非線形固有値問題の解の漸近挙動

広島大学・大学院工学研究科 柴田徹太郎(Tetsutaro Shibata) Graduate School of Engineering, Hiroshima University

1 Introduction

We consider the following nonlinear Sturm-Liouville problem

$$(1.1) -u''(t) + f(u(t)) = \lambda u(t), \quad t \in I := (0,1),$$

$$(1.2) u(t) > 0, \quad t \in I,$$

$$(1.3) u(0) = u(1) = 0,$$

where $\lambda > 0$ is an eigenvalue parameter. We assume that f(u) satisfies the following conditions (A.1)–(A.3).

- (A.1) f(u) is a function of C^1 for $u \ge 0$ satisfying f(0) = f'(0) = 0.
- (A.2) g(u) := f(u)/u is strictly increasing for $u \ge 0$ (g(0) := 0).
- (A.3) $g(u) \to \infty$ as $u \to \infty$.

The typical examples of f(u) which satisfy (A.1)-(A.3) are

$$f(u) = u^p$$
, $f(u) = u^{p+2}/(1+u^2)$, $f(u) = u^p e^u$ $(p > 1)$.

We know from [1] that for each given $\alpha > 0$, there exists a unique solution $(\lambda, u) = (\lambda(\alpha), u_{\alpha}) \in \mathbf{R}_{+} \times C^{2}(\overline{I})$ with $||u_{\alpha}||_{2} = \alpha$. Furthermore, The set $\{(\lambda(\alpha), u_{\alpha}) : \alpha > 0\}$ gives all solutions and is an unbounded curve of class C^{1} in $\mathbf{R}_{+} \times L^{2}(I)$ emanating from $(\pi^{2}, 0)$.

The purpose here is to study precisely the global structure of this bifurcation branch in $\mathbf{R}_+ \times L^2(I)$. To do this, we establish several types of precise asymptotic formulas for $\lambda(\alpha)$ as $\alpha \to \infty$ under some additional conditions on f.

We know from [1] that for $t \in \overline{I}$,

(1.4)
$$g^{-1}(\lambda - \pi^2) \sin \pi t \le u_{\lambda}(t) \le g^{-1}(\lambda).$$

In particular, put $t = \frac{1}{2}$. Then as $\lambda \to \infty$

(1.5)
$$g^{-1}(\lambda - \pi^2) \le ||u_{\lambda}||_{\infty} \le g^{-1}(\lambda).$$

Therefore, for $\lambda \gg 1$,

$$\lambda = g(\|u_{\lambda}\|_{\infty}) + O(1).$$

For instance, let $f(u) = u^p$. Then since $g(u) = f(u)/u = u^{p-1}$, for $\lambda \gg 1$

(1.7)
$$\lambda = ||u_{\lambda}||_{\infty}^{p-1} + O(1).$$

Furthermore, we know that as $\lambda \to \infty$

$$\frac{u_{\lambda}(t)}{g^{-1}(\lambda)} \to 1$$

uniformly on any compact set in I. Then we obtain

$$\alpha = \|u_{\alpha}\|_{2} = \left(\int_{T} g^{-1}(\lambda)^{2} dt\right)^{1/2} (1 + o(1)) = g^{-1}(\lambda)(1 + o(1)).$$

This implies that, in many cases,

(1.9)
$$\lambda(\alpha) = g(\alpha) + o(g(\alpha)).$$

For instance, let $f(u) = u^p$. Then for $\alpha \gg 1$,

(1.10)
$$\lambda(\alpha) = \alpha^{p-1} + o(\alpha^{p-1}).$$

This asymptotic formula has been improved as follows.

Theorem 1 [6]. Let $f(u) = u^p$ (p > 1). Further, let an arbitrary $n \in \mathbb{N}_0$ be fixed. Then as $\alpha \to \infty$

$$\lambda(\alpha) = \alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \sum_{k=0}^{n} \frac{a_k(p)}{(p-1)^{k+1}} C_1^{k+2} \alpha^{k(1-p)/2} + o(\alpha^{n(1-p)/2}),$$

where

$$C_1 = (p+3) \int_I \sqrt{\frac{p-1}{p+1} - s^2 + \frac{2}{p+1}} s^{p+1} ds$$

and $a_k(p)$ (deg $a_k(p) \le k+1$) is the polynomial determined inductively by a_0, a_1, \dots, a_{k-1} .

For instance, we have

$$a_0(p) = 1$$
, $a_1(p) = \frac{(5-p)(9-p)}{24}$, $a_2(p) = \frac{(3-p)(5-p)(7-p)}{24}$.

We also obtain the information about the slope of the boundary layer of u_{α} for $\alpha \gg 1$.

Theorem 2 [6]. Let $f(u) = u^p$ (p > 1). Further, let an arbitrary $n \in \mathbb{N}_0$ be fixed. Then as $\alpha \to \infty$

$$u_{\alpha}'(0)^{2} = u_{\alpha}'(1)^{2} = \frac{p-1}{p+1}\alpha^{p+1} + C_{1}\alpha^{(p+3)/2} + \sum_{k=0}^{n} \frac{2A_{k}(p)}{(p-1)^{k+1}}C_{1}^{k+2}\alpha^{2+k(1-p)/2} + o(\alpha^{2+n(1-p)/2}),$$

where $A_k(p)$ (deg $A_k(p) \le k+1$) is the polynomial determined by a_0, a_1, \dots, a_{k-1} .

For instance,

$$A_0(p) = 1$$
, $A_1(p) = \frac{(9-p)(13-p)}{48}$, $A_2(p) = \frac{(5-p)(7-p)(9-p)}{48}$.

So it is natural to consider the following problem. Consider f(u) which satisfies (A.1)-(A.3). Then is the following formula valid or not for $\alpha \gg 1$?

(1.11)
$$\lambda(\alpha) = g(\alpha) + B_1 g(\alpha)^{1/2} + \cdots,$$

where B_1 is a constant. To treat this problem, we assume additional conditions. Let $f(u) = u^p h(u)$ (p > 1). Assume that h(u) is C^2 function for $u \ge 0$. Besides, h(u) satisfies the following conditions (B.1)–(B.4).

(B.1) As $u \to \infty$

$$\frac{uh'(u)}{h(u)} \to 0.$$

Furthermore, there exists a constant $C_0 \geq 0$ such that as $u \to \infty$

$$(1.13) uh'(u) \to C_0.$$

(B.2) There exist constants C > 0 and $\delta > 0$ such that for $u \gg 1$

$$(1.14) |h'(u) + uh''(u)| \le Cu^{-(1+\delta)}.$$

(B.3) For $0 \le a \le 1$ and $u \gg 1$

$$\frac{h(au)}{h(u)} \le C.$$

Furthermore, for a fixed $0 < a \le 1$, as $u \to \infty$

$$\frac{h(au)}{h(u)} \to 1.$$

- (B.4) (a) $u^{p+1}|h'(u)|$ is non-decreasing for $u \ge 0$ or,
- (b) $u^{p+1}|h'(u)|$ is bounded for $u \ge 0$.

The typical examples of h are: (i) $h(u) \equiv 1$, (ii) $h(u) = \log(u+1)$, (iii) $h(u) = u^2/(1+u^2)$.

Theorem 3 [7]. Let p > 1 be fixed. Assume that $f(u) := u^p h(u)$ satisfies (A.1)–(A.3) and (B.1)–(B.4). Then as $\alpha \to \infty$

$$\lambda(\alpha) = \alpha^{p-1}h(\alpha) + \frac{1}{p+1}C_0\alpha^{p-1} + (p+3)C_1\alpha^{(p-1)/2}\sqrt{h(\alpha)}(1+o(1)).$$

Remark 4. (i) For $\alpha \gg 1$, by (B.2), we see that

(1.17)
$$C_0 = \alpha h'(\alpha)(1 + o(1)).$$

Therefore, as $\alpha \to \infty$

(1.18)
$$\frac{\alpha^{p-1}C_0}{\alpha^{p-1}h(\alpha)} = \frac{\alpha^p h'(\alpha)(1+o(1))}{\alpha^{p-1}h(\alpha)} \to 0.$$

So we find that the leading term of $\lambda(\alpha)$ in Theorem 3 is $\alpha^{p-1}h(\alpha)$.

(ii) If $C_0 \neq 0$, then the second term of $\lambda(\alpha)$ is $C_0 \alpha^{p-1}/(p+1)$. Therefore, our conjecture (1.11) is valid if and only if $C_0 = 0$. We note that, if $h(u) = \log(u+1)$, then $C_0 = 1$. Further, if $h(u) = u^2/(1+u^2)$, then $C_0 = 0$.

Now we consider the case where $f(u) = u^p e^u$ (p > 1).

Theorem 5 [8]. Assume that $f(u) = u^p e^u$ (p > 1) in (1.1). Then as $\alpha \to \infty$

$$^{a}\lambda(\alpha) = \alpha^{p-1}e^{\alpha} + \frac{\pi}{4}\alpha^{(p+1)/2}e^{\alpha/2}(1 + o(1)).$$

2 Sketch of the proof of Theorem 3

We begin with notations and the fundamental properties of $\lambda(\alpha)$ and u_{α} . Let $F(u) := \int_0^u f(s)ds$. Let $\|\cdot\|_q$ $(1 \le q \le \infty)$ denote the usual L^q -norm. C denotes various positive constants independent of $\alpha \gg 1$. It is known by [1] that (1.1)-(1.3) has a unique solution u_{α} for a given $\alpha > 0$ and the mapping $\alpha \mapsto u_{\alpha} \in C^2(\bar{I})$ is C^1 for $\alpha > 0$. By (1.4) and (1.5), for $\alpha \gg 1$

(2.1)
$$\lambda(\alpha) = \alpha^{p-1}h(\alpha) + o(\alpha^{p-1}h(\alpha)),$$

(2.2)
$$u_{\alpha}(t) = ||u_{\alpha}||_{\infty} (1 + o(1)) = \alpha (1 + o(1)), \ t \in I.$$

We put

(2.3)
$$\lambda_1(\alpha) := \lambda(\alpha) - \alpha^{p-1}h(\alpha),$$

(2.4)
$$\gamma(\alpha) := \|u_{\alpha}'\|_{2}^{2} + 2 \int_{I} F(u_{\alpha}(t)) dt.$$

To show Theorem 3, we find $\lambda_1(\alpha)$ when $\alpha \gg 1$. To do this, we define the second term $\gamma_1(\alpha)$ of $\gamma(\alpha)$, which plays important roles, as follows.

(2.5)
$$\gamma_1(\alpha) := \gamma(\alpha) - \frac{2}{p+1} \alpha^{p+1} h(\alpha).$$

The rough idea of the proof is as follows.

- (i) We obtain three estimates in Lemmas 2.1, 2.3 and 2.4.
- (ii) We establish the relationship between $\lambda_1(\alpha)$ and $\gamma_1(\alpha)$ in Lemma 2.2.
- (iii) We derive the first order differential equation for $\gamma_1(\alpha)$ by using (i) and (ii). Then by solving it, we obtain the asymptotic formula for $\lambda_1(\alpha)$.

Lemma 2.1.
$$||u'_{\alpha}||_{2}^{2} = 2C_{1}(1 + o(1))\alpha^{(p+3)/2}\sqrt{h(\alpha)}$$
 for $\alpha \gg 1$.

Lemma 2.2. For $\alpha > 0$

(2.6)
$$\frac{d\gamma_1(\alpha)}{d\alpha} = 2\alpha\lambda_1(\alpha) - \frac{2}{p+1}\alpha^{p+1}h'(\alpha).$$

Lemma 2.3. For $\alpha \gg 1$

$$\int_0^{\|u_\alpha\|_\infty} s^{p+1} h'(s) ds = \int_I \left(\int_0^{u_\alpha(t)} s^{p+1} h'(s) ds \right) dt + o\left(\alpha^{(p+3)/2} \sqrt{h(\alpha)}\right).$$

Lemma 2.4. For $\alpha \gg 1$

(2.7)
$$\int_0^{\|u_\alpha\|_{\infty}} s^{p+1} h'(s) ds = \int_0^{\alpha} s^{p+1} h'(s) ds + o\left(\alpha^{(p+3)/2} \sqrt{h(\alpha)}\right).$$

Proof of Theorem 3. By simple calculation, we have

$$\frac{2}{p+1}\lambda(\alpha)\alpha^2 - \gamma(\alpha) = -\frac{p-1}{p+1}\|u_\alpha'\|_2^2 + \frac{2}{p+1}\int_I \left(\int_0^{u_\alpha(t)} s^{p+1}h'(s)ds\right)dt.$$

By this, Lemmas 2.1, 2.3 and 2.4,

$$\frac{2}{p+1}\lambda_1(\alpha)\alpha^2 - \gamma_1(\alpha) = -\frac{2(p-1)}{p+1}C_1\alpha^{(p+3)/2}\sqrt{h(\alpha)}(1+o(1)) + \frac{2}{p+1}\int_0^\alpha s^{p+1}h'(s)ds.$$

By integration by parts,

$$\int_0^{\alpha} s^{p+1} h'(s) ds = \frac{1}{p+1} \alpha^{p+2} h'(\alpha) - \frac{1}{p+1} R(\alpha),$$

where

(2.8)
$$R(\alpha) := \int_0^{\alpha} s^{p+1} (h'(s) + sh''(s)) ds.$$

By this and Lemma 2.2,

(2.9)
$$\frac{1}{p+1}\alpha\gamma_1'(\alpha) - \gamma_1(\alpha) = -\frac{2(p-1)}{p+1}C_1\alpha^{(p+3)/2}\sqrt{h(\alpha)}(1+o(1)) - \frac{2}{(p+1)^2}R(\alpha).$$

Now we put $\gamma_1(\alpha) = \eta(\alpha)\alpha^{p+1}$. Then for $\alpha \gg 1$, we obtain

(2.10)
$$\eta'(\alpha) = -2(p-1)C_1\alpha^{-(p+1)/2}\sqrt{h(\alpha)}(1+o(1)) - \frac{2}{p+1}R(\alpha)\alpha^{-(p+2)} = \eta'_1(\alpha) + \eta'_2(\alpha),$$

where

(2.11)
$$\eta_1(\alpha) = (1 + o(1)) \int_{\alpha}^{\infty} 2(p-1)C_1 s^{-(p+1)/2} \sqrt{h(s)} ds,$$

(2.12)
$$\eta_2(\alpha) = \frac{2}{p+1} \int_{\alpha}^{\infty} R(s) s^{-(p+2)} ds.$$

Then it is easy to show that for $\alpha \gg 1$

(2.13)
$$\eta_1(\alpha)\alpha^{p+1} = 4C_1\alpha^{(p+3)/2}\sqrt{h(\alpha)}(1+o(1)).$$

We next calculate $\eta_2(\alpha)$. By (B.2), we have

$$(2.14) |R(\alpha)| \le \int_0^\alpha s^{p+1} |h'(s) + sh''(s)| ds \le C \int_0^\alpha s^{p-\delta} ds \le C\alpha^{p+1-\delta}.$$

By this, we easily see that $\eta_2(\alpha)$ is well defined. Then by integration by parts and simple calculation, we have

$$(2.15) \eta_{2}(\alpha) = \frac{2}{p+1} \int_{\alpha}^{\infty} R(s) s^{-(p+2)} ds$$

$$= \frac{2}{p+1} \left[-\frac{1}{p+1} s^{-(p+1)} R(s) \right]_{\alpha}^{\infty} + \frac{2}{(p+1)^{2}} \int_{\alpha}^{\infty} (h'(s) + sh''(s)) ds$$

$$= \frac{2}{(p+1)^{2}} R(\alpha) \alpha^{-(p+1)} + \frac{2}{(p+1)^{2}} \int_{\alpha}^{\infty} (sh'(s))' ds$$

$$= \frac{2}{(p+1)^{2}} R(\alpha) \alpha^{-(p+1)} + \frac{2}{(p+1)^{2}} (C_{0} - \alpha h'(\alpha)).$$

Therefore,

(2.16)
$$\gamma_{1}(\alpha) = (\eta_{1}(\alpha) + \eta_{2}(\alpha))\alpha^{p+1}$$

$$= 4C_{1}\alpha^{(p+3)/2}\sqrt{h(\alpha)}(1+o(1))$$

$$+ \frac{2}{(p+1)^{2}}(R(\alpha) + C_{0}\alpha^{p+1} - \alpha^{p+2}h'(\alpha)).$$

By this and Lemma 2.1, we obtain

$$(2.17) \frac{2}{p+1}\lambda_{1}(\alpha)\alpha^{2} = \gamma_{1}(\alpha) - \frac{p-1}{p+1}\|u_{\alpha}'\|_{2}^{2} + \frac{2}{p+1}\int_{0}^{\alpha}s^{p+1}h'(s)ds + o\left(\alpha^{(p+3)/2}\sqrt{h(\alpha)}\right) = 4C_{1}\alpha^{(p+3)/2}\sqrt{h(\alpha)} - \frac{2C_{1}(p-1)}{p+1}\alpha^{(p+3)/2}\sqrt{h(\alpha)} + \frac{2}{(p+1)^{2}}C_{0}\alpha^{p+1} + o\left(\alpha^{(p+3)/2}\sqrt{h(\alpha)}\right).$$

By this, we obtain

(2.18)
$$\lambda_{1}(\alpha) = \frac{1}{p+1} C_{0} \alpha^{p-1} + (p+3) C_{1} \alpha^{(p-1)/2} \sqrt{h(\alpha)} + o\left(\alpha^{(p-1)/2} \sqrt{h(\alpha)}\right).$$

Thus the proof is complete.

References

- H. Berestycki, Le nombre de solutions de certains problèmes semi-linéares elliptiques,
 J. Functional Analysis 40 (1981), 1-29.
- [2] R. Chiappinelli, Remarks on bifurcation for elliptic operators with odd nonlinearity, Israel J. Math. 65 (1989), 285–292.
- [3] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal. TMA 13 (1989), 871–878.
- [4] J. M. Fraile, J. López-Gómez and J. C. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180–212.
- [5] H.-P. Heinz, Nodal properties and variational characterizations of solutions to nonlinear Sturm-Liouville problems, J. Differential Equations 62 (1986) 299–333.
- [6] T. Shibata, Precise spectral asymptotics for nonlinear Sturm-Liouville problems, Journal of Differential Equations 180 (2002), 374–394.
- [7] T. Shibata, Global behavior of bifurcation branch for nonlinear Sturm-Liouville problems, to appear.
- [8] T. Shibata, New asymptotic formula for eigenvalues of nonlinear Sturm-Liouville problems, submitted.