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1 Introduction

Let (M, <) be a dense linear ordering without endpoints and A a subset

of M. The set A is said to be convez if for all a,b € A and ¢ € M with
a < ¢ < bwe have c € A. A structure (M, <,...) equipped with a dense
linear ordering < without endpoints is said to be o-minimal (weakly o-
minimal) if every definable’ subset of M is a finite union of intervals
(convex sets) in (M, <), respectively. A theory T is said to be weakly
o-minimal if every model of T is weakly o-minimal.

It is well-known that the monotonicity theorem of [3] fails in a weakly

o-minimal structure. However Arfiev [1] showed that the “weaker” ver-
sion of the monotonicity theorem of [3] holds in any weakly o-minimal
structure. In this paper we survey Arfiev’s results.

2 Preliminaries

Let M be a weakly o-minimal structure. For each 4, B C M we write

A < Bif a < b whenever a € A and b € B. An ordered pair (C,D)
of non-empty definable subsets in M is called a definable cut if C < D,
C UD = M and D has no lowest elements. The set of all definable cuts
in M will be denoted by M. Moreover we define a linear order on M by
(Cy,D1) < (Cy, Dy) if and only if C; C Cs. Then we may treat (M, <)

! Throughout this paper ‘definable’ means ‘definable with parameters’.



as a substructure of (M, <) by identifying an element a € M with the
definable cut ({—o0, a], (a, cc}).

Let A be a definable subset of M™. Then a function f : A — M is said
to be definable if the set {(Z,y) € A X M : f(z) > y} is definable.

Remark 1 Let A be a definable subset of M™. Suppose that f is a func-
tion from A into M. Then the following conditions are equivalent:

1. f is definable;

2. there ezists a formula ¢(%,y) with parameters such that f(a) =
supp(@, M) whenever a € A.

Definition 2 Let f: A — M be a function, where A is a subset of M.
Then f is said to be tidy if one of the following holds:

1. for each a € A there exists an open interval I C A with a € I such
that f | I is strictly increasing, in which case f is said to be locally
increasing on A;

9. for each a € A there exists an open interval I C A with @ € I such
that f | I is strictly decreasing, in which case f is said to be locally
decreasing on A;

3. for each a € A there exists an open interval I C A with a € I such
that f [ I is constant, in which case f is said to be locally constant
on A.

Definition 3 Let f : A — M be a function, where A is a subset of
M. Then f is said to be have the local minimum throughout A if for
each a € A there exist by, b, € A with by < a < by such that for each
¢ € (bo,b1) \ {a} we have f(a) < f(c). Similarly, we define that f has the

local mazimum throughout A.

Definition 4 A weakly o-minimal structure M is said to be have mono-
tonicity if for each definable fuction f: A C M — M there exists n €N
and a partition of 4 into definable sets X, Io, ... , I, such that X is finite,
Iy, ..., I, are open convex sets and for each i < n the function f | I; is
tidy.
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Al:ﬁev showed the following.
Theorem 5 ([1]) Every weakly o-minimal structure M has monotonicity.

In the next section we give the proof for Theorem 5.

3 Proof of Theorem 5

Throughout this section we assume that (M,<,...) is a weakly o-
minimal structure and f is a definable function from definable subset
A of M into M. We now define the following formulas:
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po(z) := J2y > o(Vy € (=, 21) f(y)

p1(z) := 321 > 2(Vy € (=,21) fly) = f‘c
pa(z) := 321 > z(Vy € (z,21) fly) >

Yo(z) := Jzg < 2(Vy € (20,2) fly) <

¢1(m) = Jzg < 2(Vy € (20,2)f(y) =

w(”’) = ¢i($) A p;(z) for each 1,7 < 2.
To show Therem 5, we first prove some lemmas needed later.

Lemma 6 ([2])} For each z € Int(A), there exist i,j < 2 such that 6;;(z)
holds.

Proof. Suppose that there exists some z € Int(A) such that ¢;(z) does
not hold for some j < 2. Then the set {y € 4 : f(y) < f(z)} cannot
be written as a union of finitely many convex sets, contradicting that M
is weakly o-minimal. Thus, for each z & Int(A) there exists some j < 2
such that @;(z) holds. Similarly, for each z € Int(A) there exists some

1 < 2 such that v;(z) holds. t

Lemma 7 ([2]) There ezists a partition of A into finitely many points
and open convez sets such that each open convez set lies in the solution
set of some formula §;;.



Proof. By Lemma 6, there exists a finite subset X of A such that we have
X UU;q205 = A Foreach,j < 2 by weak o-minimality of M, the
set 0;; can be written as a union of finitely many points and open convex
sets. This finishes the proof. O

Lemma 8 ([2, Lemma 3.6]) Let I be an open interval of M. Then it

cannot happen that one of the formulas Bo1, 610, 612,021 holds throughout
I.

Proof. Suppose that the formula fp; holds throughout I. Let = be an
element of I. Since p;(z) holds, there exists some z; > z with z; € [ such
that for each y € (z,2;) we have f(z) = f(y). Let z be an element of open
interval (z,z;). Since p(2) holds, there exists some w with z <w < z
such that for each y € (w,z) we have f(y) < f(z), a contradiction.

The other cases are similar. O

We show the next lemma later.

Lemma 9 Let I be an open interval of M. Suppose that h: I — M has
the local minimum or mazimum throughout I. Then h is not definable.

Lemma 10 Let I be an open interval of M. Then it cannot happen that
one of the formulas 8y and 8,y holds throughout I.

Proof. This lemma follows from Lemma 9. O

Lemma 11 Let I be a non-empty open definable convez subset of M such
that 8y, holds throughout I. Then there ezists n € N and a partition of I
into definable sets X, Iy, ..., I, such that X s finite, Ig,...,I, are open
convez sets and for each i < n the function f I I; is locally increasing.
Similarly, if 62 holds throughout I, the same conclusion holds with Tocally
incresing’ replaced by Tlocally decreasing 7,

Proof. Suppose that fg5(z) holds throughout I. We define the following

formulas:

ols) i Van > 2Py, 2o <y < 2 < 21 A £(2) < OV
vale) = Voo < o[y, 2las <y < 2 < o A f(2) < F)]-

Claim yo(z) and x2(z) cannot hold throughout 2 subinterval of I.
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Proof of Claim. Suppose for a contradiction that xp(z) holds throughout
a subinterval I C I. The argument for x2(z) is similar. For each a € I,
we define the following:

V,i={z € ly:z<aandify € [z,a),then f(y) < f(a)}
U{z €Iy:z > aandify€ (a,z],then f(y) > f(a)} U{a}
g(a) :=inf V.

Since fgz(z) holds throughout Iy, the set V, is an infinite definable convex
set and a is not a boundary point of V,. Then, by Lemma 9, it suffices
to show that g has the local minimum throughout I;. We define the
following formulas:

ol ) = @ < a A g(z) < gla)
pi1(z,a) ==z < aAgz) > gla);
wo(2,0) =2 > a A g(e) < gla);
vi(z,a) :=z > a A g(z) > g(a).

By weak o-minimality of M, for each a € I, there exist open interval
J C Iyand K C Iy with J < a < K such that a is a boundary point of J
and K, either po(z,a) or y1(z,a) holds throughout J, and either vy(z, a)
or »(z,a) holds throughout K. Then, it suffices to show that ui(z,a)
holds throughout J and vi(z,a) holds throughout K. Suppose for a
contradiction that ug(z,a) holds throughout J. The argument for vo(z, a)
is similar. Since a is not a boundary point of V,, there exists b € V, N J.
Since xo(b) holds, there exist ¢,d € V, N J such that b < ¢ < d < a and
f(d) < f(c). Hence, by the definition of g, we have b < ¢ < g(d). Now,
since b is an element of V,, we have g(a) < b < g(d), contradicting that
o(d, a) holds. 0

By the claim, the set {z € I : xo(z) V x2(z)} is finite. Hence, we finish
the proof. O

Proof of Theorem 5. By Lemma 6 through 11, the theorem follows. [

Finally, we show Lemma 9.
Proof of Lemma 9. Suppose that  : I — M has the local minimum
throughout I. Suppose for a contradiction that h is definable.



Claim 1 We may assume that h is injective.
Proof of Claim 1. Define the following equivalence relation on I*:

E(z,y) <= h(z) = h(y).

We first verify that every equivalence class on E is finite. Let A be
an infinite class. Then, by weak o-minimality of M, there exists an open
subinterval J of A. Since h has the local minimum throughout J, for each
¢ € J there exists y € J such that we have h(y) > h(z), a contradiction.
Hence, every equivalence class on E is finite. Therefore the set Z := {z €
I:Vy(E(z,y) — = < y)} is infinite. By weak o-minimality of M, there
exists an open subinterval J' of Z. We may assume dom(h) = J'. U

From now on, by Claim 1, we assume that the function A is injective.
For each a,b € I, we define the following:

U, :={z:2 > anVy € (a,z](h(y) > h(a))}
U{z:z < aAVy € [z,a)(h(y) > h(a))} U {a};
a<b <= U, 2U,.

Then, since kb has the local minimum throughout I, for each a € I the
set U, is an infinite definable convex set. The predicate < is a partial
ordering.

Claim 2 Let a,b,c € I. Suppose that a,b,c are pairwise distinct. Then
the following hold.

1. U, # Us;

2. ais not a boundary point of U,;
3.b€U, < a<b

4. ¥ U, NU, # 0, then either a < bor b < g;
5. Ifa<b<cand a<c,then a <b;

6. fa<b<canda<b,thena<c

7. Ifb<aand c<a,thenb<corc=<b

8. C,:={z €I :z < a}is finite.
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Proof of Claim 2.

(1): R IZEH IV, h(a) # k() L725. LEBN-TCU, # U, THD.

(2): hOREL Y, ZHITNZD.

(3): (&) B

(=)beU, &35, ZDOLE h(b) > h(a) Th5H. T, —EERE
AR LICa<bET B ce U ERICED. ThrE,a<lc<bR
BITU, 1% convex BN T, c € U, THB. Fl,b<cRbiEcely v,
EEDd e (b, 1T LTh(d) > h(b) > ha) THD. £oTecel, &7
5. FRIT, c<a2bifcel, ERB. ZOZENRLU, QU KR 5.

(4): —BHEEEI LR LICa<b T D, RELY ce U, NU, ¥
a<c<bBBETTEREETS. T h(a) < h(d) EBS. LRICdey
L. a<d<c2biEU, Xconvex DT, de U, THD. ¥7c,c<d
R OIZEED e € (c,d 12X L Ae) > h(b) > h(a) £72%. £~»T,del,
LB A, d<a2biddeU, L25. LEB->TU, C U iR
ST, RRIZ R(b) < h(a) R BIEU, C Uy D3ELY 30,

(5): b < alllookddd. THERELY, Us 2 U 2 U, o
b<a<ck:?B. LoThecel, &2V, Uy L convex 8D Ta € Uy 5
Wx B, ZRIEFRET 5. |

(6): (5) LABRIZFRED.

(7): RELVacUyNU, THDH. 27T, UbﬂUc#Q?j;ﬁEDﬁ’J. Xa
BE, (1) LORERBNZD.

(8): C, WEBEATL oo T 5. TDEE MIT weakly o-minimal &
D, HAREBMIBFEELTICC, &2D.bE JEERBIZED. bIXD
DERTIIRVDT, e,d € UyNJI 23D c< b < d BB THLOBFET
B.FBkedecCodV,c<atDd<abD. ZIT(N) &Y, c<d
FEEd<cThb. c<deT5(d<cDHEEBERIIRED). 75
LodeUd2e<bcd&d. U.iXconvex £9,beU. THDH. T4
Xeel, 29 5. [:l

Claim 2 @ (8) & ¥ < IIHEBIERFTHDH. 22T

K:={zc:fEBEDyeclilx L,y Az}
ai={zcl:a<zdDa<y<c BTy IFELZRV]

EEETD.
Claim 3 The following conditions hold:



LI\K=|],,8
2. the set K is finite;

3. the set a is finite.

Proof of Claim 3.

(1): EBICacILbecK%u2LD. THLKDERLY,aAbTHS.
XoThbgadBnird.

RI,ERICce INK3L DL, c¢d K&V, HDNdec IBNFEL
Td=<eBRYID. ZZT<ITHHIEFIY, Bo5Td e IBRFELT
ced BNz B,

Tlre # e BEBIZLB. bLaN&G A0 TholkeToE, 5
T €EENENEND. THE ey <z De <z 2hb Claim 2 D (7)
IV, e1<eaEfzldes<e; THD. e; <ea EED (ea < et DEHEE LA
B). 72&, e <ep <z D, Zhidze € 6 ICRTH. LSBT,
E1Né=0THD.

(2): K BNEREARE 72T 5. ZDLE M T weakly o-minimal &
D, bAERBMJIBEELCICK ERD. be JEERIZED. bITH
DERTIERVDT, BD5Tcec U NI BFETD. $5&,celh &V,
b<ckd. Ihitce JCKIZKTS.

(3): a NEREAL o LT5H. 2D & E M weakly o-minimal £ 7,
HOBERBJIBNFEELTI CasRb. be JEERIZED. bITT, DB
RCIERVWOT, Bbxcec Uy NI BEHETD. beabrDecelU, £9,
a<b=<c&?b. ZNiEceJCallX¥T 5. |

Claim 3 @ (2) £V, I\ K IIEBESTHD. STEED b I\ K
XL T,

E'(a,b) <> ME3dceI(aciéNbEF)

LEETBHE, E'(z,y) 1 Claim 3@ (1) X ¥ (I'\ K)* LORMERRKIC2
B. £7 Claim 3 (3) £ 0, E'(z,y) D% T ALABEATHE. Lo
TX:={zcI\K:MEVYycI\K (E(z,y) - 2 < y)} BEREE
5.

X T X O definable convex RHERERT<KHELTEROLDEY
YEE, o e YERLED allU, DBERTIIRVODT, b,by € U, ¥
by <a<by ERABTENREETSH. THE <IIHHIEFLY, a <bb 2
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Da<V<Xb LRBTILBRFEETS. ZDEE, E'BY)THD.
by <a<bZhb,Claim2D(5) XV <a<beid. X-oT,b¢ X
BNZD, LZATHIU, DEATIIRVD T, ce Uy 32b<c &5
FTEHREETD. TH L, 6IAREY, deehDde X &RDbDBREN
B, EoTb<e<d?DOb<ce2PT,Claim 2D (6) XV b<d&ind.
INRY oEIZRT 5.

L7255 T, h 13 definable TIE7R2V, O
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