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Theory of f~# law of the power spectrum in granular flows

Hisao Hayakawa
Bepartment of Physics, Yoshida-South Campus, Kyoto University, Kyotoe 606-8501, Japan

It is demonstrated that f~F law of the power spectrun: with the frequency f and 3 = 4/3 in
granular flows is produced by the emission of dispersive waves from the antikink of an congested
domain. On the other hand, it is suggested that 1/f spectrum is the result of hydrodynamic back
flow effects.

The frequency spectra obeying 1/f law are widely observed in nature.[1-10] Although to know the mechanism of
1/f spectra is one of important problems in science, we still do not have any unified views to explain the mechanism.
In some cases, 1/f spectra are confused with f=% with 1 < 8 < 2, but 1/f is special, because it may be related
to the divergence of the relaxation time. Indeed, the spectrum § = 2 is nothing but the relaxation process without
correlation, and the spectrum with 8 = 3/2 can be produced by the diffusion process of structural materials.{11-13]

One of typical situations to appear f~ spectra with f ~ 1 is granular flows. The control of granular flows[14-18]
is important for technical point of views, but large and long lived fluctuations make it difficult to control. It is
known that granular flows in a pipe have the power spectra obeying f~# law[19]. Several years ago, Moriyama et
al[20] have confirrned that granular pipe flow in the air should have the spectrum with § = 4/3. We also expect
that the power spectrum obeying f~%/3 law is universal for dissipative flows in tle coexistence of congested-flow and
sparse-flow.[14, 20-23] This law is robust in the experiments of granular flows, which can be observed without tuning
of a suitable set of parameters[20, 23], and is believed to be universal for dissipative flows such as traffic flow[25]. The
mechanism to produce f~%3 law has now well been understood.[14, 20, 24] Similar behavior has been observed in a
wide range of parameters in a simulation of surface flow of the sand pile.[10]

However, granular flows in liquids show different aspect from those in the air. For example, Nakahara and Isoda[26]
have suggested that £ is smaller than unity in granular flows in liquids. Moriyama et l[27] demonstrate that the
power spectra in the water obey 1/f law. Actually their evaluated exponent £ is § = 0.95 £ 0.06 . Quite recently,
Awazu and Matsushita[28] have demonstrated that power spectra obeying 1/f could be observed in granular flow in
the air when the cock is fully closed to inhibit the flow of the air.

The puropose of this paper is to combine two aspects : The first part consists of recent understanding of f =473 |aw
as the result of the decay of a kink or an antikink.[24] The second part is to discuss the possibility of 1/f spectrum
in granular flow as the result of back flow effects.

I. THEORY OF f*° LAW

This section is basically the same as that presented in ref.[24]. In this section we use the angular frequency w = 2nf
instead of f for the simplicity of the notation.

A. Main idea

In order to proceed the analysis we should recall that all of one-dimensional models for traffic and granular flows
in weakly unstable regions can be described by trains of quasi-solitons stabilized by small dissipations.[14, 29-31]
In general, a dilute region is connected with a congested region by asymmetric interfaces[14, 30, 31] which may be
characterized by the soliton equation.[29] We call a front interface the kink and a backward interface the antikink.
In general, the antikink (or the kink) exists in linearly unstable region in the perturbation from the uniform state,
and the kink (or the antikink) exists in the linearly stable region.[30] Therefore, the antikink emits dispersive waves
backward and they are caught by the next domain. I the simplest situation, we can ignore the widths of the kinks
and antikinks which may be much smaller than the typical domain size.

From the observation of experiments for power spectra, the formation process of domains may not be important
but be important to consider the emission of dispersive waves from an antikink. Thus, we ignore the formation of
a congested domain but focus on the decay process of the domain. We alsc map the model onto a one-dimensional
space, where the position fixed in an experimental system is denoted by 2 and the systern size is L and the boundaries
are located at # = +L/2. For simplicity, we place a detector to measure the power spectrumn at « =0, i.e. the center
of the system. Let us introduce the normalized packing fraction ¢(z,t) = nlz,t)/ng(t) where n(z,1) and np(t) are
the density at (z,t) and the saturated density which depends on time, respectively.
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FIG. 1: A schematic picture of the propagation of a domain (its size ) with the speed ¢q. The above figure represents an
idealistic domain at £ = 0 and the bottorn figure represents a decayed domain due to the dispersive wave emitted from the
antikink whose initial position is xg.

If we assume that an idealistic congested domain exists in the system at time ¢ = 0, the packing fraction is given
by ¢le,t = 0) = 1 between z = z¢ and & = 20 + [, and ¢{x, 0} = 0 for otherwise, where ! and 29 are the size of the
domain and the position of an antikink at ¢ = 0, respectively. The equivalent expression is
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On the other hand, the antikink is assumed to be unstable because of the dispersion of propagating velocity, though
we can ignore such effects for the stable kink. Thus, we assume that the time dependence of ¢(z,t) can be described
by
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where ¢g is the propagating speed of the kink and ¢ is the characteristic length of the dispersion relation. Equation
(4) is the expression that the kink whose position is 2o + [ + ¢pt propagates with the constant speed cg, while the
dispersion of the propagating velocity of the antikink whose position may be zp + ¢pt(1 — (ZLL"Q)Q)) ruakes unable to

keep its shape (see Fig.1). It should be noted that [~ L,{;,

LJ2
antikink is smaller than cp, but ng(t) J 1{ /2 dzd{z,t) should be conserved in our picture. However, the correction framn
ng(t) is not important, because ng{t) which is determined by the conservation law causes only the correction of the
magnitude of the spectrum.

Thus, the time evolution of ¢(0,%) at the observation point is given by

dzg(z,t) is not conserved because the phase speed of the
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With the aid of Wiener-Khinchin theorem, the power spectrum [{w) and the auto-correlation function C{t) can be
written as

Iw) = 712_—; L T @etc),  C) =< $(0,0)4(0,1) >, ()

where the ensemble average in eq.(4) is interpreted as the average by the initial position of the antikink uo. Because

the domain propagates with cp if we neglect the dispersion, the existence probability of domains should be uniform

except for the boundary regions. Thus, we may assume the probability distribution function P(zg) = 1 /L and
2]

C(t) = $ [0, dzod(0,0)4(0, ).

Before we proceed the analysis, let us surnimarize critical remarks on our approach. First, Wiener-Khinchin theorem
requires that the system is in a statistically stationary state, but the decay process of a congested domain is not
stationary. Since the stationary state is achieved by the supply of particles from the adjacent domain, we need to take
into account the import and the export of particles between adjacent domains for the precise analysis. In addition,
the assumption to contain only one domain in 2 system is unrealistic. Therefore, it may be appropriate to replace the
system size L by the average distance between adjacent domains. Nevertheless, our simplification is useful to capture
the essence of physical origin of w™/3 law. :

B. Calculation of the power spectrum

In this section, let us evaluate C(t) and I{w). We note that some of expressions are complicated which are presented
in Appendix of ref.[24].
Substituting egs.(18) and (3) into eq.(4) we obtain

o) = g— + Jo(t) + Ju(t) + Ja(t), ‘ (5)
where |
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Here, Jo(t) in eq.(5) can be calculated as
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where we use the formula 3.°° cosna/n® = 72/6 — 72/2 + 27 /4. Thus, hiw) = \/lz;ff; dte st (1212 + Jo(t))
becomes
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The evaluations of J;(t) and J2{t} are nontrivial. When we assume cpt & L the summation in Ji (t) can be replaced
by the integral. From the expansion by cot/€ we obtain
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where we use [y~ dz(1 — cosz)/z*/% = n/T'(4/3) and [;" dzsinz/z = n/2 with the Gamma function I'(z). The
corresponding Fourier transform of Jy (¢} is thus given by

2 9 3 - 2¢ —_3
ﬁﬁL(&mW% 4/3—5‘[\/—;%10 g (12)

On the other hand, for [ > cpt, Js(2) ‘can be evaluated as
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The explicit expressions for Ju; {t) and Jss (1) are complicated and not important for our purpose (see Appendix).
In the limit of w — 0, Iy{w), the Fourier transoform of J,(¢), is dominated by I5;{w) as

Ir{w) =~ ;:—ngl(w) - —g‘%(fzco)l/gw—usa (14)

where 5 {w) is the Fourier transform of Jy) (), and its explicit expression is given by eq.(??) in Appendix. It is
notable that this asymptotic expression of I{w) is canceled with the term proportional to W% in Ij(w). That is,
the spectrum obeying w=*/? disappears and I(w) ~ w™? in the limit of w — 0.

On the other hand, though I»; {w) is singular in the limit of w — oo, Iy (w) is regular for enough large w. In fact,
one can obtain the analytic expansion of Jop (¢) near bt = 0.001 as 2Ju; (£)/7 = 1+ a(bt — 0.001) + O((bt — 0.001)%) ~
1+ abt + -+ with a = 0.000229538. If we replace Ja1(t) by this approximate function, we obtain the approximate
Fourier transform

732 p ) ‘
- -~ _— — Y e 1f
I (w) 7 ¢{w) 2anbw {15}
for large w.
Thus, we obtain the power spectrum [{w) = Ig{w) + [1{w) + Iy{w) as
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for w # 0. For large w, I{w) is dominated by the term proportional to wI/? ag
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Thus, we derive the spectrum obeying w%2. Figure 2 shows the comparison of eq.(16) with eq.{17), where we can
see the tail obeying w™*/® for large w, while eq.(16) seems to obey w™? for small w. It is obvious that both expressions
(16} and (17) become identical for larger w.

II. POSSIBILITY OF 1/f SPECTRUM AS THE HYDRODYNAMIC EFFECT

The spectra obeying 1/f law for granular flows in pipe may be from the hydrodynamic effect. Thus, the origin
of 1/f law is completely different, from that stated for f~%? law. The idea of 1 /} spectrum based on the hydrody-
namic effect has been suggested by Agu et al.[9], but their calculation is only applicable to the relaxation from the
initial condition, while actual particles forget the information of the initial condition. In addition, their treatment is
incorrect, because the sudden change of the velocity from zerc to ug at £ = 0 introduces an extra term which was not
considered by them.[32] Namely, the term proportional to f_f_,x dt'a(t')/VE—1 is not reduced to [J° dt'u(t')/vt —F

but fﬂm dt'in(t') /VE ~ 1t + 1/v/tup. Thus, the authocorrelation function does not have the singularity proportional to
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FIG. 2: Log-log plots of eqs.(16) and (17) as the frequency spectra. We adopt the parameters //L = £/L = 0.3 and Lb/co =
Ljl=10/3. .

1/t for short t as suggested by Agu et al[9] but it has the form 1~ bt with a constant b for short time behavior
and has the long time tail t=2/2 for large #.[32] Therefore, a particle in fluid itself cannot produce 1/f spectrum. Ou
the other hand, if there is the Brownian force acting the particle, the correlation of the random force should satisfies
the fluctuation-dissipation relation (FDR), and thus, it leads to the well-known long time tail.[33]

However, granular particles in fluid can collide each other. Thus, their idea may he applicable, because the collisions
can be regarded as the random noise without satisfying FDR and can destroy the singularity at the initial instance.
In this letter, we try to pursue the above simple idea to explain 1/ f law observed in granular flows. The argument is
like a rough’ sketch to support this idea, but it might be followed by the more precise analysis.

Let us consider the equation of motion of a spherical particle suspended in the fluid. The particle a with the mass
m obeys

dt

where u® is the velocity of particle . The forces a F§ , F{, Fz and F§ are respectively the hydrodynasmic force,
the collisional force among particles, the external force such as the gravity and the thermal Brownian force. Amongst
them the Brownian force is not important for granular particles, because particles are enough large not to be agitated
by the thermal noise.

The most difficult part to treat is the hydrodynamic force. Even when we restrict our interest to the case of the
linearized Navier-Stokes equation, we must solve a moving boundary value problem which can be performed ouly by
comnputational method. To treat this part approximately, we assume that the density of suspended particles is not
high and the back flow effect induced by many-body motion is not tmportant. In this situation, the balance between
the statistical averaged hydrodynamic force and the gravity Fy = —F,Z with the unit normal vector parallel to the
vertical direction # leads to a constant sedimentation as

m

= F} + F + F° + F§ (18)

E,=<R>Ujs (19)

where U, and < R > are the sedimentation speed and the statistical averaged resistance matrix. It is known that U,
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decreases with the density, and Batchelor[34] obtained

) 2 2 —
Us=Up(l-655¢+-), Up= ﬁ_(@%?‘.’ﬁﬁ (20)

for mono-disperse random suspensions, where ¢, a, pp, ps, 7j and g are the volume fraction, the radius of the particle,
the density of the particle, the density of fluid, the viscosity, and the gravitational acceleration, respectively. It should
be noted that explicit formula[35-37] for high density suspensions may be valid ouly in limited situations, because
homogeneous states cannot be maintained for the high density case. Based on the same level approximation, the
stationary part of the hydrodynamic force can be renormalized into one-body and it may be written as[38, 39

2 . ) s [
Fp=~<R>u—zapa®a - 6a’(7r1;p)1/“’/ —E-@—ds. (21)
3 —e VE—8 ‘

Here we omit the label a because this expression is valid for any particle if we adopt this approximation that the
many-body effects are absorbed in the resistance matrix. We have to stress that this approximation is inconsistent

because we neglect the time delayed effect for the resistance matrix caused by the back-flow effect.
" Thaus, the equation of motion of a tagged particle (without label o) may be written as

w2 —6mijalu — Uy) ~ 6a® /7 /lt U5) gs 4 F (22)
nos = 7} s nes o Vios ¢

where m* = m+ 2wppa® and fj = 7(1 +6.55¢ + - - }. We should note that the equation of motion in the experimental
frame is similar o the optimal velocity model of traffic flow[14], because the sedimentation rate U, is a function of
the local density and thus the first term of the right hand side represents the relaxation to the sedimentation rate.
As suggested in the previous paper, the model without % produces f ~4/3 gpectrum.

However, if the density fluctuation is not large, U, can he replaced by the spatial average [l of U,. Then, the term
—6mfja(w — U,) in (22) can be represented by —6mfjau in the co-moving frame with the speed U,. The change of the
frame does not affect the shape of power spectrum except for the emergence of characteristic peaks. When we use the
Laplace transform h(w) = [5~ dte™™*h(t) , [70_ 0()h(t) with #(t) = 1 for t > 0 and 8(t) = O for otherwise, eq.(22) in
the co-moving frame becomes

Wt (23)
As indicated by McLennan[32], this equation is replaced by

m*-‘fl—?— = —6mijau —Gaz./m]pf/\/fu(O)

t e
—6a® /AT / “e) 4o 4 F, 2
G 7”?[11' N \/t_:—s_ 5 + [} ( )
When we use the Laplace transform h(w) = Jo7 dte™™th(t) , [T 6(t)h(t) with 8{t) = 1 for t > 0 and 6(t) = 0 for
otherwise, eq.(24) becomes

iwi — u(0)(1 + %) = —y(w)is + :— (25)

Vo

where a = 6°/2u? /pr, 4 and F, are the Laplace transform of u and F., respectively. Here y(w) is given by

1 .
Yw) = ;}F(&rﬁa +6mpra’Vivw) (26)

with v = 5/p;. Since the particle feels the consecutive agitation from Fiy, the initial condition is not important.
Equation (22) still contains the collisional force which has not been given explicitly. We can imagine that this force
can play a role of the random force for the motion of a tagged particle. In fact, we can derive the diffusion equation
from Boltzinarm equation for dilute tagged particles distributed in the bath particles.[41] Let us regard our system
as a mixture of heavy particles (suspensions) and light particles {solvents). The light particles are thermalized and
the collisions between light particles and the time evolution of the probability distribution function by the cellisions
between the heavy particles can be treated as the Fokker-Planck equation. The collisions between heavy particles
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can be described by Boltzmann equation. We assume that each collision is elastic which does nat loose any essence
of physics.[40] Then, Boltzmann equation for the probability distribution function fz(r,u,t) for the tagged particle
may be written as

ol + (V) fr + 1) pe - udfy
= / duy / dou (fpf ) ~ fron) @7)

in the Laplace transform of timne, where v, = ju—u;} and d} is an element of solid angle. the unit vector. We assume
that the velocities of particles are changed from (u,u;) to {u’,u}) at a collision. Here we use the abbreviations
fo = fe(v') and fi, = f{ul). In eq.(27) we may assume that the bath particles are in equilibrium and the
distribution function obeys f; = ngup(u) with ¢rprp = (1n/21T,)%/% exp(—mu®/2T,) with the granular temperature
T,. We also stress that the diffusion term in the Fokker-Planck equation can be ignored, because the thermal agitation
of large particles is small. Thus, the collisions between heavy particles and light particles are absorbed in the drag
force from the fluid.

As demonstrated by Dorfmanf41], we can derive the diffusion equation from (27) without the drag force, though
his calculation includes some mistakes. If we integrate (27) over u, the contribution from the collisional integral
disappears, then we obtain

wWP(r,w) + V- J =0 (28)

where P = L [dufr(u,r,t) and J = £ fduufr(r,u,w). We should note that the collision integral and the drag
term do not have any explicit contribution to eq.{28) but the indirect contributions through the change of fp{r,u,t).
Assuming the small deviation of fr from the equlibrium state, i.e., fr = nP(r,t)¢ps(l +e®1(r,u,t) 4+ -} with the
aid of the scaling iw — €%w and V — ¢V with small €, we may obtain

a
$up(u- V)P + ’)’(W)Pga (uprrp®:)
= nyhP / duy / deurpars (ur)dnrp(u)
x(®1(u') — 2(u)) (29)
in the first order p. Now, let us adopt the lowest order Soniue approximation, 1.e. ®; = a - u. Then, multiplying u
by eq.{29) and integating over u, we obtaiu

j' duum,m(u -V)P —%—’y(w)P/.duuba—u . (u¢MB‘I)1)

= ;;,P/du/dul /dﬂﬁuy-¢MB(ul)¢x\lB(u'}
xua - (u' —u). (30)
The first term of the left hand side (LHS) of (30) is reduced to (T/m)V P, and the second term of LHS becomes

~y{(w)(T/m)aP. The right hand side of eq.(30) can be evaluated as ~64/(9v/m)an(T/m)*/*d*P from the straight-
foward calculation parallel to that by Dorfinan.{41] Thus, we obtain

vP

= 31)

a = —blw)

where b = (64nd? /3 —y(w)\/mm/T)~}/mm//T. Substituting this result into the definition of the current J, we obtain
T

J = -DVP(r,t), D= ;b(w). {32)

Thus, the collisions of particles produces the diffusion as expected.
1t is apparent that the diffusion can be reproduced by the random noise. Thus, we may replace F'. by the random
white noise Fy whose i-th component satisfies

< Fyp(t) >=0, < Fjy(t)Fy (') >=2Dé;0(t ~t') 33
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for the time scale larger than the mean collision interval. This is an bold simplification, but the. essential role of
collisions which is the diffusion of the tagged particle is kept by this replacement.

Since the particle feels the consecutive agitation from Fyy, the initial condition is not important. The solution of
€q.(25) with the replacement of F, by Fy may be given by

1 Fy
iw+y(w) m

(34)

i@ =

We should note again that Fy satisfies £q.(33), while the usual suspension agitated by Brownian force F must
satisfies FDR < F{{w)F] (w') >= 2(2r)3m" v{w)kpTd(w + w'}.
Thus, we obtain
_ 2(2m)3D
T mriw + 6a{ippmw)t/E + 6rijal?’

<la@w)P > (33)

This suggests that the spectrum tends to be a constant (white) for small w, while decay 1/ w? for large w. However,
in the intermediate w = 27 f, the second term of the denominator may play the important role to bebave as 1/ f law.
We also note that this spectrum can be used for the larger frecuency than the collision frequency.

Although the relation between the density correlation and the velocity correlation is not clear, we expect that the
both hydrodynamic fields behave with the same time scale. Actually, in the steady state of shear flow problern, it is
known that the velocity gradient can be represented as an explicit function of the density field.

Let us check the self-consistency of two assumptions used to observe 1/ f law in eq.(35): First, we assume the collision
frequency is higher than the observed scale. S8econd, we need to confirm the existence of the middle range to have 1/ f
law. To verify both assumptions, we have to estimate three characteristic frequencies. The collision frequency v. may
be evaluated by v2iind® from the elementary kinetic theory, where the characteristic speed 7 may be given by Uy. On
the other hand, the cut-off frequency vy between the white spectrum and 1/f may be given by vw = m’n/(2rprat),
and the cut-off frequency between the Lorentzian and 1/f is given byw, = 81psn/ (877 (pp — ps)2a®). Let us use water
and the particles with the radius 1 mm and the density 3 g/cm® with the volume fraction ¢ = 0.1 (1 ~ 10~*Pa-s). In
this case it is not easy to observe 1/f spectrum in our analysis.

In our treatment we introduce at least two uncontrollable approximations separately: (i) we absorb the many-body
hydrodynamic effect into one-body motion with the renormalization of the resistance matrix, (ii) the collision between
particles is treated as the random noise, because it plays a role of diffusion term in the real space dynamnics. 1t is also
questionable that we have asswned that the system is in nearly equilibrium. In our treatment, the hydrodynamic
interaction and the collisions are separable, but it is not true. The system for dense suspensions cannot be uniform
hecause of the hydrodynamic interactions. For nonuniform suspensions, we may observe other spectra like f~4/% law.
To check 1/f law in the simulation is not easy, because we have to solve the moving boundary problem with keeping
time derivative of Navier-Stokes equation. Therefore, we could not observe 1 /f taw in the simulation of Stokesian
dynamics.[40] We believe that the origin of 1/ f law in granular flows in a pipe is different from others, .g. the surfuce
flow on a sand pile.[1(]

I111. CONCLUDING REMARKS
A. About F7*°* law

It should be noted that the actual process includes many other factors for larger w and smaller w. In experiments,
I{w) decays exponentially for larger w, because the iuitial state is not in an idealistic domain as we hiave assumed
here. To reproduce the full shape of spectrum we need to contain the formation process of domains for our analysis.
As stated in the last part of section II, to think of the formation process of domains is also important to justify to use
both Wiener-Khinchin theorem and the Fourier transform itself. Thus, to analyze the process in the balance between
the formation of domains and the decay of domains is an important future problem to be solved. We also indicate
that the mutual interaction between domains is important. Thus, it may be appropriate that the systemn size L we
used may be regarded as the average distance between adjacent domains. To include the interaction between domaing
is also an important point to be hinproved.

It is interesting that the above defects in our analysis as well as the correction of the magnitude in the observation
from ng(t) are related to the conservation law of macroscopic quantities. It is obvious that these processes should
be considered for the precise theory. Nevertheless, we believe that our picture presented here captures the essence
of physics and clarify the mechanism of emergence of w™4/3 law. This success may be from the fact that w™4/3 is
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obtained from the short time behavior (large w behavior). Thus, the long time processes related to the conservatio
law are not important to obtain w™*/3 law,

Before we conclude our paper, let us commment on the spectra obeying 1/w-like law in granular flows. For example,
Nakahara and Isoda[26] have demonstrated that the behaviors of the power spectrum of granular flows in liquids are
different from those in the air. In particular, Moriyama et ol [27] suggest that I(w) ~ w™ with § = 0.95 + 0.05 for
granular flows in the water.

B. About 1/f law

In conclusion, in this paper, we have demonstrated that the main process to produce f~4/3 law is the emission of
the dispersive wave from an antikink. This result is universal when isolated congested domains exist in a dissipative
fow. Through the analysis, we have revised the previous uncertain picture.

We 2lso have demonstrated that 1/ f law in the power spectrurn of the velocity field can be produced by the random
collisions between particles and the hydrodynamic delay effect.
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