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Nonconvex cost optimal control problems for
semilinear second order evolution equations
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1 Introduction

In this paper we study the optimal control problem for the control system described
by the semilinear evolution problem in Hilbert space of the form

y" + A1)y + Ay = ft,y,y) + Bsus in (0,7) (1.1)
y(0) = yo + Biv1, ¥'(0) = y; + Bava,

where A (f), A5(t) are time varying operators on Hilbert spaces V1, V2 embedded in a pivot
Hilbert space H, f(t,v,y') is a nonlinear function, yg, y; are given initial values, v1, vg, v3
are control variables, and By, By, Bs are controllers. Under appropriate conditions on
A1(t), Aa(t), yo, y1 and f{t,4,y") in (1.1), we establish the wellposedness result and the
Fréchet differentiability of solutions with respect to v = (v1,vz,v3) by the variational
setting as in Dautray and Lions [3]. The quadratic cost optimal control theory for linear
hyperbolic distributed parameter systems has been completely developed by Lions (8]
and his school at the middle of 60’s. After that the central theme of control theory has
been moved to the nonlinear problems. Also the general nonconvex cost optimal control
problems are studied extensively for nonlinear systems by many researchers (see Ahmed
and Teo [1], Barbu [2], Fattorini [4], Fursikov [5], Li and Yong [10] and the references cited
therein). However, in practical applications to partial differential equations, there is a few
researches involving initial value controls and the attached cost functional is not necessary
convex. Taking into account of this matter, we study the nonconvex cost optimal control
problems for (1.1). Let F = F(v,y) and G = G(t,v,y) be real valued (not necessary
convex in y) functions. The cost J(v) attached to (1.1) is given by the following general
integral cost

T
J(v) = Fv,y(v;T)) + /0 Gt,v,y(v; t))dt, (1.2)

where y = y(v) is the solution of (1.1). Under the Fréchet differentiability on F', G in
the argument for y and the Gateaux differentiability on F, G in the argument for v,
we establish the necessary optimality condition for optimal controls by using the Fréchet
differentiability of y(v) in the control variable v = (v, vo, v3).
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2 Semilinear second order evolution equations

Let H be a real pivot Hilbert space with inner product (-,+)y and norm |- {g. For
i = 1,2, let V; be a real separable Hilbert space with the norm ||+ |ly;. The dual space of V;
is denoted by V/ and the duality pairing between V; and V; is denoted by (-, -)vy,y;. Assume
that each pair (V;, H) is a Gelfand triple space and that V; is continuously embedded in
V,. Let 0 < T < oo and let a;(¢; ¢, 9),t € [0,T] be a family of symmetric bilinear forms
on Vi x V;, i =1,2. We suppose that there exist ¢;; > 0 such that

lolly, forall ¢,¢€V; and t€0,T]; (2.1)

lai(t; 6, 0)| < calldllv;
and there exist o; > 0 and A; € R such that
ai(t; &, 8) + Mildl% > aullgll?, forall ¢ €V; and t€[0,T] (2.2)

Further, we suppose that the function ¢t — a1(t; ¢, @) is continuously differentiable in
[0, T] and there exists a c;g > 0 such that

|a} (t; 6, )] < coallglivi el forall ¢,4€ Vi and ¢€[0,T]. (2.3)

By (2.1) we can define the operators A;(t) € L{(V;,V!) by the relation a;(t; ¢, ) =
(Ai(t)o, p)vr v In what Tollows, we shall write Vi = V for notational simplicity.
Now we consider the following semilinear damped second order evolution equation

y0)=y eV, y(0) =y € H, ‘

where f : [0,T] x Vo x H — V. The solution Hilbert space W (0, T) of (2.4) is defined by
W (0,T) = {wlw € L*0,T;V),w’ € L*(0,T; Va),w" € L2(0,T; V"1,

endowed with the norm

(SR

llwllwor = (“wuiz(o,T;V) + [[w'lZ2c0mv5) + Hw””iZ(O,T;V'))
A function ¢ — y(t) is said to be a weak solution of (2.4) if y € W(0,T) and y satisfies

<y”(‘)a ¢>V',V + a2('; y,(')v ¢) + a’l('; y()? ¢) = <f(a y(')7 yf('))v ¢)>V2’,V2
forall ¢ € V in the sense of D'(0,T)

d
y(0) =y €V, E:Z_(O) =1 € H,

where D'(0, T) is the space of distributions on (0,7') (cf. Dautray and Lions [3]).
We impose the following assumptions on the nonlinear term F:0,T)xVax H=V,
in (2.4).

(A1) The mapping t — f(t,y,2) is strongly measurable in Vi for all y € V3 and 2 € H.
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(A2) There exists a § € L?(0,T; R*) such that

£y, 20) = F(6v2, )My < BE s — wallvs + |21 — 22lm) ace. t€[0,T]
for yi,y2 € Vo and 21,2 € H.

(A3) There exists a v € L*(0,T; R™) such that

1£(£,0,0)[ly; < (t) ae te€[0,T]

The following theorem on existence, uniqueness, regularity and energy equality of
solutions to (2.4) holds (for a proof see [7]).

Theorem 2.1 Assume that both a;,i = 1,2 satisfy (2.1)-(2.3) and f(t,y,2) satisfy (Al)-
(A3). Then there exists a unique weak solution y € W(0,T) nC([0,T);V)nCH[0,T]; H)
of (2.4). Moreover, for each t € [0,T], y satisfies the energy equalily

e t5(0), y0) + WO +2 [ a3/ (0),4/(0))do
= 000 +lnlk+ [ oiloiv(0)le)do
12 [ (0,90, (@), Y @Dvgaado 2.5)

The following energy inequality follows from the assumptions (A1)-(A3) and the energy
equality (2.5): For each ¢ € [0, 7]

WO + W@+ [ 1 @lEdo < vl +lnly + Diberen)  (26)

where ¢ is a proper constant depending only on Bin (A.2).
Note here that we will omit writing the integral variables in the definite integral if
there are some confusions. For example, in (2.6) we will express [y ||y/||2,do instead of

Jo lly' (@) 13, do

3 Continuity and Fréchet differentiability

Throughout this section we assume that (2.1)-(2.3) and (A1)-(A3) hold without any
indication. In this section we establish the continuity and Géateaux differentiability of the
solution mapping for (2.4) on the initial values and forcing functions. Let F be a product
space defined by

F=V x HxL0,T;Vy). (3.1)

The norm of F is defined by

(o, y1, 9|7 = (”TJOH%/ + lylﬁi + “9[_1%2(0,7’;‘/2{))1/2 for (yo,¥1,9) € F.
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For each ¢ = (yg,%1,9) € F we consider the following semilinear damped second order
system:

y(g;0) =y €V, ¥'(¢,0) =y € H, (3:2)
Here in (3.2), A,(t), A5(t) and f(t,y,2) are differential operators and the nonlinear func-
tion satisfying the assumptions given in Section 2.

By virtue of Theorem 2.1, we can define uniquely the solution mapping ¢ = (Yo, y1,9) —
y(g) of F into W(0,T), because f(t,y,2) + g(t) satisfies the assumptions (A1)-(A3).

{ y'(q) + Aoty () + Au(B)y(a) = (& y(0), v (9) + 9 1o (0,T),

Theorem 3.1 The solution mapping ¢ = (yo,%1,9) — y(q) of F into W(0,T) is strongly
continuous. Further, for each . = (4,91, 91) € F and g2 = (4%, 43, g2) € F we have the
inequality

¢
ly(aist) — yla O3 + 19/ (@i t) — ¥ (@ )l + fo Iy (g1) — ¥/ (a2) |35 do
< eyt = 213 + 1t — v H + lor — gellTaowey)s Jor alit € 10,1, (3.3)
where ¢ > 0 depends only on [ in (A3).

In turn, we raise the problem of differentiability of solution map ¢ = (Yo, 41,9) €
F = y(q) € W(0,T). The Fréchet differentiability of solution map is desirable for many
applications, and then we can establish the Fréchet differentiability of solution mapping
q = (yo,v1,9) € F = ylg) € W(0,T) and characterize the Fréchet derivatives as the
solutions of linearized second order evolution equations for (3.2).

Let X and Y be Banach spaces, and let £(X,Y) be a set of all bounded linear operators
from X to Y. We denote the Banach space £(X,Y’) endowed with the strong operator
topology by Ls(X,Y), and endowed with the operator norm topology by L.(X,Y).

We recall the following defintion of Fréchet differentiability of the mapping d: X Y

Definition 3.1 Let ® : X — Y. The function @ is said to be Fréchet differentiable at
T = 1z, if there exists a 7' € L{X,Y) such that ‘

|®(z0 + ) — B(zo) — Thily
lI7llx
If & is Fréchet differentiable at each zo € X, ® is said to be Fréchet differentiable on X.

The operator T in (3.4) is called the Fréchet derivative of ®(z) at z = zg and is denoted
by ®m (370)

Assume that ® : X — Y is Fréchet differentiable on X . If the Fréchet derivative (&)
is continuous in £ € X with respect to the norm topology of L(X,Y), ® is said to be
continuously Fréchet differentiable, or of C'-class. The space of all continuously Fréchet
differentiable functions @ : X — Y is denoted by C*(X,Y).

By Definition 3.4, the solution mapping g — y(g) of F into W(0,T) is Fréchet dif-
ferentiable if for any ¢ = (y0,¥1,9) € F and any w = (v, 47, 9*) € F there exists a
dy(q) € L{F,W(0,T)) such that '

y(g +w) — y(g) — T(Q)wllwem
]lwllf

0 as |JAllx — 0. (3.4)

-0 as [lwllr—0. (3.5)
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The operator dy(q) is called the Fréchet derivative of y(g) and the function dy(q)w €
W (0,T) is called the Fréchet derivative of y(g) in the direction w € F.

Now, in order to obtain the Fréchet differentiability of the solution mapping, we impose
the following assumptions on the nonlinear term f(t,y, z).

(Ad) For each ¢t € [0,T) and z € H, f(t,5,2) € C(4,V;), and for each ¢ € [0, 7],
f,(ty, 2) € C(Va x H, L{V3,V3)) and there is [ € L*(0,T; R™") such that

1ty 2]l eonyn < Bu@lylv, +12la +1) aete [0,T7.

(A5) For each ¢t € [0,T] and y € Vi, f(t,y,2) € C'(H,V;) and f,(t,y,2) € C(H x
Vo, L(H,VY)), and there is 8, € L*(0,T;R*) such that

1£:(t 9, 2)|eerwy < BB lullve + 12l + 1) ae t €[0,T).

Theorem 3.2 Assume that (A4) and (A5) hold. Then the mapping ¢ = (yo, y1,9) — v(q)
of F into W(0,T) is Fréchet differentiable and such the Fréchet derivative of y(g) atq=7
in the direction w = (y&,y*,9%) € F, say z = dy(Q)w, is o unique weak solution satisfying
the following equation

24 A + M)z = £,(t9(@), ¥ @)z + L63@,9 @) +g" in 0,T), (3.6)
20) =45, #(0) =41, '

The Fréchet derivative dy{q) is norm continuous in g.

Theorem 3.3 Assume that (A4) and (A5) hold true. Then the Fréchet derivative dy(g)
is continuous on F with respect to the norm topology of L,(F,W(0,T)).

Remark 3.1 The Gateaux differentiability of the mapping ¢ — y(q) of F into W(0,T)
is proved in [7] under the same assumptions (A4) and (A5).

4 Nonconvex cost optimal control problems

Let U;, i = 1,2,3 be the Hilbert spaces of control variables v;, ¢ = 1,2, 3, respectively.
We define the product space
Z/{=Z/{1 XUQ X Us (41)

as the Hilbert space of control variables v = (v1,v2,v3). We consider the following control
system
{ '+ Aty + Aty = ft,y,9) + Bsvs in (0,T) (49)
y(0) =y + By €V, ¢/(0) =y + Byve € H, '

in which three control variables are involved in forcing terms and initial conditions (cf.
Lions and Magenes II [9; Chapter 6]). Here in (4.2), B; € L(U,V), By € L(Uz, H) and
Bs € L(Us, L?(0,T;V])) and are controllers, yo € V, y1 € H, f(t,y,9') is a nonlinear
forcing function satisfying the conditions (A1)-(A5), v = (vy,v2,v3) is a control variable
and y(v) denotes the solution state for v = (v1,v9,v3) € U. We put B = (By, By, B3) €
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LU, V)% L(Us, H) x L(Uy, L*(0,T; V3)). By Theorem 2.1, for any v € U there is a unique
weak solution y = y(v) € W(0,T) n C([0,T]; V). Hence we have the solution mapping
v — y(v) : U = W(0,T). Since the mapping Uy X Up X Us — F defined by

(v1,v2,v3) = (yo + By, 11 + Bovg, Byus) € F

is affine and continuous, the following theorem follows from Theorem 3.2 and Theorem
3.3 (cf. Ha and Nakagiri [6]).

Theorem 4.1 Assume that (A4) and (A5) hold true. Then the mapping v — y(v) of U
into W(0,T) is Fréchet differentiable on U and the Fréchet derivative of y(v) at v =1uin
the direction w = (wy, wa, w3) € U, say & = dy(u)w, s a unique weak solution satisfying
the following equation
{ £ A+ ALDE = (6, y() o (W)E + Fof (), ' (W)€ + Baws in (0,7),
Z(O) = B]_'wl, Z,(O) = Bowy.
(4.3)

Further the Fréchet derivative dy(v) is continuous on .Ll with respect to the norm topology
of L (U, W(0,T)).

The nonconvex cost function associated with the control system (4.2) is given by
T
T() = Plo,y(:T) + | Gt ylun)ds, Yo €U, (4.4)
0

where F: U XV = R, G:[0,T] xU x V = R. We assume the following conditions on

F and G in (4.4).

(B1) The mapping (v,y) — F(v,y) is continuous on U X V.

(B2) The mapping ¢t — G(t,v,y) is measurable for all (v,y) eU X V.

(B3) The mapping y — G(t,v,y) is measurable for all (¢,4) € [0,T] x U.

(B4) For any v € U and arbitrary bounded set K C V, there exists an m = myx €
LY(0,T) such that

sup |G(t,v,9)| € myx(t), ae tel0,T].
yeK

Let Upg = UL, x UZ x U3, be a closed convex subset of 24, which is called the admissible
set. An element u = (ug, up, ug) € U is said to be the optimal control of J{(v) over Uyq if
u € Uy and u satisfies J(u) = infyey,, J(v).

On the existence of an optimal control for the cost J, we have to suppose some
compactness conditions to obtain the existence of an optimal control.

(C1) The admissible set Uy is compact in i.
(C2) The controller B = (By, By, Bj3) is a compact operator.

Theorem 4.2 Assume that (B1)-(B4) hold true. If (C1) or (C’Z)Iis satisfied, then there
exists ot least one optimal control u for the cost J(v) in (4.4) subject to the control system
(4.2).
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This existence theorem follows from the strong continuity of y(v) in v in the space W (0, T).
In order to give the necessary conditions for the optimal control u, we require the
following additional conditions on F and G:

(D1) for fixed v € U the Fréchet derivative F,(v,y) € L(V,R) exists and F, (v,y) is strong
continuous in (v,y) € U X V;

(D2) for fixed y € V the Gateaux derivative F,(v,y) € LU, R) exists and Fy(v,y) is
strong continuous in v € U;

(D3) for fixed (t,v) € [0,T] x U the Fréchet derivative G,(t,v,y) € L(V, R) exists and
G,(t,v,y) is strong continuous in (v,y) €U x V;

(D4) for any bounded set K C U x V, there exists an mg(t) € L'(0,7) such that

sup |Gy (t, 0, 9)llcevmy < mi(t) ae t€[0,T];
(vy)eK

(D5) for fixed (t,v) € [0,7] x V the Gateaux derivative G, (t,v,y) € LU, R) exists and

G, (t,v,y) is strong continuous in v € U;

(D6) for any bounded set K C U x V, there exists an m%(t) € L'(0,T) such that

sup HGv(tavay)H‘C(u,R) < mK(t) a.e t € [O,T]
(vy)€K

In what follows we suppose the existence of an optimal control u = (uy, ug, us) of the
cost {4.4). It is well known (cf. Lions [8]) that the optimality condition for u is given by
the variational inequality

J{u)(v—u) >0 forall v €Uy, (4.5)

where J'(u) denotes the Gateaux derivative of J(v) in (4.4) at v = u. In order to give the
exact form of J'(u)(v — u), we give the following proposition.

Proposition 4.1 Assume that (A1)-(A5) hold and that F and G satisfy (B1)-(B4) and
(C1)-(C4). Then J(v) is Géteaur differnetiable and the derivative J'(u)(v — u) at the
direction v — u s given by

T (v — ) = Fylu, y(u; T)) +/ (¢, u, y(us £)E(H)dt
+ Fy(u, y(u; T)) (v — u) + /0 Go(t, u, y(u; t)) (u — v)dt, (4.6)

where £ is the Fréchet derivative dy(u)(v — u) in Theorem 4.1.

It is desirable to write down the necessary condition in terms of adjoint state equations.
However, the well-posedness of adjoint system can not be verified under the conditions
(D1) on F, and (D3) on G,,. Hence, as in Ha and Nakagiri [6] we employ the transposition
method develped by Lions [8] and Lions and Magenes [9] to define the transposed adjoint
system.

Let Ay, be the cannonical isomorphism of U; onto U], i =1,2,3. The following main
theorem follows from Proposition 4.1 via the transposition method.
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Theorem 4.3 Assume all conditions in Proposition 4.1 hold. Then the optimal control
u € Uyg for (4.4) is characterized by the following system of equations and inequality:

{ Y (1) + As ()Y (u) + Ag(L)y(u) = f(t,y(u),y'(u)) + Bsus in (0,T)
y(u;0) = Yo+ Biuy €'V, ' (u;0) = y1 + Baug € H.

[ (pr(u), $(0) + (o), ¥/ (O
b [l ), 9+ AW+ A0 = ol 0w,y () — £y, @) gl

| = (R, y(w ). 0@ + [ (Gylt v y(wst)), w(e)ds
Yoy € W(0,T} such that
B+ A + AR — Fy(Ey(w), ¥ (W) — f(y(w), v (W)Y’ € L2(0,T; V),
»(0) eV, ¢'(0)€ H.
(AT'Bipr(u),vi — w1 + (Ang pip(u), vz — Uy, + (A3 Bip(u), vs — Ua)us
+mewzww—u+j’ ot 4, y(u)) (v ~ w)dt > 0,
Yo = (v1,V2,V3) € Ueqg = UL x Uz, x U,

\

Remark 4.1 The transposed solution p, = (pr{u), pr{w), p(u; ) of the adjoint system in
Theorem 4.3 is verified to satisfy formally the equation

P’ — Ay(t)p + (Ai(t) = A5(1))p

= £, yw), @)+ (L0 y(wt) (@) p) + Gyt uy(ut) in 0,7)
p(w; T) = Fy(u,y(w; T)),
p(wT) =0,

and pr(u) = p(y;0), prlu) =p'(40).

Let O c R3 be a bounded domain with sufficiently smooth boundary 0f), and let
Q =1[0,T]xQ and ¥ = [0, T] x 0S2. We can give an application of the above Theorem 4.3
to the nonconvex cost optimal control problems for the coupled sine-Gordon equations

studied in Nakagiri and Ha [11].

([ §? 0 0 , )

*5%%1— -+ o1 aytl + &12-5%1“ — 1Ay1 + vy siny; + kuyr + kioys = Biv; (t,:lf) n Q,

9?2 0 5; . )
j —a“f; + i1 aytl + 22—5‘? — ByAyp + Yo sin o + karys + kaaya = Bava(t, z) in Q,

y; =0 on X,

;o 0y; . .
| (0, 7) = Ejwg(z), —%—(0 z) = Biwi(z) in Q, i=1,2.
(4.7)

Here in (4. 7) cijy Bi > 0, i and k;; are constants, v; and wi, wt are control variables, and
B; and E}, E? are controllers deﬁned on appropriate Hilbert spaces of control variables.
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