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1 Introduction

We consider the following nonlinear Sturm-Liouville problem

(1.1) )+ fl) = M), tel=(0,1),
(1.2) ult) > 0, tel,
(1.3) w(0) = w(l) =0,

where A > 0 is an eigenvalue parameter. We assume that f(u) satisfles the following condi-
tions (A.1)—(A.3).

(A.1) f{u) is a function of C* for u > 0 satisfying f{0) = f/(0) = 0.

(A.2) g(u) := f(u)/u is strictly increasing for u > 0 (g(0) := 0).

(A.3) g(u) — co as u — oo.

The typical examples of f(u) which satisfy (A.1)—(A.3) are
)=, flu)=w/(1+u?), flu)=ule" (p>1).

We know from [1] that for each given a > 0, there exists a unique solution (A u) =
(Ma),ue) € Ry x CHI) with flus|ls = o Furthermore, The set {{(A(a),us) : @ > 0}
gives all solutions and is an unbounded curve of class C! in R, x L?(I) emanating from

(72,0).
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The purpose here is to study precisely the global structure of this bifurcation branch in
R, x L*(I). To do this, we establish several types of precise asymptotic formulas for A(a)
as a — oo under some additional conditions on f.

We know from [1] that for ¢ € 1,
(1.4) g HA =7 sinmt < uy(t) < g7
In particular, put ¢ = % Then as A — o0
(1.5) g A =7 < luafleo < 971N

Therefore, for A > 1,
(1.6) A= g(luaflso) +O(1).

For instance, let f(u) = «?. Then since g(u) = f(u)/u = w7, for A > 1
(1.7) A= fuallist +0(1).

Furthermore, we know that as A — oo

(1.8) ;’L’)i((?\) -

uniformly on any compact set in I. Then we obtain
PNCTACL 1
o= lualls = ([ 471 O0) (14 0(1) = g7 (N + (D)
This implies that, in many cases,
(1.9) M) = gla) + og(a))-
For instance, let f{u) = «?. Then for &> 1,
(1.10) Ma) =t +o(a” ).

This asymptotic formula has been improved as follows.

Theorem 1 [6]. Let f(u) =w? (p > 1). Further, let an arbitrary n € No be fized. Then

as o — OO

Ma) = Pt 4+ 0104(‘"1)/2 + Z 5 ak%)kﬂ O{cﬁ—‘zak(l—P)/Z + O(a'n(l—p)/2)’
=0 -
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where

p—1 2
Ci=(p+3 /1}—————82—1— sPtlds
1= )1 p+1 p+1

and ax(p) (deg ar(p) < k+ 1) is the polynomial determined inductively by ag, ar, -, ax-1.

For instance, we have

ag(p) = 1, ai(p) = @___p;_gi;@) an(p) = (3 _p>(52—4p)(7—p)'

We also obtain the information about the slope of the boundary layer of u, for a > 1.

Theorem 2 [6]. Let f(u) =uP (p > 1). Further, let an arbitrary n € Ny be fized. Then

as o — OO

— 1 k13 2A _
u;(0)2 — (1>2 _ ;ﬁoﬂ’“ +01&(p+3)/2+26~_%cf+2a2+k(1 )/2
k=0

+ 0<a2+'n(17p)/2)7

where A (p) (deg Ag(p) < k+ 1) is the polynomial determined by ag, a1, -+, Gg—1.

For instance,

Aolp) =1, Ay(p) :@_*_%13’_1@’ Aa(p) = (5—~p)(74*8p)(9-p)

So it is natural to consider the following problem. Consider f(u) which satisfies (A.1)-(A.3).

Then is the following formula valid or not for o > 17
(1.11) Ma) = gle) + Big(e)? + -+,

where Bj is a constant. To treat this problem, we assume additional conditions. Let f(u) =
uPh(u) (p > 1). Assume that h(u) is C? function for u > 0. Besides, h{u) satisfies the
following conditions (B.1)-(B.4).

(B.1) Asu — o0

uh'(w)
h{u)

Furthermore, there exists a constant Cp > O-such that as u — o0

(1.12)

— 0.

(1.13) : uh'(u) — Cp.
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(B.2) There exist constants C > 0 and ¢ > 0 such that foru>1
(1.14) | (1) 4 uh” (u)] < Cu~ O,

(B.3)For0<a<landu>1

h{au)

1.15 <
(1.15) ) S
Furthermore, for a fixed 0 <a <1, asu — o0

h{au)

1.1 1.

(B.4) (a) uP*!|W/(u)] is non-decreasing for u > 0 or,

(b) uP*|K/(u)] is bounded for u > 0.
The typical examples of k are: (i) h{u) = 1, (i) Alu) = log{u + 1), (iil) h(w) = u?/(1 +u?).

Theorem 3 [7]. Let p > 1 be fized. Assume that f(u) := uPh{u) satisfies (A.1)-(A.3) and
(B.1)-(B.4). Then as o — o0

Ma) = o th(a) + pi 100041’_1 + (p + 3)C1a® V2 [h(a)(1 + o(1)).

Remark 4. (i) For a > 1, by (B.2), we see that

(1.17) Co = ol (@)(1 + o(1)).

Therefore, as o — 00

aP 10y, oPR(a)(1+0(1))
o~ Th{a) P~ h{a)
So we find that the leading term of A(e) in Theorem 3 is o 'h(a).

— 0.

(1.18)

(i) If Cy # 0, then the second term of A(a) is Coa?~'/(p + 1). Therefore, our conjecture
(1.11) is valid if and only if Cy = 0. We note that, if h(u) = log(u+1), then Cp = 1. Further,
if h(w) = u?/(1 + u?), then Cy = 0.

Now we consider the case where f(u) = uPe®* (p > 1).

Theorem 5 [8]. Assume that f(u) = wPe* (p > 1) in (1.1). Then as o — 00

Ma) = ot + ga(pﬂ)/zea/z(l +o(1)).
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2 Sketch of the proof of Theorem 3

We begin with notations and the fundamental properties of A(e) and u,. Let F(u) :=
f f(s)ds. Let || - |l; (I < ¢ < o0) denote the usual L%-norm. C denotes various positive
constants independent of & > 1. Tt is known by [1] that (1.1)-(1.3) has a unique solution
g for a given o > 0 and the mapping o — u, € C*(I) is C* for & > 0. By (1.4) and (1.5),

fora>>1

(2.1) Ma) = o h(a) +o(a® h{a)),

(22) us(t) = |Jualleo(l +0(1)) =afl +0(1)), t€l
We put

(2.3) Ma) = Ma)— o h(a),

(2.4) ve) = Juplf+2 [ Flua(®)dt.

To show Theorem 3, we find A; (o) when o > 1. To do this, we define the second term ¥ (e)

of y(«), which plays important roles, as follows.

(2.5) nla) = yla) - ﬁiof“h(a).

The rough idea of the proof is as follows.

(i) We obtain three estimates in Lemmas 2.1, 2.3 and 2.4.
(il) We establish the relationship between A;(a) and ¥ (a) in Lemma, 2.2,
(iii) We derive the first order differential equation for v;(c) by using (i) and (ii). Then by

solving it, we obtain the asymptotic formula for A ().
Lemma 2.1. |ju ||z = 2C;(1 + 0o(1))a®*3/2,/h(a) for o > 1.

Lemma 2.2. Fora >0

(2.6) dnla) 200 (o) —

p+lg’
T p+1a h{a).

Lemma 2.3. Fora > 1

flualico Ua(t)
P+l — p+1pr ' (p+3)/2
/0 sFTH (s)ds /I (/0 PR (s)ds) dt+o (a h(a}) :
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Lemma 2.4. Fora>1

zallce Jor
. PHLp/(s)ds = D17/ (p+3)/2 ) ‘
(2.7) /0 PR (s)ds /0 I (s)ds + o (a h{a)

Proof of Theorem 3. By simple calculation, we have

2 et —yle) = Ll = [ ([ entsias)

By this, Lemmas 2.1, 2.3 and 2.4,

pi Mla)o? —yla) = —3%'15130@%")/2 h{a)(1 4 o(1))

2 o’
— PR (5)ds.
+p+1/o 8 (s)ds

By integration by parts,

/Oasf’“h'(S)ds = piloﬁ”h'() p—i—l—R(a)y
where
(2.8) Rla) = /0 P (s) + sh"(s))ds
By this and Lemma 2.2,
(2.9) ﬁiwﬁ(a) mnle) = —%‘—f—)c ®+3/2 h(a)(1+o(1))
_G;%FR(@)'

Now we put 11() = n{a)aP*t. Then for o >> 1, we obtain

(2.10) 7(e) = —2(p- 1)Cia ®2/h{a)(1+0(1))
2 —(p+2
— ;—ER(Q)Q e+

= () +n(a),

where

1l

(2.11) mie) = (L+o(1)) [ 2(p—1)Cus™*h(s)ds,

2 o0
- = —(p+2)
(2.12) mla) = p+1/a R(s)s ds
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Then it is easy to show that for a > 1

(2.13) m(a)a*! = 4C1a"% [a(a)(1 + o(1)).

We next calculate m2(a). By (B.2), we have

(2.14) |R(a)] < /Oa sPHHR/ (s) + sh(s)|ds < C/OQ sP7%ds < CaPt™0.

By this, we easily see that no(a) is well defined. Then by integration by parts and simple

calculation, we have

(2.158)  ma) = Z%-i/oo R(s)s~ P
2 1 = 2 o0
= 5 {_p+15 (?’“)R(s)} +m/a (W'(s) +sh"(s))ds
2 2 oo
= — 2 _R(a)o~® / B (s))'d
CES R T A
2 2
= = R(a)a D Co — ah/(@)).
oy T @)
Therefore,
(2.16) nla) = (mle)+m(@)e
= 4Ca®372, [h(a)(1 + o(1))
2
-+ W(R(CE) + C()Olp+] — O,’p+2h,<04)).
By this and Lemma 2.1, we obtain
2 p—1 2 o
2.17 A = — |3+ — TR (s)d
(2.17) “ihl)e? = ()~ Dog IR+ S [T s)as
+0(a(p+3)/2 h(a))
= 4C1a®2 [h(a) - 201p—1) a2 hla)
p+1
2
+ e l)zCoap+1 +0 (a(p+3>/2 h(a)) .
By this, we obtain
1
(2.18) M) = Coo™ + (p + 3)C1a®~ /2 /h(a)

p+1
+o0 <a(p_1}/2 h(oe)) .

Thus the proof is complete. y
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