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1 Introduction
Dynamics in networks are studied in various fields. For example, suppose network model-
ing of neurons with time delayed coupling. Some works have focused on the local stability
or bifurcations of the equilibria [1-7]. Others dealt with global stability by the two
mathematical techniques, monotone theory [8-10], Liapunov functional [11-13] or the
combination method of these two [14], Another example is the network of oscillators with
time-delayed coupling. Earl and Strogatz found a stability criterion for the synchronous
state in networks of identical phase oscillators with delayed coupling [15]. The criterion is
applied to many networks, so long as each oscillator has uniform insertion degree. That
is, each oscillator receives signals from $k$ others, where $k$ is uniform for all oscillators.

In this paper, we study a 3-node network and propose a new subclassification of
irreducible adjacency matrices, For 3-node networks, there are many types of topology
where insertion degrees of individual elements are not necessarily uniform. Apart from
the loops (that is, the input from itself), there exist 13 types of network topology. Milo et
$al$ called them network motifs which are statistically significant subnetworks included by
many real networks in their structure [16]. Including the loops the 3-node networks can be
categorized into 86 types of network topology. It is convenient to classify these topologies.
Generally, the concept of strongly connected graph is well-know $\mathrm{n}$ , and there are 5 strongly
connected graphs in the 13 types of network topology. Note that there is a one-to-one
correspondence between labeled directed graphs with $n$ vertices and $n\mathrm{x}n$ adjacency
matrices $[17, 18]$ , and strongly connectivity of the graph is equivalent to irreducibility of
the adjacency matrix [19]. Here the adjacency matrix $A=(a_{ij})$ of labeled directed graph
$G$ with $n$ vertices is the $n\mathrm{x}$ $n$ binary matrix in which $a_{ij}=1$ if the directed path exists
from the i-th vertex to the $\dot{\mathrm{f}}^{- \mathrm{t}\mathrm{h}}$ vertex in $G$ and $a_{\mathrm{i}j}=0$ otherwise.

In the next section we present a model of a 3-dimensional delayed differential system
and give a result with respect to its convergent point. In \S 3 we give a definition of the
subclassification based on the convergent point, and show that there exist 4 subclasses
in the 5 strongly connected network topologies. One of the classes has two elements. In
\S 4 we compare these two elements in terms of convergent speed and show that the more
transmission paths, the faster the convergent speed, if and only if transmission delays
exist
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2 Model and Convergent Point
We assume that each element tends to zero exponentially as $tarrow$ oo before coupling:

$x_{i}’(t)=-\alpha_{\mathrm{t}}x_{i}(t)$ ,

where $x=$ $(x_{1}, x_{2}, \ldots., x_{n})\in \mathbb{R}^{n},$ $x_{i}’(t)$ is the derivative of $x_{i}(t)$ with respect to $t$ and
$\alpha_{i}>0$ $(\mathrm{i}=1,2, \ldots, n)$ . We represent intersections between each elements using directed
paths as follows. If i-th element receives the output from j-th element, then we add a
directed path from j-th vertex to i-th vertex. Then an $n\cross$ $n$ adjacency matrix $A$ is
determined uniquely. Letting $B=(b_{ij})$ be the transpose of $A$ and $f_{i}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ be the
transfer function, we can describe the system after coupling:

$x_{i}’(t)=- \alpha_{i}x_{i}(t)+\sum_{j=1}^{n}\frac{b_{ij}}{\tilde{b}_{i}}f_{j}(x(t-\tau_{j}))$ , (EO)

where $\tau_{j}\geq 0$ is a transmission delay of the output from the j-th element and $\tilde{b}_{i}:=$

$\sum_{j=1}^{n}b_{ij}\neq 0$ which implies that every element receives at least one signal. We also assume
that each element tends to a nonzero constant which depends on both the topology of the
netw ork and the transmission delays not only the initial conditions after coupling. As one
of the most simplest model achieving the above assumptions, we consider the following
3-dimensional equations with linear transmission functions;

$x_{1}’(t)= \alpha_{?}[-x_{i}(t)+\frac{\sum_{j=1}^{3}b_{ij}x_{j}(t-\tau_{j})}{\tilde{b}_{i}}\ovalbox{\tt\small REJECT}$ (E)

for $t\geq 0$ with the initial conditions

$x_{i}(s)=\varphi_{i}(s)$ for $s\in[-\tau_{i}, 0]$ , (1)

where $\varphi \mathrm{i}$ is continuous function from $[-\tau_{i)}0]$ to $\mathbb{R}$ and $1/\alpha_{i}>0$ is time constant(i $=$

$1,2$ , 3).
It is easily seen that the straight line $\ell=\{(x_{1}, x_{2}, x_{3}):x_{1}=x_{2}=x_{3}\}$ in the space $\mathbb{R}^{3}$

is a set of equilibria of Eq (E). And we can show that every solution of Eq. (E) converges
to one of a point on $l$ as $tarrow\infty$ :

Theorem 1. (Convergent Point) If the matrix $B$ is irreducible, then every solution
$(x_{1}(t), x_{2}(t),$ $\mathrm{x}\mathrm{z}(\mathrm{t}))$ of Eq. (E) with the initial conditions (1) converges to a point $(:, \tilde{X}_{)}\tilde{X})\in$

$p$ as $tarrow\infty$ , where 1 is given by

$\tilde{x}=\frac{\sum_{i=1}^{3}w_{i}\{\frac{\varphi_{i}(0)}{\alpha_{i}}+\int_{-\tau_{\mathrm{z}}}^{0}\varphi_{i}(s)ds\}}{\sum_{i=1}^{3}w_{\dot{\mathrm{t}}}\{\frac{1}{\alpha_{i}}+\tau_{i}\}}$ , (2)

and $w_{i}=\tilde{b}_{l}(b_{i+1i}b_{i-1i}+b_{i+1i}b_{i-1i+1}+b_{i+1i-1}b_{i-1i})$ . (3)

Here the indices $\mathrm{i}=1$ , 2, 3 and are counted mod 3, that is, $b_{43}=613,$ $b_{01}=b_{31}$ , and so
on (the proof is given in Appendix $\mathrm{A}$).
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We note that $vJ_{i}(\mathrm{i}=1,2,3)$ can be chosen positive because $B$ is nonnegative and
irreducible matrix. We also note that there exist some different matrices having the sam $\mathrm{e}$

ratio of $w_{1}$ : $w_{2}$ : $w_{3}$ , that is, the convergent points of solutions starting at the same initial
conditions are the same. For example, consider two types of connection topology given
by $B=B_{9}$ or $B=B_{13}$ :

$B_{9}=(_{010}^{001}100)$ , $B_{13}=(_{110}^{011}101)$ .

If $B=B_{9}$ , then $b_{\mathrm{i}j}=0$ for $j=i$ , $\mathrm{i}+1$ and $b_{ij}=1$ for $j=\mathrm{i}+2$ , which imply $w_{i}=$

$1\cross$ $(1\cross 0+1\cross 1+0\mathrm{x} 1)=1$ and $w_{1}$ : $w_{2}$ : $w_{3}=1$ : 1 : 1. If $B=B_{13}$ , then $b_{ij}=0$ for
$j=\mathrm{i}$ and $b_{i\mathrm{j}}=1$ for $j=\mathrm{i}+1$ , $\mathrm{i}+2$ , which imply $w_{i}=2\mathrm{x}$ $(1 \cross 1+1\cross 1+1\cross 1)=6$

and $w_{1}$ : $u)_{2}$ : $w_{3}=1$ : 1 : 1.

3 Class of Adjacency Matrices
In previous sections we have seen that there exist som $\mathrm{e}$ different network topologies having
a common convergent point. In this section we will classify the 3-node networks based
on the convergent points, So we introduce the following new concept for nonnegative and
irreducible matrices.

Definition 2. (Definition of Class $B_{w}$ ) For an $n\mathrm{x}$ $n$ nonnegative and irreducible matrix
$B=(b_{ij})$ and a positive vector $w\in \mathbb{R}^{n}$ , $B$ is in a class $B_{w}$ if $w$ is a left eigenvector of
$\hat{B}:=(^{b}b_{i}\Delta^{i})$ associated with the eigenvalue 1.

We note that the matrix $\hat{B}$ is a stochastic matrix. Then $\hat{B}$ has the eigenvalue 1 and
the spectral radius of $\hat{B}$ is 1 (cf. Theorem 15.7.1 in ref. $19^{\backslash }$

) $.$ Furthermore, by Perron-
Frobenius theorem (cf. Theorem 15,3.1 in ref. 19), the transpose of $\hat{B}$ has an eigenvalue 1
whose algebraic multiplicity is 1 and a positive eigenvector (i.e., $\hat{B}$ has a left eigenvector)
$w$ associated with the eigenvalue 1. We also note that when $n=3$, the elements of
$w=(w_{1}, w_{2}, w_{3})$ satisfy Eq. (3) if and only if $B\in B_{w}$ .

In 3-node networks there are 13 types of network motif (cf. Fig. IB in ref. 16). If we
assum $\mathrm{e}$

$\alpha_{i}=\alpha$ , $\tau_{i}=\tau$ , $(\mathrm{i}=1, 2, 3)$ , (4)

then we can only consider 13 types of matrix:

$B_{1}=(_{010}^{010}\mathrm{o}00)$ , $B_{2}=(_{000}^{010}001))B_{3}=(_{010}^{010}001)$ , $B_{4}=(_{000}^{011}\mathrm{o}00)$ , $B_{5}=(_{010}^{011}\mathrm{o}00)\}$

$B_{6}=(_{010}^{011}001)$ , $B_{7}=(_{010}^{000}101),B_{8}=(_{010}^{010}101$ $)$ , $B_{9}=(_{010}^{001}100)$ , $B_{10}=(_{010}^{011}100)$ ,

$B_{11}=(_{000}^{011}101)$ , $B_{12}=(_{010}^{011}101)$ , $B_{13}=(_{110}^{011}101)$ .
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It is obvious that $B_{8}$ , $B_{9}$ , $B_{10}$ , $B_{12}$ and $B_{13}$ are irreducible and the other 8 matrices are
reducible. Classifying these 5 irreducible matrices by $B_{w}$ , we have the following:

1 $B_{8}\in B_{w}$ for $w=(1,2,1)$ . $\bullet$ $B_{9}$ and $b_{13}\in B_{w}$ for $w=(1,1,1)$ .
$\bullet$ $B_{10}\in B_{w}$ for $w=(2,2,1)$ . $\bullet$ $B_{12}\in B_{w}$ for $w=(2,4,3)$ .

It might be instinctively natural that the connection topologies given by $B_{9}$ and $B_{13}$

have a $\mathrm{c}\mathrm{o}\mathrm{m}$ mon property such as the convergent points, because all nodes are connected
symmetrically. But the insertion degree of each node are 1 and 2 in the case of $B_{9}$ and
$B_{13}$ , respectively. This means that there are more transmission paths of informations in
Case $B_{13}$ than in Case $B_{9}$ (see Fig. 1). Thus we can expect that the speed of convergence
in the case of $B_{13}$ is faster than in the case of $B_{9}$ . In the next section we will discuss the
matter in detail.

Figure 1: The graphs in Case $B_{9}(\mathrm{a})$ , Case $B_{13}(\mathrm{b})$ .

4 Convergent Speed

In this section we assume (4). As we saw in \S 2, every solution of Eq. (E) tends to a point

on the straight line $p$ in $\mathbb{R}^{3}$ as $tarrow\infty$ . In order to define the convergent speed to the line
$\ell$ , let us review the characteristic roots of (E). The characteristic roots are solutions of
the characteristic equation of Eq. (E) given by

$p(\lambda)=\det[(\lambda+\alpha)\mathrm{I}-\alpha e^{-\lambda\tau}\hat{B}]=0$ , (5)

and for a characteristic root A of Eq. (E) there exists a nonzero vector $v\in \mathbb{R}^{3}$ such that
$x(t)=e^{\lambda t}v$ is a solution of Eq. (E). In this paper we call the vector $v$ characteristic vector
associated with $\lambda$ , to avoid the many preparations on the theory of linear delay differential
equations given Chapter 7 in ref. 13.

Definition 3. (Definition of Convergent Speed) For a characteristic function $p(\lambda)$

of Eq. (E) define a value $s(p)$ as

$s(p)= \max${ $\Re\lambda:p(\lambda)=0$ and $\lambda\not\in P_{\ell}$ }.

Here A $\in P_{\ell}$ means that the characteristic vector associated with ,) is paralleled to the
line Z. We call $-s(p)$ the convergent speed to the line Z. Let $p_{i}(\lambda)$ be the characteristic
function of Eq. (E) when $B=B_{i}$ . If $s(p_{i})<s(p_{j})$ , then the convergent speed to the line
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$p$ in the case $B=B_{i}$ is faster than in the case $B=B_{j}$ , and we write $GaseBj\prec CaseB_{i}$ .
If $s(p_{i})=s(p_{j})$ , then we write $CaseB_{i}=CaseB_{j}$ , which means Case $B_{i}$ is equal to Case
$B_{j}$ in the convergent speed to the line Z.

Let us consider the network topologies given by the matrices $B_{9}$ and $B_{13}$ in $B_{w}$ for
$w=(1,1,1)$ . Although the convergent points in these two cases are the same as we saw
in previous sections, we can find the difference in the convergent speed iff transmission
delay is positive.

Theorem 4. (Convergent Speed) If $\tau=0$ , then $CaseB_{9}=CaseB_{13}$ . If $\tau>0.$, then
$CaseB_{9}\prec CaseB_{13}$ (the proof is given in Appendix B).

This result shows that the instinctive conjecture stated in the end of Q3 is true iff the
transmission delay $\tau$ is positive. Therefore, it is significant to consider transmission delays
in the study of network dynamics.

5 Discussion
In this paper, we have given a detailed analysis of Eq. (E) with linear transmission func-
tions. However, the transmission function is usually given by a sigmoid function in neural
network models, for example $f_{j}(x)=\tanh(\beta_{j}x)$ . Then, the linearized equations of $\acute{(}\mathrm{E}\mathrm{O}$ )
near the origin are

$x_{i}’(t)=- \alpha_{i}x_{i}(t)+\frac{\sum_{j=1}^{n}\beta_{J}b_{ij}x_{j}(t-\tau_{j})}{\tilde{b}_{i}}$ . (6)

Clearly Eq. (E) is a special case of Eq. (6) in which $\beta_{i}=1$ for $\mathrm{i}=1,2,3$ . But this case has
been avoided in the analysis because the equilibria are not isolated and nonhyperbolic.
In this paper we analyze such a special case, and find the convergent point. This result
allows us to propose two new concepts, (i) the class of adjacency matrices and (ii) the
convergent speed to the line Z. This analysis of the special case is crucial to the proposed
new concepts, since the equilibrium point is uniquely found at origin if $\beta_{i}\neq 1$ . It is
interesting how these concepts Play a role when $\beta_{i}\neq 1$ .

In the network motifs proposed by Milo et at., the loop (that is, the input from itself)
is not considered [16]. However, it seems important to consid er the loops mathematically.
Actually, the results for local stability, bifurcations and sustained oscillations are reported
in neural network models with the loops [9, 20, 21]. In our case if we consider the loops,
then we can find 86 network motifs, 30 of them are irreducible. We also find that the
number of elements of the class $B_{w}$ for $w=(1,2,1)$ is four, for $w=(1,1,1)$ is six, for
$w=(2,2,1)$ is four, and $w=(2,4,3)$ is two. It is interesting to compare the convergent
speeds in these network motifs.

Finally we note that this analysis can be applicable to the networks with more than 4
nodes, How our new concepts function in such more complicated networks is an interesting
open question



149

A Proof of Teorem 2 (Convergent Point)

Consider the characteristic equation (5) of Eq. (E). Put $\frac{\lambda+\alpha}{\alpha}e^{\lambda\tau}=\mu$ in Eq. (5), then

$p(\lambda)=(\alpha e^{-\lambda\tau})^{3}\det[\mu I-\hat{B}]=0$ .

Let $\mu_{1}$ , $\mu_{2}$ , $\mu_{3}$ be the eigenvalues of $\hat{B}$ , then

$\det[\mu I-\hat{B}]=(\mu-\mu_{1})(\mu-\mu_{2})(\mu-\mu_{3})$ ,

which implies
$\lambda+\alpha=\mu_{i}\alpha e^{-\lambda\tau}$ , $\mathrm{i}=1$ , 2, 3. (7)

Because of the fact stated in the paragraph under Definition of Class $B_{w}$ , we can put
$\mu_{1}=1$ and find that $|\mu_{i}|\leq 1$ . Assume that $\Re\lambda>0$ , then

$|\lambda+\alpha|=\alpha|\mu_{i}||e^{-\lambda\tau}|\leq\alpha|e^{-\lambda\tau}|\leq\alpha$ .

This is impossible, and we obtain RA $\leq 0$ . Let A $=\mathrm{i}\omega$ $(\omega\in \mathbb{R})$ . Then we can easily
obtain $\omega$ $=0$ and $\mu_{i}=1$ . It is easy to check that A $=0$ is a simple root of Eq. (7) for
$\mathrm{i}=1$ . Since the algebraic multiplicity of $\mu_{1}=1$ is 1, $\lambda=0$ is a simple root of Eq. (5).
Therefore every solution $x(t)=(x_{1}(t)_{7}x_{2}(t), x_{3}(t))$ of Eq. (E) tends to one of equilibria,
that is, there exists $\tilde{x}\in \mathbb{R}$ such that

$\lim_{tarrow\infty}x(t)$
$=(\tilde{x},\tilde{x},\tilde{x})$ . (8)

To obtain the convergent point, we consider the following functional $W$ :

$W(x( \cdot))(t)=\sum_{i=1}^{3}w_{i}\{\frac{x_{i}(t)}{\alpha_{i}}+\int_{-\tau_{i}}^{0}x_{i}(t+s)ds\}$

for a solution $x(t)$ of Eq. (E) with the initial conditions (1). The derivative of $W$ along
Eq. (E) is as follows:

$\dot{W}_{(E)}(x(\cdot\grave{J})(t)=\sum_{i=1}^{3}w_{i}\{\frac{1}{\tilde{b}_{i}}\sum_{j=1}^{3}b_{ij}x_{j}(t-\tau_{j})-x_{i}(t-\tau_{i})\}$

$= \sum_{i=1}^{3}x_{i}(t-\tau_{l})\{-w_{i}+\sum_{j=1}^{3}\frac{b_{gi}}{\tilde{b}_{j}}w_{j}\}$ .

As we stated in the end of the paragraph under Definition of Class $B_{w}$ , $w=(w_{1}, w_{2}, w_{3})$

is an eigenvector of transpose of $\hat{B}$ associated with the eigenvalue $\mu_{1}=1$ , if $w$ satisfies
Eq, (3). Hence we have

$\dot{W}_{(E)}(x(\cdot))=0$ ,

that is, $W(x(\cdot))$ is a conserved quantity, which yields

$W$($ (.))(t) $=W(x(\cdot))(0)$ for all $t\geq 0$ .
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From the initial condition of $x(t)$ and Eq. (8),

$\lim_{tarrow\infty}W(x(\cdot))(t)=\sum_{i=1}^{3}w_{i}\{\frac{1}{\alpha_{i}}+\tau_{l}\}\overline{x}=W(\varphi(\cdot))(0)$ .

This completes the proof.

B Proof of Teorem 3 (Convergent Speed)

If $B=B_{9}$ , then the eigenvalues of $\hat{B}$ are $1_{1}e^{i\frac{2}{3}\pi}$ , $e^{-i\frac{2}{3}\pi}$
$(\mathrm{i}^{2}=-1)$ . If $B=B_{13},1$ and

double $- \frac{1}{2}$ . Thus characteristic equations are given as follows. If $B=B_{9}$ , then

$p_{9}(\lambda):=q(\lambda)q_{9}^{+}(\lambda)q_{9}^{-}(\lambda)=0$ ,

where $q(\lambda):=\lambda+\alpha-\alpha e^{-\lambda\tau}$ ,
$q_{9}^{\pm}(\lambda)$ $:=$ A $+\alpha-\alpha e^{-\lambda\tau}e^{\pm i\frac{2}{3}\pi}$ .

We note that it is enough to consider the roots of $q_{9}^{+}(\lambda)=0$ because if $\lambda_{0}$ is a root of
$q_{9}^{+}(\lambda)=0$ , then $\overline{\lambda_{0}}$ is a root of $q_{9}^{-}(\lambda)=0$ , and vice versa, Here $\overline{z}$ denote the complex
conjugate of $z$ for a complex number $z$ . If $B=B_{13)}$ th en

$p_{13}(\lambda):=q(\lambda)q_{13}(\lambda)^{2})$

where $q_{13}(\lambda):=$ A $+ce$ $+ \frac{1}{2}\alpha e^{-\lambda\tau}$ .

We consider the common factor $q(\lambda)=0$ in two cases. Using Theorem 5 in ref. 22,
we can find that any roots of $q(\lambda)=0$ except for $\lambda=0$ are nonreal and have negative
real parts. Let A be a root of $q(\lambda)=0$ and $v$ be the characteristic vector associated
with A. Then $v$ is an eigenvector of $\hat{B}$ associated with the eigenvalue 1. In each case
$v=k(1,1,1)$ for some $k\in \mathbb{R}$ and A belongs to $P_{\ell}$ . On the other hand, let A be a root of
$q_{9}^{+}(\lambda)=0$ (or $q_{13}(\lambda)=0$ ) and $v$ be the characteristic vector associated with A. Then $v$

is an eigenvector of $\hat{B}$ associated with the eigenvalue $e^{i\frac{2}{3}\pi}$ (or $- \frac{1}{2}$ ) and $\lambda\not\in P_{\ell}$ . Therefore
the speeds of convergence to the line $\ell$ in Case $B_{9}$ and Case $B_{13}$ are determined by the
roots of $q_{9}^{+}(\lambda)=0$ and $q_{13}(\lambda)=0$ , respectively.

If $\tau=0$ , it is easily seen that $s(p_{9})=s(p_{13})=- \frac{3}{2}\alpha$ , which implies $CaseB_{9}=CaseB_{13}$ .
In the following, we will show $s(p_{13})<s(p_{9})$ for all $\tau>0$ .

Substituting Ar $=u+iv$ to $q_{9}^{+}(\lambda)=0$ , we have

$u+\alpha\tau=\alpha\tau e$ $-u \cos(-v+\frac{2}{3}\pi)$ (9)

$v=\alpha\tau e$
$-u$ $\sin(-v+\frac{2}{3}\pi)$ . (10)

It is easy to see that Eqs. (9) and (10) are equivalent to

$(u+\alpha\tau)^{2}+v^{2}=(\alpha\tau e^{-u})^{2}$ , (9’)
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$u+\alpha\tau=v$ $\cot(-v+\frac{2}{3}\pi)$ (10’)

and $v$ $\sin(-v+\frac{2}{3}\pi)>0$ .

From Eqs. (9’) and (10’), we have

$v=\pm\phi(u)$ , $\phi(u):=\sqrt{(\alpha\tau e^{-u})^{2}-(u+\alpha\tau)^{2}}$,

and $u=\psi(v)$ , $\psi(v):=-\alpha\tau+v\cot(-v+\frac{2}{3}\pi)$ ,

respectively. Analyzing the shapes of the graph$1\mathrm{S}$ given by $v=\pm\phi(u)$ and $u=\psi(v)$ in u-v
plane, we can find that the maximum of $u$ satisfying Eqs. (9) and (10) are given by the
intersection of these graphs for $v\in$ $(0, 2\pi/3)$ (see Fig. 2). Representing the maximum of
$u$ as $u^{*}$ , $\mathrm{s}(\mathrm{p}_{\mathrm{g}})=u^{*}/\tau$ . We note that $u^{*}>-\mathrm{c}\mathrm{x}\tau-1$ , because the minimum of $\psi(v)$ for
$v\in(0,2\pi/3)$ is larger than -cer - 1.

Figure 2: The graphs line), where $\alpha\tau=0.5$ .

Substituting Ar $=u+\mathrm{i}v$ to $q_{13}(\lambda)$ $=0$ , we have

$u+ \alpha\tau=-\frac{1}{2}\alpha\tau e$
$-u$ $\cos(-- v)$ (11)

$v=- \frac{1}{2}$are$-u$ $\sin(-v)$ . (12)

When $v=0$ , Eq. (12) is satisfied. Prom Eq. (11), we obtain

$h(u)=- \frac{1}{2}\alpha\tau e^{\alpha\tau}$ , $h(u):=(u+\alpha\tau)e^{u+\alpha\tau}$ . (13)

When $v\neq 0$ , it is easy to see that Eqs. (11) and (12) are equivalent to

$(u+ \alpha\tau)^{2}+v^{2}=(\frac{1}{2}\alpha\tau e^{-u})^{2}$ , (11’)

$u+\alpha\overline{/}=v\cot(-v)$ (12’)

and $v\sin v>0$ .

From Eqs. (11’) and (12’), we have

$v=\pm\hat{\phi}(u)$ , $\hat{\phi}(u):=$
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Figure 3: The graphs of $\mathrm{E}\mathrm{q}\mathrm{s}$ . (11’) (solid line) and (12’) (dashed line) when $\alpha\tau e^{\alpha\tau}\leq 2/e$ .
$\hat{u}_{1}$ is one of the roots of Eq. (13).
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and $u=\hat{\psi}(v)$ , $\hat{\psi}(v):=-\alpha\tau+v$ $\cot(-v)$ .

When $\alpha\tau e^{\alpha\tau}\leq 2/e$, Eqs. (11’) and (12’) have no intersection for $u>-\alpha\tau-1$ (see
Fig. 3), On the other hand there exists a solution $\hat{u}_{1}\in[-\alpha\tau-1, -\alpha\tau)$ of (13). Then,
$s(p_{13})=\hat{u}_{1}/\tau$ . If $u’\geq-\alpha$ $\tau$ , then $s(p_{13})<s(q_{9})$ , clearly. If $-\alpha\tau-1$ $<u^{*}<-\alpha\tau$ , then
from (10’) and $v’\in(0,2\pi/3)$ ,

$0<v^{*}< \frac{\pi}{6}$ and $- \frac{1}{2}<$ $\cos(-v^{*}+\frac{2}{3}\pi)<0$ ,

where $v^{*}=\phi(u^{*})$ . Thus from (9) we have

$- \frac{1}{2}\alpha\tau e^{\alpha\tau}<h(u^{*})<0$ ,

which implies $\hat{u}_{1}<u^{*}<-\mathrm{a}\tau$ and $s(p_{13})<s(q_{9})$ .
When $\alpha\tau e^{\alpha\tau}>2/e$ , there is no solution of Eq. (13). We can easily see that the

maximum of $u$ satisfying Eqs. (11) and (12) are given by the intersection of the graphs
of Eqs. (IF) and (12’) for $v\in(0, \pi)$ (see Fig. 4). Representing the maximum of $u$ as
$\hat{u}^{*}$ , $s(p_{13})=\hat{u}^{*}/\tau$ . We will show $\hat{u}^{*}<u^{*}$ in the following. Assume this does not hold.

Figure 4: The graphs of Eqs. (11’) (solid line) and (12’) (dashed line) when $\alpha\tau e^{\alpha\tau}>2/e$ .

Put $v^{*}=\phi(u^{*})$ and $\hat{v}^{*}=\hat{\phi}(\hat{u}^{*})$ . It is clear that $\hat{\phi}(\hat{u}^{*})<\phi(\hat{u}^{*})$ . And $\phi(u)$ is monotone
decreasing for $u\leq 0$ when $\alpha\tau e^{\alpha\tau}>2/e$ . Thus we have $\hat{v}^{*}<v^{*}$ . We can easily see
$\psi(v^{*})>\hat{\psi}(v^{*})$ . Since $\hat{\psi}(v)$ is monotone increasing for $v>0,\hat{\psi}(v’)$ $>\hat{\psi}(\hat{v}^{*})$ . Hence
we obtain $u^{*}=\psi(v^{*})>\hat{\psi}(\hat{v}^{*})=\hat{u}^{*}$ , which is a contradiction. Therefore $\hat{u}^{*}<u^{*}$ and
$s(p_{13})<s(p_{9})$ . This completes the proof
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