Weakly o-minimal structures

岡山大学大学院・自然科学研究科 田中 広志 (Hiroshi Tanaka)
Graduate School of Natural Science and Technology,
Okayama University
htanaka@math.okayama-u.ac.jp

1 Introduction

Let (M,<) be a dense linear ordering without endpoints and A a subset of M. The set A is said to be *convex* if for all $a,b\in A$ and $c\in M$ with a< c< b we have $c\in A$. A structure $(M,<,\ldots)$ equipped with a dense linear ordering < without endpoints is said to be *o-minimal* (weakly o-minimal) if every definable subset of M is a finite union of intervals (convex sets) in (M,<), respectively. A theory T is said to be weakly o-minimal if every model of T is weakly o-minimal.

It is well-known that the monotonicity theorem of [3] fails in a weakly o-minimal structure. However Arfiev [1] showed that the "weaker" version of the monotonicity theorem of [3] holds in any weakly o-minimal structure. In this paper we survey Arfiev's results.

2 Preliminaries

Let M be a weakly o-minimal structure. For each $A, B \subseteq M$ we write A < B if a < b whenever $a \in A$ and $b \in B$. An ordered pair $\langle C, D \rangle$ of non-empty definable subsets in M is called a definable cut if C < D, $C \cup D = M$ and D has no lowest elements. The set of all definable cuts in M will be denoted by \overline{M} . Moreover we define a linear order on \overline{M} by $\langle C_1, D_1 \rangle < \langle C_2, D_2 \rangle$ if and only if $C_1 \subsetneq C_2$. Then we may treat (M, <)

¹Throughout this paper 'definable' means 'definable with parameters'.

as a substructure of $(\overline{M}, <)$ by identifying an element $a \in M$ with the definable cut $\langle (-\infty, a], (a, \infty) \rangle$.

Let A be a definable subset of M^n . Then a function $f:A\to \overline{M}$ is said to be definable if the set $\{\langle \overline{x},y\rangle\in A\times M: f(\overline{x})>y\}$ is definable.

Remark 1 Let A be a definable subset of M^n . Suppose that f is a function from A into \overline{M} . Then the following conditions are equivalent:

- 1. f is definable;
- 2. there exists a formula $\varphi(\overline{x},y)$ with parameters such that $f(\overline{a}) = \sup \varphi(\overline{a},M)$ whenever $\overline{a} \in A$.

Definition 2 Let $f: A \to \overline{M}$ be a function, where A is a subset of M. Then f is said to be *tidy* if one of the following holds:

- 1. for each $a \in A$ there exists an open interval $I \subseteq A$ with $a \in I$ such that $f \upharpoonright I$ is strictly increasing, in which case f is said to be *locally increasing* on A;
- 2. for each $a \in A$ there exists an open interval $I \subseteq A$ with $a \in I$ such that $f \upharpoonright I$ is strictly decreasing, in which case f is said to be *locally decreasing* on A;
- 3. for each $a \in A$ there exists an open interval $I \subseteq A$ with $a \in I$ such that $f \upharpoonright I$ is constant, in which case f is said to be *locally constant* on A.

Definition 3 Let $f: A \to \overline{M}$ be a function, where A is a subset of M. Then f is said to be have the local minimum throughout A if for each $a \in A$ there exist $b_0, b_1 \in A$ with $b_0 < a < b_1$ such that for each $c \in (b_0, b_1) \setminus \{a\}$ we have f(a) < f(c). Similarly, we define that f has the local maximum throughout A.

Definition 4 A weakly o-minimal structure M is said to be have monotonicity if for each definable fuction $f: A \subseteq M \to \overline{M}$ there exists $n \in \mathbb{N}$ and a partition of A into definable sets X, I_0, \ldots, I_n such that X is finite, I_0, \ldots, I_n are open convex sets and for each $i \leq n$ the function $f \upharpoonright I_i$ is tidy.

Arfiev showed the following.

Theorem 5 ([1]) Every weakly o-minimal structure M has monotonicity.

In the next section we give the proof for Theorem 5.

3 Proof of Theorem 5

Throughout this section we assume that (M, <, ...) is a weakly ominimal structure and f is a definable function from definable subset A of M into \overline{M} . We now define the following formulas:

$$egin{aligned} arphi_0(x) &\coloneqq \exists x_1 > x (orall y \in (x,x_1)f(y) < f(x)); \ arphi_1(x) &\coloneqq \exists x_1 > x (orall y \in (x,x_1)f(y) = f(x)); \ arphi_2(x) &\coloneqq \exists x_1 > x (orall y \in (x,x_1)f(y) > f(x)); \ \psi_0(x) &\coloneqq \exists x_0 < x (orall y \in (x_0,x)f(y) < f(x)); \ \psi_1(x) &\coloneqq \exists x_0 < x (orall y \in (x_0,x)f(y) = f(x)); \ \psi_2(x) &\coloneqq \exists x_0 < x (orall y \in (x_0,x)f(y) > f(x)); \ \theta_{ij}(x) &\coloneqq \psi_i(x) \wedge arphi_j(x) \text{ for each } i,j \leq 2. \end{aligned}$$

To show Therem 5, we first prove some lemmas needed later.

Lemma 6 ([2]) For each $x \in Int(A)$, there exist $i, j \leq 2$ such that $\theta_{ij}(x)$ holds.

Proof. Suppose that there exists some $x \in \text{Int}(A)$ such that $\varphi_j(x)$ does not hold for some $j \leq 2$. Then the set $\{y \in A : f(y) \leq f(x)\}$ cannot be written as a union of finitely many convex sets, contradicting that M is weakly o-minimal. Thus, for each $x \in \text{Int}(A)$ there exists some $j \leq 2$ such that $\varphi_j(x)$ holds. Similarly, for each $x \in \text{Int}(A)$ there exists some $i \leq 2$ such that $\psi_i(x)$ holds.

Lemma 7 ([2]) There exists a partition of A into finitely many points and open convex sets such that each open convex set lies in the solution set of some formula θ_{ij} .

Proof. By Lemma 6, there exists a finite subset X of A such that we have $X \cup \bigcup_{i,j \leq 2} \theta_{ij} = A$. For each $i,j \leq 2$, by weak o-minimality of M, the set θ_{ij} can be written as a union of finitely many points and open convex sets. This finishes the proof.

Lemma 8 ([2, Lemma 3.6]) Let I be an open interval of M. Then it cannot happen that one of the formulas $\theta_{01}, \theta_{10}, \theta_{12}, \theta_{21}$ holds throughout I.

Proof. Suppose that the formula θ_{01} holds throughout I. Let x be an element of I. Since $\varphi_1(x)$ holds, there exists some $x_1 > x$ with $x_1 \in I$ such that for each $y \in (x, x_1)$ we have f(x) = f(y). Let z be an element of open interval (x, x_1) . Since $\psi_0(z)$ holds, there exists some w with x < w < z such that for each $y \in (w, z)$ we have f(y) < f(z), a contradiction.

The other cases are similar.

We show the next lemma later.

Lemma 9 Let I be an open interval of M. Suppose that $h: I \to \overline{M}$ has the local minimum or maximum throughout I. Then h is not definable.

Lemma 10 Let I be an open interval of M. Then it cannot happen that one of the formulas θ_{00} and θ_{22} holds throughout I.

Proof. This lemma follows from Lemma 9.

Lemma 11 Let I be a non-empty open definable convex subset of M such that θ_{02} holds throughout I. Then there exists $n \in \mathbb{N}$ and a partition of I into definable sets X, I_0, \ldots, I_n such that X is finite, I_0, \ldots, I_n are open convex sets and for each $i \leq n$ the function $f \upharpoonright I_i$ is locally increasing. Similarly, if θ_{20} holds throughout I, the same conclusion holds with 'locally incressing' replaced by 'locally decreasing'.

Proof. Suppose that $\theta_{02}(x)$ holds throughout I. We define the following formulas:

$$\chi_0(x) :\equiv orall x_1 > x[\exists y, z (x < y < z < x_1 \land f(z) \leq f(y))]; \ \chi_2(x) :\equiv orall x_0 < x[\exists y, z (x_0 < y < z < x \land f(z) \leq f(y))].$$

Claim $\chi_0(x)$ and $\chi_2(x)$ cannot hold throughout a subinterval of I.

Proof of Claim. Suppose for a contradiction that $\chi_0(x)$ holds throughout a subinterval $I_0 \subseteq I$. The argument for $\chi_2(x)$ is similar. For each $a \in I_0$, we define the following:

$$egin{aligned} V_a &:= \{x \in I_0: x < a ext{ and if } y \in [x,a), ext{then } f(y) < f(a)\} \ &\cup \{x \in I_0: x > a ext{ and if } y \in (a,x], ext{then } f(y) > f(a)\} \cup \{a\}; \ g(a) &:= \inf V_a. \end{aligned}$$

Since $\theta_{02}(x)$ holds throughout I_0 , the set V_a is an infinite definable convex set and a is not a boundary point of V_a . Then, by Lemma 9, it suffices to show that g has the local minimum throughout I_0 . We define the following formulas:

$$egin{aligned} \mu_0(x,a) &:\equiv x < a \wedge g(x) \leq g(a); \ \mu_1(x,a) &:\equiv x < a \wedge g(x) > g(a); \
u_0(x,a) &:\equiv x > a \wedge g(x) \leq g(a); \
u_1(x,a) &:\equiv x > a \wedge g(x) > g(a). \end{aligned}$$

By weak o-minimality of M, for each $a \in I_0$, there exist open interval $J \subseteq I_0$ and $K \subseteq I_0$ with J < a < K such that a is a boundary point of J and K, either $\mu_0(x,a)$ or $\mu_1(x,a)$ holds throughout J, and either $\nu_0(x,a)$ or $\nu_1(x,a)$ holds throughout K. Then, it suffices to show that $\mu_1(x,a)$ holds throughout J and $\nu_1(x,a)$ holds throughout J. Suppose for a contradiction that $\mu_0(x,a)$ holds throughout J. The argument for $\nu_0(x,a)$ is similar. Since a is not a boundary point of V_a , there exists $b \in V_a \cap J$. Since $\chi_0(b)$ holds, there exist $c,d \in V_a \cap J$ such that b < c < d < a and $f(d) \leq f(c)$. Hence, by the definition of g, we have $b < c \leq g(d)$. Now, since b is an element of V_a , we have $g(a) \leq b < g(d)$, contradicting that $\mu_0(d,a)$ holds.

By the claim, the set $\{x \in I : \chi_0(x) \lor \chi_2(x)\}$ is finite. Hence, we finish the proof.

Proof of Theorem 5. By Lemma 6 through 11, the theorem follows. \Box

Finally, we show Lemma 9.

Proof of Lemma 9. Suppose that $h:I\to \overline{M}$ has the local minimum throughout I. Suppose for a contradiction that h is definable.

Claim 1 We may assume that h is injective.

Proof of Claim 1. Define the following equivalence relation on I^2 :

$$E(x,y) \iff h(x) = h(y).$$

We first verify that every equivalence class on E is finite. Let A be an infinite class. Then, by weak o-minimality of M, there exists an open subinterval J of A. Since h has the local minimum throughout J, for each $x \in J$ there exists $y \in J$ such that we have h(y) > h(x), a contradiction. Hence, every equivalence class on E is finite. Therefore the set $Z := \{x \in I : \forall y (E(x,y) \to x \leq y)\}$ is infinite. By weak o-minimality of M, there exists an open subinterval J' of Z. We may assume dom(h) = J'. \square

From now on, by Claim 1, we assume that the function h is injective. For each $a, b \in I$, we define the following:

$$egin{aligned} U_a := & \{x: x > a \wedge orall y \in (a,x] (h(y) > h(a)) \} \ & \cup \{x: x < a \wedge orall y \in [x,a) (h(y) > h(a)) \} \cup \{a\}; \ & a \prec b \iff U_a \supsetneq U_b. \end{aligned}$$

Then, since h has the local minimum throughout I, for each $a \in I$ the set U_a is an infinite definable convex set. The predicate \prec is a partial ordering.

Claim 2 Let $a, b, c \in I$. Suppose that a, b, c are pairwise distinct. Then the following hold.

- 1. $U_a \neq U_b$;
- 2. a is not a boundary point of U_a ;
- 3. $b \in U_a \iff a \prec b$;
- 4. If $U_a \cap U_b \neq \emptyset$, then either $a \prec b$ or $b \prec a$;
- 5. If $a \prec b \prec c$ and a < c, then a < b;
- 6. If $a \prec b \prec c$ and a < b, then a < c;
- 7. If $b \prec a$ and $c \prec a$, then $b \prec c$ or $c \prec b$;
- 8. $C_a := \{x \in I : x \prec a\}$ is finite.

Proof of Claim 2.

- (1): h は単謝より, $h(a) \neq h(b)$ となる. したがって $U_a \neq U_b$ である.
- (2): hの仮定より、これはいえる.
- (3): (←) 明らか.
- (\Rightarrow) $b \in U_a$ とする. このとき h(b) > h(a) である. ここで、一般性を失うことなしに a < b とする. $c \in U_b$ を任意にとる. このとき、 $a \le c \le b$ ならば U_a は convex なので、 $c \in U_a$ である. また、b < c ならば $c \in U_b$ より、任意の $d \in (b,c]$ に対して h(d) > h(b) > h(a) である. よって $c \in U_a$ となる. 同様に、c < a ならば $c \in U_a$ となる. このことから $U_a \supsetneq U_b$ がいえる.
- (4): 一般性を失うことなしに a < b とする. 仮定より $c \in U_a \cap U_b$ かつ a < c < b を満たす元が存在する. まず h(a) < h(b) と思う. 任意に $d \in U_b$ をとる. $a \le d \le c$ ならば U_a は convex なので, $d \in U_a$ である. また, c < d ならば任意の $e \in (c,d]$ に対し $h(e) \ge h(b) > h(a)$ となる. よって, $d \in U_a$ となる. 同様に, d < a ならば $d \in U_a$ となる. したがって $U_b \subsetneq U_a$ が成り立つ. 同様に h(b) < h(a) ならば $U_a \subsetneq U_b$ が成り立つ.
- (5): b < a になったとする. すると仮定より, $U_a \supsetneq U_b \supsetneq U_c$ かつ b < a < c となる. よって $b, c \in U_b$ となり, U_b は convex なので $a \in U_b$ がいえる. これは矛盾する.
 - (6): (5) と同様に示せる.
- (7): 仮定より $a \in U_b \cap U_c$ である. よって, $U_b \cap U_c \neq \emptyset$ が成り立つ. すると, (4) より結論がいえる.
- (8): C_a が無限集合だったとする. このとき M は weakly o-minimal より, ある開区間 J が存在して $J \subseteq C_a$ となる. $b \in J$ を任意にとる. b は U_b の境界ではないので, $c,d \in U_b \cap J$ かつ c < b < d を満たすものが存在する. すると $c,d \in C_a$ より, $c \prec a$ かつ $d \prec a$ となる. ここで (7) より, $c \prec d$ または $d \prec c$ である. $c \prec d$ とする ($d \prec c$ の場合も同様に示せる). すると, $d \in U_c$ かつ c < b < d となる. U_c は convex より, $b \in U_c$ である. これは $c \in U_b$ に反する.

Claim 2の(8)より ~ は離散順序である. ここで

 $K := \{x \in I : 任意の y \in I に対し, y \nprec x\};$ $\tilde{a} := \{x \in I : a \prec x かつ a \prec y \prec x を満たす y は存在しない \}$

と定義する.

Claim 3 The following conditions hold:

- 1. $I \setminus K = \bigsqcup_{a \in I} \tilde{a}$;
- 2. the set K is finite;
- 3. the set \tilde{a} is finite.

Proof of Claim 3.

(1): 任意に $a \in I$ と $b \in K$ をとる. すると K の定義より, $a \not$ b である. よって $b \notin \bar{a}$ がいえる.

次に、任意に $c \in I \setminus K$ をとると、 $c \notin K$ より、ある元 $d \in I$ が存在して $d \prec c$ が成り立つ。ここで \prec は離散順序より、ある元 $d' \in I$ が存在して $c \in \tilde{d'}$ がいえる.

また $e_1 \neq e_2$ を任意にとる。もし $\tilde{e_1} \cap \tilde{e_2} \neq \emptyset$ であったとすると、ある元 $x \in \tilde{e_1} \cap \tilde{e_2}$ がとれる。すると $e_1 \prec x$ かつ $e_2 \prec x$ だから Claim 2 の (7) より、 $e_1 \prec e_2$ または $e_2 \prec e_1$ である。 $e_1 \prec e_2$ と思う $(e_2 \prec e_1$ の場合も同様)。すると、 $e_1 \prec e_2 \prec x$ となるが、これは $x \in \tilde{e_1}$ に反する。したがって、 $\tilde{e_1} \cap \tilde{e_2} = \emptyset$ である。

- (2): K が無限集合だったとする. このとき M は weakly o-minimal より, ある開区間 J が存在して $J \subseteq K$ となる. $b \in J$ を任意にとる. b は U_b の境界ではないので, ある元 $c \in U_b \cap J$ が存在する. すると, $c \in U_b$ より, $b \prec c$ となる. これは $c \in J \subseteq K$ に反する.
- (3): \tilde{a} が無限集合だったとする. このとき M は weakly o-minimal より, ある開区間 J が存在して $J \subseteq \tilde{a}$ となる. $b \in J$ を任意にとる. b は U_b の境界ではないので, ある元 $c \in U_b \cap J$ が存在する. $b \in \tilde{a}$ かつ $c \in U_b$ より, $a \prec b \prec c$ となる. これは $c \in J \subseteq \tilde{a}$ に反する.

Claim 3 の (2) より, $I\setminus K$ は無限集合である. さて任意の $a,b\in I\setminus K$ に対して,

$$E'(a,b) \iff M \models \exists c \in I \ (a \in \tilde{c} \land b \in \tilde{c})$$

と定義すると、E'(x,y) は Claim 3 の (1) より $(I\setminus K)^2$ 上の同値関係になる。また Claim 3 の (3) より、E'(x,y) の各クラスは有限集合である。よって $X:=\{x\in I\setminus K: M\models \forall y\in I\setminus K\ (E'(x,y)\to x\leq y)\}$ は無限集合になる。

さて X の definable convex な構成要素で < に関して最大のものを Y とする. $a \in Y$ をとる. a は U_a の境界ではないので, $b_1, b_2 \in U_a$ かつ $b_1 < a < b_2$ となる元が存在する. すると \prec は離散順序より, $a \prec b \preceq b_2$ か

つ $a \prec b \preceq b_1$ となる元たちが存在する. このとき, E'(b,b') である. また $b_1 < a < b_2$ だから, $Claim\ 2$ の (5) より b' < a < b となる. よって, $b \notin X$ がいえる. ところでb は U_b の境界ではないので, $c \in U_b$ かつb < c となる元が存在する. すると, \tilde{c} は有限より, $d \in \tilde{c}$ かつ $d \in X$ となるものがとれる. よって $b \prec c \prec d$ かつb < c なので, $Claim\ 2$ の (6) より b < d となる. これは Y の性質に反する.

したがって, h は definable ではない.

参考文献

- [1] R. Arefiev, On monotonicity for weakly o-minimal structures, preprint.
- [2] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. **352** (2000), 5435-5483.
- [3] A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592.
- [4] L. van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge: Cambridge University Press 1998.
- [5] R. Wencel, Topological properties of sets definable in weakly ominimal structures, preprint.
- [6] R. Wencel, Weakly o-minimal non-valuational structures, preprint.