprehension and induction

as follows.

Definition 1.1 Assume n € w and i € {0,1}. The scheme of II}, comprehension,

denoted IT:-CA, consists of all the formulae of the form
AXVz{z € X <« ¢(z)),

where o(z) belongs to IIY, and X does not occur freely in ¢(z). The scheme of

Al -comprehension, denoted A%-CA, consists of all the formulae of the form
Yn(p(n) « ¥(n)) — 3XVn(n € X < p(n))

where @(n) is &%, 1(n) is ITL, and X is not free in y(n). The scheme of £, induction,

denote £?-IND, consists of all axioms of the form

(@(0) AVYn(p(n) — @(n+1))) — Yne(n)
where (n) is T.
Now we define a basic subsystem of second order arithmetic, called RCAq.

Definition 1.2 RCA; is the formal system in the language of £3 which consists
of discrete order semi-ring axioms for (N, +,-,0,1, <) plus the schemata of A com-

prehension and ¢ induction.
The following is a formal version of the normal form theorem for £ relations.

Theorem 1.3 (normal form theorem) Let o(f) be a X9 formula. Then we can
find o 113 formula R(s) such that RCAg proves

Vf(p(f) < ImR(fm]))

where flm)| is the code for the finite initial segment of f with length m. Note that
©(f) may contain free variables other than f. ’



Proof. See also Simpson [7, Theorem I1.2.7]. O

We loosely say that a formula is Xf, (resp. II) if it is equivalent over a base
theory (such as RCAg) to a ¢ € &%, (resp. II%).
The next theorem asserts that the universe of functions is closed under the least

number operator, i.e., minimization.

Theorem 1.4 (minimization) The following is provable in RCAg. Let f : N*¥1 —
N be such that for all {n1,..nx) € N there exists m € N such that f(m,n1,..nz) = L.
Then there exists g : N* — N such that g(ni,...nx) is the least m such that

~f(m, Ny, ..., M) = L.

Proof. See Simpson {7, Theorem I11.3.5]. O

2 WKLy and Y9-Det”

Let X be either {0,1} or N and let ¢ be a formula with a distinct variable f
ranging over X, A two-person game G, (or simply @) over X N js defined as follows:
player 1 and player II alternately choose elements from X (starting with I) to form
an infinite sequence f € XN and I (resp. 11) wins iff (f) (resp. ~¢(f)). A strategy
of player 1 (resp. II) is a map ¢ : X* = {s € X<N|s has even length} — X
(resp. X edd _, X). We say that  is determinate if one of the players has a winning
sirategy, that is, a strategy o such that the player is gnaranteed to win every play
f in which he played f(n) = o([f(n)]) whenever it was his turn to play.

Gliven a class of formulae C, C-determinacy is the axiom scheme which states that
any game in C is determinate. We use C-Det* (resp C- Det) to denote C-determinacy

in the Cantor space (resp. the Baire space).

A set T of finite sequences is a tree if it is closed under initial segment, i.e.,t €T
and s C t implies s € T. A function f is a path of T' if each initial segment of f is

a sequence of 7.

Definition 2.1 WKLo is a subsystem of second order arithmetic whose axioms are
those of RCAg plus weak Kénig’s lemma which states that every infinite binary tree
T C 2<N has an infinite path. ‘

Next, we prove the equivalences among WKLg, 59-Det* and A-Det”.

Theorem 2.2 RCAgF AY-Det* — WKLo.
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Proof. By way of contradiction, we assume RCAq + AY-Det* and deny weak
Kénig’s lemma. Let T be an infinite binary tree in which there is no infinite path,

i.e., there is no f such that Ynfln] € T. We consider the following game:
e Player I plays a sequence ¢ of 2<N.
o Player 11 then answers by playing 0 or 1.
s Player I plays a new sequence u of 2<N,
o Player II then plays a sequence v of <N,

The winning conditions of the game are given as follows: II wins if one of the

following cases holds.

e tx(iyxugT.

e tx(l—i)yxveT Al <l
We shall remark that the game always terminates in finite moves, because T has no
infinite path. This ensures that the game is AY. ‘On the other hand, we can show
that player I has no winning strategy by considering two cases, in one of which
player II chooses i = 0 and in the other he chooses i = 1 after player I plays t. Tcan

not win in both of them. Therefore, by Af-Det* player II has a winning strategy 7.
Using 7, we define f: N — {0,1} as follows:

o £(0)=1~-7((),

o f(n+1)=1-7(f[n}),
By Eg—induction, we can easily see that f[n] € T for all n, which contradicts with
our assumption that 7" has no infinite path. Thus, A}-Det” — WKL, This completes

the proof of the theorem.D

Now, we turn to prove the reversal.
Theorem 2.3 WKLg - Z9-Det™.

Proof.  Let ©(f) be a Y9-formula with f € 2N, Then, by the normal form
theorem, ¢(f) can be written as InR(f[n]), where R is T1J. We define recursive

maps g and g from 2<N to {0,1} for each n € N as follows:

w - 1S s R(1)
P= 1 0 w#veC s-RE)
g(s) ifls| >n
gn(s) = max{gn(s * (03),g.(s* (1))} if |s| <7 and |s] is even
min{gn(s * (0)),gn(s * (1))} if|s| <n and [s]is odd



Intuitively, for n € N, g(()) = 1 means “player I can win the game by stage n,”

and gn({)) = 0 means “player I cannot win by stage n.”

Claim. The following assertions hold.
(1) If g, (()) =1 for some n, then I has a winning strategy.
(2) If gn({)) = O for every n, then II has a winning strategy.
For (1), fix n such that gn(()) = 1. Define ¢ : 2°¥°* — {0, 1} by

0_(3):{ 0 ifgn(s*{(0)) =1

1 otherwise.

We can verify that o is a winning strategy for player I, which completes the proof
of the first assertion of the claim.

For (2), suppose that for any n, g»({)) = 0 and show that player I has a winning
strategy. The idea of the proof is as follows. Consider an infinite binary tree which
consists of the moves at which player II can prevent player I from winning the game.
A path through such a tree will serve a winning strategy for IT. To realize this idea,

we will need some coding arguments to construct the tree.

To begin with, fix a lexicographical enumeration e of non-empty sequences of
2<N_ For instance, e({0))=0, e({1})) = 1, €({0,0)) = 2, and so on. Using e, we can
regard any s € 2<N as a partial strategy (i.e., a finite segment of the strategy) for
player II (cf. {1]). We define T to be the tree consisting of all partial plays in which
player II follows s. More precisely, T is defined as follows:

teTs = Vk(2k+1<|t| = t2k+1)= s(e((#(0), -+ ,t(2K))))-
Finally we define 7', a set of all moves which avoid the winning of player I, as follows:
seTe Ve ngh(s)(f) =0,

where h : 2<N _, N is defined by h(s) = max{t] : t € Ts}. Clearly T" is recursive,
therefore it exists in RCAg. On the other hand, the assumption Vn gn(()) = 0 implies
that T is infinite. Thus, T has a infinite path f by weak Konig’s lemma.

Now, we define 7: 20dd _, N as:
7(s) = F(e((s(0)...s(ls| = 2))));

and then we can verify that 7 is a winning strategy for player 11, which completes

the proof. O
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3 ATRy and AJ-Det”

In this section we aim to shbw that RCAg 4+ AJ-Det™ and ATRp are equivalent.
We first give the definitions of ACAg and ATRg.

Definition 3.1 The system ACAq consists of the discrete order semi-ring axioms
for (N, +,-,0,1, <) plus the schemes of E? induction and arithmetical comprehen-

sion.

Since comprehension axioms admit free variables, 1Y comprehension is already as

strong as arithmetical comprehension.

Lemma 8.2 The following are pairwise equivalent over RCAg.
(1) arithmetical comprehension;

(2) 1§ comprehension.
Proof. See Simpson [7, Lemma III.1.3]. O

Definition 3.3 ATR( consists of RCAg augmented by the following axiom, called
arithmeticat transfinite recursion: For any set X C N and for any well-ordering

relation <, there exists a set # C N such that
o if b is the <-least element, then (H)p = X,
e if b is the immediate successar of @ w.r.t. =<, then Vn(n € (H)p < ¥(n, (H)a)),
o if b is a limit, then Ya¥n({(n,a) € (H) « (a < bAn € (H)a)),
where 1) is a II}-formula and (H), = {z : (z,a) € H}, where (z,b) denotes the code
of the pair (z,a).
ATRy is obviously stronger than ACAg, but it is contained in I1}-CAo.
Lemma 3.4 The following are pairwise equivalent over RCAg:
Af-Det, $9-Det and ATRy.

Proof. See [7] or {8].

The class =9 A I1? is defined as follows. ¢ is ¢ AT if and only if ¢ is of the form
1 1 v 1 1
1o A —tp1, where 1 and 11 are . The following theorems characterize (29 A1)

determinacy in the Cantor space.
Theorem 3.5 ACAg proves (59 ATIS)-Det*.

Proof. Let ¢ be of the form 3nRo(f[n]) A VnR:1(f[n]). We define the functions
g, gns ¢, and g/, from 2<N to {0,1} as follows:



- 1 if 3¢ C s Ro(t)
g(s)= _
0 ifVtC s—Ry(t)

g(s) if|s] > n
gn(8) = { max{gn(s*{0)),gn(s* (1))} if|s] <nand|s|iseven
min{gn (s * (0)), gn(s* (1))} if |s| < n and |s|is odd

. ) ={ 1 %f‘v’tgsRl(t))
\ 0 i3t Cs-Ri(t)
g(s) if[s] > n
o gi(s) =< max{g,(s*(0),gh{s* (1))} if|s| <nand]|s|iseven

min{g/, (s * (0)), g/, (s % (1))} if |s| < nand |s|is odd
Following a similar argument of the one used in the proof of Theorem 2.2, we can

prove

Claim: if there exists n such that gn,({)) - gin(()) = 1 for all m > n then I has a
winning strategy, otherwise player II has a winning strategy.

This complete the proof of the theorem. O
Theorem 3.6 RCAgF (29 ATI9)-Det* — ACAq

Proof. Let ¢(n) be a X{-formula.  We need to construct a set X such that for
any n € N, ¢(n) & n € X. To construct X, consider the following game: player 1
asks IT about n by playing 0 consecutively n times and playing 1 after that (if he
plays 0 for ever, he loses). II ends the game by answering 0 or 1.

Now, suppose that player I plays n 0s and a 1 consecutively. Player II wins if

one of the following cases holds.
¢ I answers 1 and ¢(n).
¢ II answers 0 and ~p{(n).
Clearly, I has no wining strategy. By (29 ATI9)-Det™, let 7 be a winning strategy of
player II. We defined a set X by:
neX er(0"1)=1

The set X exists by IIJ comprehension. Moreover, we can verify that Vn, p(n) <

n € X, which completes the proof. O

Let < be a recursive well-ordering on N. We define a recursive well-ordering <*
on N x {0,1} as follows:

(z,i) <* (3,7) ffz<yV(z=yAi<])
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Let X be either N or {0,1}. We say that a formula o(n,4, f) with distinct free

variable f ranging over XN is decreasing along <* if and only if
anzvmvj (((m’j) < (na"') A (p(nﬂaf)) - (P(m,]‘,f));

for all f.

The following lemma will play a key role to characterize AJ-Det*.

Lemma 3.7 It is provable in RCAy that a formula 1) is Ag if and only if:

Q/b(f) « 33?(80(«”010, f) A _'(P(Z‘, 17f))1

where ¢ is 119 and it is decreasing along some recursive well-ordering relation <.
Proof. See [8] for the proof. O
Theorem 3.8 ATRg is equivalent to RCAg + AJ-Det*.

Proof.  The proof is a modification of the proof of Theorem 6.1 in [8]. By
Theorem 3.6 and Lemma 3.7, A-Det* is just a transfinite iteration of arithmetical

comprehension, which is the same as ATRy. O

4 Further classes of games

In this section, we summarize our results about the determinacy of Boolean
combinations of Eg—games. The detailed treatment of these results will appear in
our forthcoming paper.

We start by formalizing the inductive definition of a class of operators.

Definition 4.1 Given a a class of formulas C, the aziom C-AD asserts that for any
operator I' € C, there exists W C N x N such that

1. W is a pre-wellordering on its field F,

2V2 € F Wp=T(Wcy)UWgg,

3T(F)CF.

For a class of formulas C, ' is a monotone C-operator if and only if I' € C and
I' satisfies I'(X) ¢ I'(Y) whenever X C Y. The class of monotone C-operators is
denoted by mon-C. We also use C-M} to denote [mon-C]-ID. We refer the reader to

our papers [9], [5] for more information on this formalization.

Theorem 4.2 The following assertions hold over RCAy.
(1) £3-MI — %3-Det*.



(2) 23-Det* — 23-ID.

Proof.  The idea of the proof is similar to the one used in [9] and [5]. We just
mention that since the game is played over the Cantor space, rather than the Baire
space, we can replace the Xi-operator in [9] and [5] by a Z3-operator.O]

Now, we turn to investigate the strength of £3-1D. The following lemma provides
an alternative definition of H%— CAg. |

Lemma 4.3 The following assertions hold over RCAg.
(1) TI}-CA & (£ ATI])-Det.
(2) I9-MI — TI}-CA.

Proof. The proof of the assertion (1) can be found either in [8] or in [7]. The

assertion (2) is a straightforward formalization of Hinman’s proof {4]. O
Theorem 4.4 II}-CA FII1-ML

Proof. Let T' be a monotone I1}-operator. Using the strategy of a certain (=9 A
119)-game, we can construct W which satisfys conditions (1), (2) and (3) of Definition
4.1. This completes the proof by the assertion (1) of Lemma 4.3.0

Finally, we give the following corollary.
Corollary 4.5 The following are equivalent over RCAg:
%9-Det*, 111 -CAg, T19-MI, £8-ID and I11-MI.
Proof. It is straightforward from Theorems 4.2 and 4.4.0

Next, we turn to the games which can be written as Boolean combinations of 3~
formulas. We first recall the following definitions from [6]. The class (£3)) of
formulas is defined as follows. For k =1, (£3)1 = 2. For k> 1,94 € (Z)k iff it
can be written as 1, A s, where —; € (£9)5—1 and 13 € £9. It can be shown that
for any formula ¢ in the class of Boolean combinations of ¥9-formulas, there is a

k € w such that ¥ € (£9)x, or more strictly, 1 is equivalent to a formula in (Z3)-
Theorem 4.6 Assume 0 <k <w. Then, (53)s1-Det* — (E9)x-Det.

Proof. (—). Let ¢ be a (X9)s-formula and Gy the infinite game over NN asso-
clated with 1. We explain how to turn Gy to a (E3)k+1-game over 2V, which will
be denoted Gy The idea is the following: In G, I starts by playing no 0’s, then
plays 1. Then, II plays n; 1’s and plays 0 and so on. We need to avoid some trivial

situation. For instance, player I must not play 0's consecutively for ever. He must
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stop after playing finitely may 0’s to give II a chance to play. This will make Gy,

& (X9)r+1-game and hence determinate by our assumption. On the other hand the

player who wins G, can win Gy, which conibletes the proof of the first direction.

The direction («) can be proved by using the inductive definition of a combination
of k Ti-operators, which is equivalent to (£9)x-Det by [6]. O
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