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1 Imntroduction

Komori [2] and Weispfenning [6] showed that the lexicographic product of Z and Q ad-
mits quantifier elimination in a language expanding L., = {0,+,—, <}, where Z (Q) is
the ordered abelian group of integers (of rational numbers). Moreover they recursively
axiomatized Th(Z x Q). Extending these, Suzuki [4] showed that for the lexicographic
product G of an ordered abelian group H and an ordered divisible abelian group K, if
H admits quantifier elimination in a language L expanding L, then G admits quantifier
elimination in L U {I}, where we interpret I as {0} x K. Moreover if H is recursively
axiomatizable, then so is G. In this paper, we give a simple proof for Suzuki’s results. In
addition we show the converse of Suzuki’s results.

Definition 1 Let £ be a language. We says that L-formula ¢ is unnested atomic L-
foumula if p is an atomic formula of one of the following forms,

1. =
. C

bo

=y
(@) =y
(z)

where z,y and n-tuple Z are free variables, c is some constant symbol in £ , F is some
function symbol in £ and R is some relation symbol in L.

F
R
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Definition 2 Let A and B be structures with same language. Fix n € N. Then we says
that A ~, B if for any n-tuple (ci,... ,¢,) in AU B, there exists the partial isomorphism
f from A to B such that we find some n-tuple (di,... ,d,) in A U B satisfying the
following conditions: for each i < nif ¢; € A (B, respectively) then let a; = ¢ and
b = d; = f(e;) € B (let b; = ¢; and a; = di = F~Y(c;) € A, respectively) and 4 |=
o(ag,... ,an) < B = @(b1,... ,by) for any unnested atomic formula ¢(z1,... ,Za)-
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We notice the following fact with repect to elementary equivalence.

Fact 3 [1, Corollary 3.3.8] Let L be a language of finite signature. Then for any two
L-structure A and B the following are equivalent.

1. A=B

2. For everyn <w, A=, B.

2 Main results

Let L,, be the language {0,+, —, <} of ordered groups. Let L be the language L,, UL, UL,
where L, and L, are sets of relation and constant symbols, respectively. Let H be an
L-structure whose reduct to the language L,, is an ordered abelian group. Let K be an
ordered abelian group and an L, -structure. Let I be a new unary relation symbol. We
now give the lexicographic product G := H x K as an L U {I}-structure by the following
interpretation: :

1. 0% := (0%,0%);
2. ¢% := (c¥,0K) for each c € L.;
3. + and — are defined coordinatewise;
4. < is the lexicographic order of H and K
5. For each n-ary relation symbol R € L,,
RE :={(g1,--- s9n) € G™ | (1., hn) € RHY},
where g; = (h;, k;) with h; € H and k; € K for each 1 <1 < m;
6. I¢ := {0} x K.

We call this interpretation the product interpretation of H and K.
Let s,t and u be terms. Then, the formula s <t A? < u is written as s < t < u.

Lemma 4 Let G = H x K be the above structure and g = (g1,- .- ,9n) @ tuple of elements
from G. For eachi < n, let g; = (hi, k;) with h; € H and k; € K. Let h = (hi,... ,hn).
Let (%) be a quantifier-free L-formula. Then there exists a quantifier-free LU{I}-formula
©*(Z) such that H = ¢(h) if and only if G = ¢*(g)-

Proof. Let ¢(%) be a quantifier-free L-formula. Then the formula »(Z) is a Boolean
combination of the forms #(%) = 0, 0 < t(z) and R(t:(Z),... ,tm(Z)), where t,t1,. .. ,im
are terms and R is an m-ary relation symbol. Let ¢*(Z) be the formula obtained from
©(Z) by replacing t(¥) = 0 and 0 < £(Z) with I(¢(z)) and 0 < t(z) A—I(t(Z)), respectively.
Then H = ¢(R) if and only if G |= ¢*(g). 1
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We give the new structures to show recursive axiomatizability in Theorem 6.

For any model G* of Th(G), we consider the structures H*, K* such that K* := {g €
G*| g E I(z)} and H* := {g/~ | g € G*}, where an equivalent relation ~ on G* by a ~ b
& a—b € K*. Then H* is the ordered abelian group as an L-structure, K* is the ordered
abeilan group as an L,g-structure. Then we notice that H = H* and K = K*. Moreover
we obtain that G* =zyqy H* x K* by the next lemma.

Lemma 5 Suppose that H, K, H*, K* are the above structures. Then we obtain that
H x K = H* x K* in the language LU {I}, where H* x K* is the product interpretation
of H* and K*.

Proof. 1t suffices to show that H x K = H* x K* for any finite language of L U {I}.
We fix L’ as a finite language of L U {I} and may assume that L' contains L., and {I}.
According to fact 3, we have to prove the followings:

for eachn <w, Hx K =~, H* x K*.

The unnested atomic L'-formula are of the formulas of the forms z =y, y = ¢ (¢ €
L.NL),y=0, zo+2 =y, —z=y, RE) (R€ L NL"), z < z1, I(z), where z, y,
zy, £; and n-tuple Z are free variables.

For n < w, let (c1,... ,¢,) be any n-tuple from (H x K)U (H* x K*). When we
see it coordinatewisely, we have the partial isomorphisms f : H — H* and g : K — K*
satisfying the condition of definition 2. We will obtain some n-tuple (dy,...,.d,) as
follows: for ¢ < n if ¢; is in H x K then we split it into ¢; = (hy, k;) and let a; = ¢; and
b = d; = (ht, k) = (F(hs), g(k:)) € H* x K*. If ¢; is in H* x K* then welet b; = ¢;
and a; = d; = (hi, k) = (f2(R}), g7*(k})) € H x K similarily. Then we have that
HxK k= ola,... ,a,) & H* xK* = ¢(by, ... ,b,) for every unnested atomic L'-formula
o(Z1y. -+ 3 %n). ;

In the case of “zg+z; = y” we obtain that a; +a; = a; < (hsi, k) +(hs, k;) = (ki ki)
< gh, + hj = h; and k; + kj = kl) & (f(hz) + f(h’J) = f(hl) and g(ki) + g(k,-) = g(kz )
& (ht + B3 = ki and kf + k; = k) & (hi, k) + (B}, KS) = (A, k) & b; +b; = by

Moreover we can also argue the other cases similarily. Therefore it holds that H x K =,
H* x K*. 1

il

We now give a simple proof for Suzuki’s results [4].

Theorem 6 Let G = H x K be the above structure. If the ordered abelian group H admits
quantifier elimination in L and the ordered abelian group K is divisible, then the ordered
abelian group G admits quantifier elimination in L U {I}. Moreover, if H is recarsively
aziomatizable, then so is G.

Proof. Let 3zp(z,y) be an L U {I}-formula, where o(z,7) is a quantifier-free L U {I }-
formula. We may assume that the formula ¢ is of the form 1 A~ - -Apj, where each p; is an
atomic formula or the negation of an atomic formula. Since ¢(z, g) is the quantifier-free
L U {I}-formula, the formula ¢(z,y) is a Boolean combination of the forms mz = t(y),
t(7) < me, me < (7), I{s(z,y)) and R(s1(2,%),--. ,&(,Y)), where I,m are positive
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integers, t,8,81,... ,s; are terms and R is an l-ary relation symbol. Now the formulas
t = s and t < s are equivalent to nt = ns and nt < ns for each positive integer =,
respectively. Hence, we may assume that the formula ¢(z,7) is equivalent to either
t(7) < mz < u(@) A ¥(z,7) or mz = s(¥) A ¥(z,7), where the formula ¥(z,y) is a finite
conjunction of formulas of the forms I, R(sy,... ,8;) or negation of these.

Let the formula p(z,%) be t(7) < mz < u(7) A P(z,7). Let § = (g1,.-- ,9n) be a
tuple of elements from the ordered abelian group G. For each i < n, let g; = (hi, ki)
with h; € Hand k; € K. Let b = (hi,-.. ,hn) and k = (ks,... Jk,). Let ¥'(z,7)
be the formula obtained from v¥(z,7) by replacing I(¢(=,7)) with t(z,y) = 0. Let t2(y)
(u2(g)) be the term obtained from #(7) (u(g)) by replacing each ¢ € L. with 0. Then
G = 3z(t(g) < mz < u(g) A ¢(z,7)) if and only if

1. H = 32(t(h) < mz < u(k) Ayi(=, k),

2. H = 3z(t(k) = mz < u(h) A ¢*(z,h)) and K &= Jz(t*(k) < mz),

3. H £ 3z2(t(k) < mz = u(h) A¢¥*(z,h)) and K | Jz(mz < u?(k)), or

4. H k= Jz(t(h) = ma = u(k) A $}(z, k) and K E Jz(t*(k) < mz < u*(k)).

Since the ordered abelian group H admits quantifier elimination in L and the ordered

abelian group K is divisible, there exist quantifier-free L-formulas 6;(7), 65(7), 03(7) and
84(7) such that G |= 3=(t(g) < mz < u(g) A ¥(z,g)) if and only if

1. H = 6,(h),

2. H |=6,(h),

3. H |=65(h), or

4. H k= 04(R) A t(R) = u(h) and K |= (k) < u*(k).

By Lemma 4, there exist quantifier-free L U {I}-formulas 61(7), 85(9), 63(y) and 6;(7)
such that G |= Jz(t(g) < mz < u(g) A ¥(=,9)) if and only if

L. G = 6i(3),
2. G =65(9),
3. G |=63(g), or

4 G 0E) A Hg) < u(g) A I(u(g) - 7))
Hence, the formula 3z(#(7) < mz < u(y) A ¢(z,7)) is equivalent to a quantifier-free
L U {I}-formula.

Similarly, the formula 3z(mz = s(g) A9 (z,¥)) is equivalent to a quantifier-free LU{I}-
formula. It follows that the ordered abelian group G admits quantifier elimination in
Lu{I}.

Last we show that in the theorem, if H is recursively axiomatizable, so is G.

By lemma 5, for any model G* of Th(G) there exist H* |= Th(H) and K™ |= Th(K)
such that G* is elementarily equivalent to H* x K*. Thus we have G is recursively
axiomatizable since H is recursively axiomatizable. B
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Finally we show the converse of Suzuki’s results.

Theorem 7 Let G = H x K be the above structure. If the ordered abelian group G admits
quantifier elimination in L U {I}, then the ordered abelian group H admits quantifier
elimination in L and the ordered abelian group K is divisible. Moreover if G is recursively
aziomatizable, then so is H.

Proof. First, we show that the ordered abelian group H admits quantifier elimination
in L. Let Jz2p(z,7) be an L-formula, where ¢(z,7) is a quantifier-free L-formula. Since
o(z,7) is the quantifier-free L-formula, the formula ¢(z,7) is a Boolean combination of
the forms mz = #(7), t(7) < mz, mz < t(y) and R(s1(,¥),-.. ,s1(2,¥)), where [,m are
positive integers, £, s, 51,... ,8; are terms and R is an l-ary relation symbol.

Let ¢*(z,%) be the formula obtained from ¢(z,%) by replacing mz = t(y), t(7) < mz
and mz < t(g) with I(¢(g) —me), t(7) < ma A () —mz) and mz < t(y) A—I(t(T) -

ma), respectively. Let & = (hi,... ,hn) be a tuple of elements from the ordered abelian
group H. Then, we have

H = 3zp(z,k) & G = Jzp*(z, (R, 0)),

where (£,0) := ((h1,0),... ,(hq,0)). Since the ordered abelian group G admits quantifier
elimination in L U {I}, there exists a quantifier-free L U {I}-formula () such that

¢ b Jag* (2, (R0)) & G = 9(50)).
Let 9'(3) be the formula obtained from %(y) by replacing I (¢(7)) with ¢(7) = 0. Then we
have

G E 9((h,0)) & H = ¢'(h).
1t follows that the ordered abelian group H admits quantifier elimination in L.
Next, we show that the ordered abelian group K is divisible. Let a € K. Let n be
a positive integer. Since the ordered abelian group G admits quantifier elimination in
L U {I}, there exists a quantifier-free L U {I}-formula 6,(z) such that

G | 3y((0,0) = ny A I(y)) < 6a((0, a))-

We have G = 6,((0,0)). Suppose that a > 0. Then we have G = 6,((0,na}}. Now the
formula 8,,(z) is a Boolean combination of the forms mz = t, t < mz, mz < t, I(mz +1)
and R(miz + sy,... ,myz + s1), where [,m,my,...,m are positive integers, £,81,... ,31
are terms which do not contain a free variable and R is an l-ary relation symbol. Notice
that ¥ = 0,sX = 0,...,sf =0.

In the case that G = m(0,na) = t, we have a = 0, a contradiction.

In the case that G k= ¢ < m(0,na), we have t¥ < 0. Hence G =t < m(0,a).

In the case that G = m(0,na) < t, we have G |= m(0,a) <t by a>0.

In the case that G |= I(m(0,na) + t), we have tH = (. Hence G &= I(m(0,a) + t).

In the case that G = R(m.(0,na) + s1,- .- ,m;(0,na) + s1), since RE depends only on
RH, G ¥= R(ml(O,a) + S1yeee ,ml(O,a) -+ Sl).

Hence, if @ > 0, then G = 6,((0,a)). Similarly, if a <0, then G k= 0,((0,2)). It
follows that the ordered abelian group K is divisible.

Last we show that if G is recursively axiomatizable, then so is H. However we can
show it like the proof of Theorem 6. |
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