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Abstract. We are concerned with a forest kinematic model presented by Kuzunetsov et
al. [3]. In this paper, we will construct global solutions and construct a dynamical system
determined from the model equations. We introduce three kinds of w-limit sets, namely,
w(lUp) C L2-w(Uy) C w*-w(ly), for each point Up. Using a Lyapunov function, we will
then investigate basic properties of these w-limit sets. Especially it shall be shown that
L2-w(Us) consists of stationary solutions alone.

1. Introduction

We study the initial-boundary values problem for a parabolic-ordinary system

%:— = Béw — y(v)u — fu in Q x (0,00),
%g=fu—hv in Q% (0, 00),
(1.1) \ %—1: = dAw — fw + av in € x (0, 00),
ow _ 0 on 60 x (0, 00),
on
| u(z,0) = wo(@), v(z,0) = vo(z), w(z,0) = wole), i Q.

This system has been introduced by Kuzunetsov et al. {3] in order to describe the kinetics
of forest from the viewpoint of the age structure. For simplicity they consider a prototype
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ecosystem of a mono-species and with only two age classes in a two-dimensional domain
Q.

The unknown functions u(z, t) and v(z, t) denote the tree densities of young and old
age classes, respectively, at a position z € Q and at time t € [0, 00). The third unknown
function w(z, t) denotes the density of seeds in the air at z € £ and ¢ € [0, o). The third
equation describes the kinetics of seeds; d > 0 is a diffusion constant of seeds, and a > 0
and @ > 0 are seed production and seed deposition rates respectively. While the first and
second equations describe the growth of young and old trees respectively; 0 <d < lisa
seed establishment rate, y(v) > 0 is a mortality of young trees which is allowed to depend
on the old-tree density v, f > 0 is an aging rate, and h > 0 is a mortality of old trees.

On w, the Neumann boundary conditions are imposed on the boundary 9. Nonneg-
ative initial functions ug(z) > 0, vo(z) > 0 and wo(z) > 0 are given in Q.

Several authors have already been interested in such a model. Wu [8] studied the
stability of travelling wave solutions. Wu and Lin [9] discussed the stability of stationary
solutions. Lin and Liu [4] extended this result to a case when the model includes nonlocal
effects.

In this paper we intend to construct a global solution to (1.1) for each initial function
Us € K and to construct a dynamical system determined from the problem. Furthermore,
we are concerned with studying asymptotic behavior of solutions.

We regard and handle the system (1.1) as a degenerate nonlinear diffusion system with
respect to (u, v, w). The word “degenerate” here means that the diffusion constants for
and v both vanish. But the general methods for constructing local and global solutions
are available if we take an underlying space carefully. In fact, we shall verify that the
abstract result obtained in [7, Theorem 3.1] is still applicable for the present problem if
X is taken as

u . "
(1.2) X = v |;uc L®(Q), ve L®(Q) and w € L*(Q)
w

The space of initial values is taken as

Ug
(1.3) K= vo |3 0<up, vp€ L) and 0 Sup € L*(Q)
Wy

Nonnegativity of local solutions and a priori estimates for local solutions will be es-
tablished in ordinary manners.

We have to pay much attention, however, that, owing to the degeneracy of dissipation,
we have no longer smoothing effect of solutions. What is even worse, we observe at least
numerically (see [6]) that, even if the initial functions (ug,vp, wp) are very smooth, the
solution (u(t), v(t), w(t)) can tend to a discontinuous stationary solution (@, ?,w) as t —
o0, T and 7 being discontinuous and @ being continuous in 2. This suggests furthermore
that some trajectories of the dynamical system no longer possess any nonempty w-limit
sets in the usual sense (see [10], [14] and [16]) in the underlying space X given by (1.2).
In fact, if a smooth trajectory (u(t),v(t), w(t)), 0 < t < oo, has a cluster point (@, v, w)
in X, then it is impossible that % and ¥ are discontinuous in 2. The dynamical system is
neither expected to possess the global attractor in general.



11

In view of these situations, we are rather led to investigate asymptotic behavior of
each trajectory of the dynamical system. We will introduce three kinds of w-limit sets,
namely, w(Uo) C L*w(Up) C w*-w(Up) for Uy € K. Here, w(Up) is the usual w-limit set
in the topology of X but may be empty for some Uy € K, L?-w(Up) is an w-limit set with
respect to the L? topology, and w*-w(Up) is that with respect to the weak*® topology of
L>(12). Fortunately, we can find a Lyapunov function for our dynamical system. Owing
the Lyapunov function, we can obtain many results on these w-limit sets. Among others,
it is proved that L%w(U,) consists of stationary solutions alone. But, for the moment, it
is an open problem to prove that w*-w(Up) consists of stationary solutions alone.

As a matter of fact, we can rigorously know existence of discontinuous stationary
solutions to the present system (1.1) (see [2]). The interface of a discontinuous stationary
solution is then considered as an internal forest boundary or an ecotone of forest which
has a significant meaning from the viewpoint of ecology ([3]). In this sense also it is quite
natural to choose an underlying space in the form (1.2).

Throughout the paper, Q is a bounded, convex or €? domain in R2. According to
[12], the Poisson problem —dAw + fw = v in {) under the Neumann boundary conditions
% — ( on 90 enjoys the optimal shift property that v € L*() always implies that
w € H%(€)). We assume as in [3] that the mortality of young trees is given by a square
function of the form

(14) 1(v) = a(v - b)* +e,

where a, b, ¢ > 0 are positive constants. This means that the mortality takes its minimum
when the old-age tree density is a specific value b. As mentioned, d, f, h, a, g >0areall
positive constants and 0 < 4 < 1.

2. Local solutions and global solutions

In the underlying product space X, we shall formulate the initial boundary value problem
(1.1) as the Cauchy problem for an abstract semilinear equation

%+AU=F(U), 0<t<oo,
U(0) = Us.

Then we can apply the general results in [7] to construct local solutions.
The linear operator A is defined by

f 00 U
A=|0 h O with D(A) = v | wvel®Q) and we Hy(Q) ¢,
0 0 A w

where A is a realization of the operator —dA + @ in L*(Q2) under the homogeneous Neu-
mann boundary condition %’ﬁ = 0 on the boundary 6. It is known that A is a positive
definite self-adjoint operator of L2(02) with D(A) = H(Q) (see [11, 12]), where H%(Q)
is a closed subspace of H%(Q) consisting of functions w’s satisfying the homogeneous
Neummann boundary conditions on 0€2.
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Moreover, for 0 < 6 < 1, 6 # 3,

A u
A°=10 hm 0 with D(A%) = v | uveL=Q) and we DA’ .
0 0 A° w

The nonlinear operator F is given by

(ﬁdw - fy('v)u) (u)
F{U) = fu , U= |v]| € DA,

where 77 is an arbitrarily fixed exponent in such a way that % < 5 < 1. The initial value
Us is taken from the space K given by (1.3).

It is easy to verify that all assumptions in [7, Theorem 3.1] are satisfied, then we
conclude the following result.

Theorem 2.1. For any Uy € X, (1.1) possesses o unique local solution in the function
space U € €([0, Til; X) N €((0, Tig s DIA)) N CX((0, Tug; X), e

(2 1) u, v e G([O: TUO]; LOO(Q)) N el((oy TUo]; Lw(ﬂ))v
' w € C([0, Tupl; L2(€)) N €((0, T J; HF () N €X((0, T} LH())-

Here, Ty, > 0 is determined by the norm |[Upllx = [luol|ze + [[vollze + [lwolizz alone.
Moreover, the estimate

tAU@x + IlUVE))x < Cup, 0<E< Ty

holds with some constant Cy, determined by ||Usl|x alone.

We next verify that nonnegativity of initial functions 1mphes that of the local solution
obtained in Theorem 2.1.

Theorem 2.2, For any Uy € K, (1.1) possesses a unique local solution such that

0 <, v € €([0, Ty ]; L=(Q)) N €X((0, T ; L(2)),
0 < w e C([0, T }; L)) 1 €((0, T |; HE() N EX((0, T )5 LA(2))-

Here, Ty, > 0 is determined by the norm ||Us||x alone. Moreover, the estimate
AU x +IUB]x < Cro, 0 <t < Ty,

holds with some constant Cy, determined by ||Up||x alone.

Proof. By Theorem 2.1, (1.1) possesses a unique local solution U = (u, v, w) in function
space (2.1) with Ty, = T determined by the norm ||Us||x.
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Let us now consider an auxiliary problem

r U ~ -
5 = P65 —1(@)i - fi in 0 x (0,00),
o L .
Engu—hv in Q x (0, 00),

: ow o
29 ai;’ = dAT — B+ ax(ReD) in Q2 x (0,00),

bw
%__0 on 69 x (0, c0),

| 4(z,0) = uo(z), ¥(x,0) = vo(x), w(z,0) = wo(z) in

Here, x(7) is a cutoff function given by

v if 720,
x(®) {0 if 7 <0,
By using the same arguments as in the proof of Theorem 2.1, we can deduce that (2.2)
possesses a unique local solution U= (4,7, ) in the function space (2.1) with Ty, = Toz
determined by the norm ||Ugllx. Our goal is then to show the nonnegativity of 4, v and
@. In this case, x(7) = ¥ and therefore (4, 7, @) is also a local solution of (1.1) in [0, Toe].
Then, by the uniqueness of solutions, we conclude that (u,v, w) = (@, 7, @) in [0, Ty,] with
Ty, = min{To;, Toz}. That means (1.1) possesses a unique nonnegative local solution in
the function space (2.1) with Ty, determined by the norm [|Usl|x- O

In the next part, we shall establish a priori estimates of local solutions, which will
then guarantee the existence of global solutions.

Proposition 2.3. There erist an exponent p > 0 and a constant C > 0 such that the
estimates

(23) U B x < CLe™|Ulix +1}, 0<t<Ty

hold for all local solutions U’s in the function space (2.1) on [0,Ty] with initial value
Upe K.

Proof. Throughout the proof, we shall use notation Ci, Cg,... and universal notation
C, p, ¢ to denote positive constants and positive exponents which are determined by the
constants a, b, ¢, d, f, h, o, B and § and by €. In these, C, p and /' may be change from
occurrence to occurrence.

Step 1. Estimate for ||U(t)]|z2. Multiply the first equation of (1.1) by v and integrate
the product in 2. Then we have

(2.4) 1d uzdar+f/u2dw:,85/wudx—/'y(v)uzdw
2dt Jo o Q 0

vidx + C /

<L
<3 A

wdz — / v(v)u?dz.
Q 0
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Multiply the third equation of (1.1) by w and integrate the product in ). Then,

1d wzdw+,6’/w2dxm—d/le[zdx-{na/vwdeg_/w2d$+6‘2/v2dx.
2dt Jg o Q Q 2 Ja 0

Let Cs > 0 be constant such that C1C3 < £. Multiply (2.4) by C3 and add the product
to above inequality. Then we obtain that

d 1d 2 Caf/ 2 /3/ 2
(2.5) thf d:c+2dt wdz + 5 Qud$+4 deas

<Cs / v’dz — C3 / y(v)utdz.
Q Q
Next, multiply the second equation of (1.1) by v and integrate the product in {2. Then,

1d 2 9 /
— d = .
5d Qv x-l—h/nvd:r, f qudx

Let C; > 0 be constant such that Csh > 2C5. Multiply above equation by Cy and add
the product to the inequality (2.5) to obtain

C3 2 Od 1d 9 C3f 2 2
th/ d+2dt/ dx+2§-/‘ dsc+--§——/nuda:+02/0'vd$

-i-é/wzdx504f/uvd$—03/7(v)uzdw.
4 Jo Q Q

We have notice that

2 £2
Cafuw — Cor(w? = —{Coalv — bu* — Cuffo — Bu+ )
3
C? f2p2 C2f% 1 2 f2
—_ 2 _ 4 4 il 4 v
{Cseu® — Cyfbu + 4Cae }+ ic (a )__ ( + )

Therefore,

d 2 2 2 2 2 2

p g(C’gu + Cy* +w)dz + p Q(Cgu + Cyv* + w?)dz < C.
Solving this, we conclude that

Callu®liEz + Callo®)IZz + lw@®)lF2 < Ce™(Calluollf + Callvollza + llwollZz) + C.

It follows that

(2.6) llu@®lcz + lv@llzz + w2 |
< Cle™(||uollz= + YJvollzee + l|woll ) +1], 0 <t < Ty



15

Step 2. Estimate for Hw(t)u 1. Using the representation by the semigroup, we can

write w(t) in the form
AMw(t) = {A7e= %} e % Fuwe} + ] {A%e S M e~ 4au(r)dr.
Hence,
lw(®)llam < CQ+ e fwollz2 +C fo t{ L+ (8 —7) e 3¢ fu(r) | adr,

here we used the estimate [|e=*}|.2 < e™* for t > 0. Moreover, by (2.6),

t i
/ {1 + (t - T)—’?}e_g(t—‘r)“v(‘r)“L'zd'T S C/ {]_ + (t — T)~n}€—§(t—-r)d7_
0 0
t
" Ce"ﬂ't/ {1+~ 7')ﬂw}ﬁ’(g_"”)(‘t_”’”)fz”(""”’)’ah'||Uo”z,2 < C{e || Uol|r2 + 1},
0

where 0 < p' < min{%, p}. Thus, we have obtained that
lw(®)]ze < Clu@lan < C{L+t e ™|Usllx +1}, 0t <Tu.

Step 9. Estimate for |u(t)||ze, [|v(t)||zeo. From the first equation of (1.1), we have
ut) = e~ Jo 1N Tdsy, 4 g6 / ot HWelsD+fdsgy(r)dr, 0Lt < Ty
Hence, 0
u(®ll= < & ullz +C [ 1D+ M) [ Uallx + L

Therefore, we conclude that
lu@llz= < C{e™|Uollx +1}, 0=t <Tv.
In a similarly way, by the second equation of (1.1),
[v(@®)lize < C{e ™I Uslix +1}, 0=t <Tu.
These together with (2.6) finally yield the desired a priori estimates (2.3).

a

As an immediate consequence of a priori estimates, we can prove the existence and

uniqueness of global solution.
Theorem 2.4. For any Us € K, (1.1) possesses a unique global solution such that
{0 < u,v € ([0, 00); L= (2)) N €H{(0, 00); L=(D)),
0 < w € ([0, 0o); L2(€2)) N C((0, 00); HE () N C1((0, o0); L2(2)).
And global solution satisfies the estimates

(2.7) U@ lx < C{e||Uollx + 1}, 0t <00,
(2.8) lwd)l|z= < C{A+ e |Uollx +1}, 0<t<co.
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Proof. By Theorem 2.2, there exists a unique local solution U on an interval [0, Ty,].
Moreover, by Proposition 2.3, ||U(Tv,)|lx is estimated by ||Uo||x alone. This then shows
that the solution U/ can be extended as a local solution on an interval [0, Ty, + 7], where
7 > 0 is determined by ||U(To)|lx, and hence depends only on ||Upl|x. Repeating this
procedure, we obtain the result. U

The solution satisfies the following integral equations

t
(2.9)  uft) = e Jelrtlslt ey, 4 g5 ] e L)t dry, (s)ds, 0 <t < oo,
. o

¢
(2.10) v(t) = e My + f/ e~ t=hy(s)ds, 0<t< oo,
0
¢
(2.11) w(t) = e g + a] e~ 94y (s5)ds, 0<t< o0
0

In addition, we verify the uniform estimates for the derivative and the second order
derivative of global solutions.

Proposition 2.5. Let U(t) = (u(t), v(t),w(t)) be the global solution to (1.1) withUp € K.
Then for U'(t) = (v (t),v'(t),w'(t)),

(2.12) @)l < @+ (Wollx),  0<t<os
(2.13) [ @~ <pr(IUollx), 0<t<oo
(2.14) @l + @l < @+ )pTolx),  0<t< oo,

where p1(-) is an appropriate continuous increasing function.

Proof. Using (2.7) and (2.8) in the equation on % in (1.1), we immediately observe
(2.12). Similarly, from the equation on v in (1.1) we observe (2.13). We know that
v € C([0,00); L3(2)) N C((0, 00); L3(QY)) with the estimate (2.13). Then, (2.14) is de-
duced by the standard arguments for the linear abstract equation on w in (1.1). O

Proposition 2.6. Let U(t) = (u(t), v(t), w(t)) be the global solution to (1.1) withU € K.
Then for the second order derivative U"(t) = (u"(t),v"(t), w'(t)),

(2.15) ') llo= < 1+ Npa(lUllx),  0<t<oo,
(2.16) '@l < (1 +Em(lUllx),  0<t<oo,
@17 '@l + [ Ol < L+ Dm(Uolx),  0<t< oo

where py(+) is an appropriate continuous increasing function.
Proof. From the second equation in (1.1),
V() = fu'(t) - (1), 0 <t < oo.
Then, v € C*((0, 00); L°(0)) and the estimate (2.16) is seen by (2.12) and (2.13).

With any 7 > 0, we consider the Cauchy problem for a linear ‘evolution equation
%+Aw1=av’(t), T <t < o0,
wi(r) = w(r)
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in L2(Q)), where w' = w!(t) is the unknown function. Since ¢’ is in C}([r, 00); L*(2)),
this problem has a unique solution w' € C'((r, 00); L%(Q2)). By a direct calculation it is
verified that w!(t) = w'(¢) for any ¢ € [, 00). Therefore,

¢
w'(t) = e My (7) + o ] ey (s5)ds, T <t < oo

T

Teking 7 = £, we repeat the same argument as for (2.14) to obtain that
" @]z + 1w’ @O llaz < CA+E)w' (9liz2 +C{p2(llUollx) +p: ([Tollx)}, 0 <2 < oo

Therefore, (2.17) is obtained in view of (2.14).
As a consequence of (2.14) and (2.17), we have

[/ @liz= < Cllw' O)llgzm < A+t p(lollx), 0 <t < oo
Then, (2.15) is observed directly from

W'(t) = B0 () — 7 () Buld) - (Vo) + (D),  0<t<oo.

We next verify the Lipschitz continuity of solution in initial data.

Proposition 2.7. Let U (resp. V) be the solution to (1.1) with initial value Uy €

BY (0, R) (resp. Vo € EX(O, R)). Then, for each T > O fized, there exists some con-
stants Cpr > 0 depending on R and T alone such that

AU QE) - VO Ix +IUE) - V(Bllx < Crrillo—Vollx,  0<t=<T.

3. Dynamical system

As shown in preceding section, for each Uy € K, there exists a unique global solution
U = U(t;Us) to (1.1) and the solution is continuous with respect to the initial value.
Therefore, we can define a semigroup {S(¢)}s>o acting on K by S(t)Us = U(t; Up). Such
that the mapping (t,Us) — S(t)Up is continuous from [0,00) x K into K, where K
is equipped with the distance induced from the universal space X. Hence, we have
constructed a dynamical system (S(¢), K, X) determined from (1.1).

We now verify that (S(t), K, X) admits a bounded absorbing set. Indeed, let R > 0
be any radius and let Uy be in K with [|[Us|x < R. Then, from (2.3) there exists a time
tr such that [U®)|lx < C + 1 for every t > tg, where C is the constant appearing in
(2.3). That is, _

sup  sup [|S(t)Vollx < C + 1.

g€k, t>tg
Uolix <&

This then shows that the set

B={UeK;|Ulx <C+1}
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is a bounded absorbing set of (S(t), K, X). :
Since B itself is absorbed by B, there exists a time ¢tz > 0 such that S(¢)B C B for
every t > tg. We then consider the set

X=|J sews= |J s@®3s.

0<t<oo 0<t<tg

It is clean that X is an absorbing and invariant bounded set of K. By Theorem 2.2 we

then verify that _
[ASHUs|| < Cst™?, 0<t<Ty UpeX

with a sufficiently small time T5 > 0 and a constant C'y, > 0. In view of such a smoothing
effect, we introduce the set

X =38(TyX cX.

Tt is easy to see that this set is also an absorbing and invariant set. In addition, X C D(A)
with the estimate

|AU|| = |AS(Tx)Uo]l < C5T5Y, U=8(TploeX, UpeX.
We have thus verified the following result.

Theorem 3.1. The dynamical system (S(t), K, X) determined from the problem (1.1)
can be reduced to a dynamical system (S(t), X, X) in which the phase space is a bounded
set of D(A).

Since X is a bounded set of D{A4), it is meaningful to replace the universal space X by
Xg = D(A?) with any exponent 0 < # < 1 and consider a dynamical system (S(z), X, Xs),
where X is now a metric space with the distance do(U, V) = ||A%(U — V)|

Corollary 3.2. For each 0 <0 < 1, (S(t),X, Xo) is a dynamical system.

Proof. By the moment inequality (cf. [17]) and the boundedness of X in D(A4), it follows
that

1AW = V)| S CIAU = W)°IIU = VI'? < CollU = V™%, U,V eX

with some constant Cx. This shows that the mapping (¢, U) + S(¢)U is continuous from
[0, 00) X X into Xp. O

4. Lyapunov function

In this section we shall construct a Lyapunov function ¥(U) for the dynamical system
(S(t), K, X) and shall establish some results concerning the asymptotic behavior of tra-
jectories S(t)Uy’s.

Let Up € K and let S@)Us = U(t) = (u(t),v(t),w(t)) for 0 < ¢t < oo. Set p(t) =
Ju(t)—ho(t), 0 < t < co. From the first and second equations of (1.1) it is easily observed
that ’

Op

o = fPo0w—{v(v) + f +hYe — h{r(v)v + fo}, 0 <t <o



19

Multiply this by ¢(t) = & and integrate the product in {2. Then,

l1d

(4.1 53 /. 2d:v+h—ff(v)dx fﬂd/——-wd&:— /Q{*y(v)+f+h} (%)zdx,

where I'(v) = [ {~(v)v+ fv}dv.
While, multiplying the third equation of (1.1) by 2% and integrating the product in

2, we obtain that

0 2L [1vupir s 82 [utio—a [oBar—— [ ()

These two energy equalities (4.1) and (4.2) then provide that

(4.3) % f [gsaz + %ﬁélvwﬁ + hal'(v) + f—@wz - (faﬁa)vw} dx
Q

:_/ [a{7(0)+f+h} (8@) +f55(%)2}dx50, 0<t< .

Note that
% (fu— by + LVl + hal () + 1 1022 — (fapoyow> €
with some constant C' 1ndependent of U. This shows that the functional
(4.4) ¥(U)= /Q [g—(fu — hv)? + @IVMZ + hal'(v)
+ f—gzéwz - (fa,@d)v'w} dz, Ue D(A%)

is a Lyapunov function for the present dynamical system (S ), K, X).

From these arguments we obtain the following energy estimates.

Theorem 4.1. For any trajectory S(t)Up = U(t), we have

dt < 0.

) “—(t

Proof. Integrate both the sides of (4.3) in £ on an interval {1, T]. Then,
f f (a{y(0) + £ + 1} (at) + £86 ( Bt) | dods
/ [_ (1% + &5 5] w(1)]? + hal (v(1)) + f ﬁ —w(1)* + fopdv(T)w(T )]

Due to (2.7) and (2.8),

(4.6) /100/9 [a{fy(v) + f+ h} (%;)2 + f36 (%f—)z]dxdt < 0o.
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Differentiating both the sides of the first equations of (1.1), we have

u Sw Su v
= —_ —— —b)— i .
T 8é y () + ) i 2au(v b)at’ 0<t<oo

Multiply this by * and integrate the product in {2. Then,

%%L(%?)dezfn(ﬂ&%—f——Qau(v—b)%) ———dx——/(’y(v)—Ff (Bt)z
< Cp(lUsllx) /Q { (%) + (‘a?) Yo L /Q (5;) .

Integrating both the sides in ¢, we obtain that

f/lT/n (%)zdxdtﬁfg(%(1))2@:+Cp(HUon)/1T/Q{ (%’): (%%)z}dmt.

Therefore, in view of (4.6), we conclude that

* u\ 2
/1 /{;(E> dzdt < 0.

This together with (4.6) then yields the desired estimate (4.5). o

Theorem 4.2. For any trajectory S(t)lUp = U(t), as t — oo, the derivative 4L(t) tends
“to 0 in the L? topology.

Proof. We prove the assertion of theorem by contradiction. Suppose that 2% £ (1) mlght not
converge to 0 in L%(2) as t — oo. Then there would exist a number ¢ > 0 and a time
sequence {t,} tending to oo such that

.l-—(t > &, n=123,..

In the meantime, by Propositions 2.5 and 2.6, we have
d ||dU g dzU() dU(t)
dt || dt N de2 * dt
with some constant M. Consequently, by the mean-value theorem,

1% 2

This is a contradiction to the fact that |47 (¢)]|2, is integrable in (1, 00), i.e., (4.5). O

=M, 1st<os

> M@t —tat5), ta—35 St< iy,
— Mt —ta—5), t<t<t.t+
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5. w-limit sets

In this section, we shall introduce three types of w-limit sets, namely, w(Us), L*-w(Us)
and w*-w(lp), and shall investigate their relations.
As well known, the (usual) w-limit set of S(¢)Up, Us € K, is defined by

w(lh) = ﬂ {8(m)Up; t < 7 < 0} (closure in the topology of X),
£20

namely, U € w(U) if and only if there exists a time sequence {¢,} tending to oo such
that S(t,)Us — U in the topology of X. There is some numerical simulation (see [6])
suggests that there exists a trajectory which starts from a continuous initial functions
Uo = (uo(z), vo(x), wo(z)) € K but, as t — oo, converges to a discontinuous stationary
solution U = (@(z), o(z),w(x)). If this phenomenon is true, then any sequence S(¢.)Us
cannot converge to U in the topology of X, namely, it is possible that w(Up) = 0.

We define the L? topology of X as follows. A sequence {(un, Un,wn)} in X is said to
be L? convergent to {ug, vo, wo) € X as n — oo, if

U, — Ug  strongly in L%(Q),
v, — vy  strongly in L3(Q),
wp, — wo  strongly in L2(€2).

Then, using this topology we define the L%-w-limit set of S(t)Us, Us € K, by

L2w(U) = ﬂ {S(r)Usp; t < 7 < 00} (closure in the L? topology of X}.

t>0

In addition, we may equip X with the weak® topology. A sequence {(un,Vn, wy)} in
X is said to be weak* convergent to (uo, vo, wp) € X as n — oo, if
Uy — Ug weak* in L>®(02),
Uy, — Vg weak* in L°(Q),

w, — wo  strongly in L*(£2).

Using this topology, we define the w*-w-limit set of S(t)Us, Up € K, by

w*-w(lp) = ﬂ {S(T)Uy; t <7 < co} (closure in the weak® topology of X).

£20
Theorem 5.1. For each Uy € K, w*-w(U) is a nonempty set.

Proof. Let Uy € K and U(t) = S(t)Up. Since B is an absorbing set of (S@), K, X), it
follows that there exists a sequence of time ¢, — oo such that S(t,)Us € B. Therefore,
{u(t,)} is a bounded sequence in L®(Q?). By Banach-Alaoglu’s theorem, we can take a
subsequence {u(t)} of {u(t,)} such that u(t,y) — % weak* in L>(Q2). Similarly, from the
bounded sequence {v(t,)}, we have a subsequence {v(t.»)} such that v(tp) — T weak™®
in L®(Q). Finally, by the boundedness of sequence {w(tnr)} in H (Q)), there exists a
subsequence {w(tyn)} such that w(t,m) — W strongly in L#(Q). Then, by the definition,
we deduce that (@, 7, W) belongs to w*-w(Uo). .
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In general we observe the following relations.
Theorem 5.2. For each Uy € K, w(lUp) C L2w(Up) C w*-w(Up).

Proof. The first relation w(Us) C L%-w(Uy) is obvious by the definition.

Let U = (%,7,w) € L*w(Up). Then, there exists a sequence {t,} tending to co such
that S(t,)Uo = (u(ta), v(tn), w(t,)) — U in the L? topology of X. Let ¢ € L'(Q). For
any f € L*(Q),

| elutn) ~mas

Since L2(Q2) is dense in L*(£2) and since (2.7) is valid, we verify that, as £, — oo,

<l — Fllo u(ta) — ullz= +

[ﬂﬂm—mm
Q

~3 Q.

/g;go{u(tn) ~ uydz

Hence, u(t,) — @ in the weak* topology of L*(f). Due to (2.7), it is the same for the
weak* convergence of v(t,) to T. Thus we have U € w*-w(lU). O

We do not know whether the converse relation w*-w(ly) C L?*-w(Up) is true in general
or not. We can however prove some weak result.

Theorem 5.3. For Uy € K, let there erist a sequence {t,} tending to oo such that
Sta)Uo = (u(tn), v(tn), w(t,)) converges to a triplet of functions U = (w,v,w) € X
almost everywhere in 2. Then, U € L*~w(Us).

Proof. By virtue of (2.7) and (2.8), the almost everywhere convergence implies L? con-
vergence for each sequence of u(t,), v(t,) and w(t,). Hence, U € L?*w(Up). o

The rest of this section is devoted to proving some structural results for the w-limit
sets under specific conditions assumed to hold for the coefficients of equations in (1.1).

Theorem 5.4. Assume that h > ‘c%s. Then, w(Us) = L?w(Us) = w*w(Up) = {(0,0,0)}
Jor every Uy € K.

Proof. Let U = (uo, vo,wo) € K and let S(t)Uy = (u(t), v(t), w(t)) be the global solution.
Multiply the first equation of (1.1) by 2(c + f)u and integrate the product in Q. Then,

(6.1) (e+ f)% /rzUde+2(C+f)2fg)Ude_ 2(c+f),6<5/ﬂwudx
= —2a(c + f)/(v — b)%utdr <0, 0<t<oo.
Q

Similarly, multiply the second equation of (1.1) by g(g—?i)a_é

v and integrate the product in
Q. Then, :

(c+ flad d »
(5.2) @ fn vPdz + 2(ad)? /Q vidz — 2(c+ f)as /ﬂ wvdx
+ 2(c+ flad (h _ fas

S 2dz = t .
7 c—i«f)fhvdw 0, 0<i<oo
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Multiply the third equation of (1.1) by 238%w and integrate the product in 2. Then,

d
(5.3) ’6‘52&? f w?dz + 2(86)? / w?dr — 2038* / vwdz
Q Q Q
= —2dﬂ52/ [Vwl?dz <0, 0<t<oo.
Q

Summing up (5.1), (5.2) and (5.3), we obtain that

d o’
dt /,, ((c + ut + (itfu"’z + ﬂ52w2)dx +2 /ﬂ {({c+ FHu)? + (abv)? + (Bow)?}da

- 2/{(c + fluadv + advféw + Béwlc+ flu}dz + 3/ evidr <0,
Q o

where & = 3-{%)3‘5 (h — %) > (. We here notice that

2{((c+ fHu)® + (adv)® + (Béw)? — (c + fluadv — advfow — Bow(c+ flu} + 3ev”

2
= {%ﬁ — 2(c + fluadv + (a?6% + E)’Uz}
| + {(042(52 + £)v® — 2advféw + (Zi—?——?(i?iwz} + {Béw — (c + f)u}2
+f)? 2 8)?
+ef ((;52 +)5“2 o az(aﬁzzrswz}‘

Therefore, with an appropriate exponent p > 0 and appropriate constants C; > 0,1 =
1,23

d
pr / (Cyu? + Cov® + Csw?)dz + p/ (Cru? + Cpv* + Csw?)dzx < 0.
Q Q
We thus conclude that

Crllu(t)lf32 + Callv(®)li22 + Csllw(B)lzs
< e P (Chlluol|Za + Callvoll2e + Callwoli?2), 0<t<o0.

As a result, as t — 00, S(t)Up converges to (0,0, 0) in the L? topology. More strongly,
since [[w(®)|lze < Cellw®lges < Celw@®|S 2 Hlw®)[ "/, we deduce from the L*
convergence of w(t) that in the L® topology (due to (2.14)). Furthermore, from the
formula (2.9) and (2.10), this implies convergence of u(t) and v(t) to 0 in the L™ topology.
In this way, we ultimately conclude that, as t — oo, S(t)Up converges to (0,0,0) in the
L topology. From this the assertion of theorem follows immediately. O

Theorem 5.5. Assume that ab? < 3(c + f). Then, [*w(lUo) = w*w(Uo) for every
Uye K.

Proof. Let S(t)Us = U(t) = (u(t),v(t), w(t)). Consider any time sequence {t,} which
tends to 0o as 7 — 00, By (2.7), ||w(ta)||a2 is a bounded sequence; so, we can choose a
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subsequence {t,;} for which {w(t.)} is convergent to W in H*¥(2) and hence in L*(£2).
From the first and second equations of (1.1) it is easily observed that

(ot + £ Yo} = £ { B5000) = G ) - LD S}

Here, we introduce the cubic function
P(v) = (v(v) + f)v = av® — 2abv® + (ab® + ¢ + f)v, —00 < v < 00.

It is easy to see the following property.

Lemma 5.6. When ab? < 3(c+ f), w = P{v) is a monotone increasing function for
v € (—o0, 00). Its inverse function P~*(w) is a single-valued smooth function for w with
uniformly bounded derivative in the whole real azis w € (—o0, 00).

Proof of lemma. Obviously we have

2\?  ab?—3
P’(’U)=3a’uz—-4ab‘v—}—(abz—i—c—{—f)=3a<v_%_) ‘"__a 3(C+f)>0'
Therefore, the assertion of lemma is clear. 0

Using P~'{w), we can write

olew) = P (L] B50ltn) - Sty - LD B0 ) L),

Since w(ty) — W in L=(Q) and since Theorem 4.2 is true, we conclude that v(t)
converges to T = P~}(L{2%) in L*(§)). Since Theorem 4.2 provides in particular that,
as t — 0o, fu(t) — hv(t) — 0 in L?(§2), we conclude also that u(t,) converges to —}i)‘ in
L?*(€2). Thus we have shown that (u(tw), v(ty), w(ty)) — (@, 7, w) in L2(Q).

We now know that any sequence (u(t,), v(¢,), w(t,)) has a subsequence which con-
verges to some vector of X in the L? topology. Hence, the relation w*-w(lUs) C L2-w(Us)
is proved, cf., Proof of Theorem 5.2, O

6. Constituents of L? w-limit sets

In this the section, we shall show that every L? w-limit set consists of stationary solutions
of (2.1). For this end, we begin with verifying the following Proposition.

Proposition 6.1. For each Uy € K, L2w(Uy) is an invariant set of S(t), i.e.,

S(1) (Lz-w(Uo)) c 2wly), t>0.
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Proof. In the proof of this proposition, it is essential to show that S(t) is continuous from
K into itself in the L? topology.

To see this, consider two initial values Uy; = (ug1, Vo1, wo1) and Upz = (o2, Yoz, woz) in
K, and let (ui(t), vi(t), w1(t)) and (ua(t), v2(t), wo(t)) be the solutions to (2.1) with the
initial value Uy and Upg, respectively. Let T' > 0 be arbitrarily fixed time, and let ¢ varies
in the bounded interval [0, T'.

Then, from (2.9),

w(t) = e~ Jolrtw) sy, o 36 /t e ff'{"’(”")""f}dswi(’r)dv’, i=1, 2.
0
Consequently,
us(t) — w(t) = e~ fg‘{w(mw}ds(e-fg{v(vz)w(m}ds — 1) ugy
+e fcf{'v(vz)+f}d~s(uO2 — ugy) + 36 / ‘ e~ f,‘{w(vsz}ds(wz(,,) — un(7))dr
0
\ 65 f e Ly (= L0 _ 1) (7).
g
In view of (2.7) and (2.8), we obtain that
[ua(t) — ui (D22 < lluoz — vorl|z2
+ Op(lUoix + Vaafx){ [}~ Bm—reanss | o | uwalr) - wn (s
+ [0 t He*ff{'v(v?)—v(”ﬂ}ds - 1HL2 1+ T_")d‘r}, 0<t<T

For any R > 0, there exists a constant Cr > 0 such that |ef — 1| < Cg|é] holds for all
|€] € R. Using this estimate, we verify that

t
ettt 3| < Cp(||Ullx + [|Uozllx) f loa(7) — v (7) | odhr
o
Similarly,

T—(1+5)/2d7.

/ t |- stere=stenes
0 L

< Cp(|lUnllx + [Unzlix) fot /;t [[va(s) — v1(s)llgar =)/ ?dsdr
< Cp([IlUn |l x + [[Uo2llx) /0'3 llva(s) — v1(s)|| 2 ds.

Hence,
(6.1) flug(®) — uwi(®)|lze < |tz — ua |2

+ Cp([[Uanlx + [|Ueallx) /Ot{liw(f) — (1) +llwelr) ~wr(T)llp2}dr,  OSt<T.
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In a similar way, from (2.10) it follows that
(6.2)  |lv2(t) — vi®)llz> < flvoz — voullz2 + C/Ot fluz(m) —wa(7)]|g2dr,  O0<ELZT.
Finally, from (2.11) we have
| wa(t) — wi () = e *woy — wor) + @ / t e~ ,(7) — vy (1) }dr.

0

Therefore,
¢
(6.3)  |lwa(t) —wn(t)|re < llwoz — worllze + a/ lva(r) — v1(7)]| L2dr, 0<tLT.
0
Summing up (6.1), (6.2) and (6.3) and using Gronwall’s inequality, we conclude that

luz(t) — wa(B)lz2 -+ llva(t) — o2 ()22 + llwe(t) — wi (B)]] 2
< U2 — Um”LQCCP(HU013|x+|on2Hx)t’ 0<t<T.

This shows that, for 0 < ¢ < T, the semigroup S(#) is continuous in the L? topology. But,
as T > 0 is arbitrary, it is the same for any 0 < ¢ < 0.

It is now immediate to prove the assertion of theorem. Let U € L2-w(Up). By definition
there exists a sequence ¢, tending to oo such that S(t,)Uy — U in the L? topology. By
the L? continuity proved above, we have S(t, + t)Uy = S(t)S{t.)Up — SE)U in L2
Therefore, S(t)U € L%w(Up). O

Theorem 6.2. For any Uy € K, L?-w(Up) consists of equilibria of the dynamical system.
Proof. Let U = (u,0,w) € L*w(lUy). There exists a sequence ¢, — oo such that
Sta)Uo = U(t,) — U in the L? topology. Since w(t,) is a bounded sequence in H2((Q2),
we can take a subsequence {w(t"’)} of {w(t,)} such that w(ty) — W' strongly in H'(Q).
It is then easy to see that @ — w'. Meanwhile, in view of (2.7), u(tn) — G and v(t,) = 7.
in any LP topology with ﬁmte p such that 2 < p < o0.

By these facts we conclude that the Lyapunov function ¥(U(t,/)) given by (4.4) is
convergent to ¥(U) as ¢y — oco. That is,

P(U)= lim ¢(U(ty)) = inf T(SH)) =V
n/—0 0<i<oo
This means that ¥(U) = ¥y for all U’s of vectors in L2-w(Up). By Proposition 6.1,
S()U € L?-w(Uy) for every ¢t > 0. Hence,
FSHU)=0,, O<t<oo, UeL*w(ly).
Furthermore, let St)U = U(t) = (@(t), 5(t), @(t)); then, by (4.3), we have
]

di‘['(mt))z‘f[a{v(v)+f+h}(8) +fﬂ5(8—w)2]da:zo, 0<t< oo.

Hence, 22(t) = 22(t) = 0 for 0 < ¢ < co. In addition, from the second equation of (2.1),
it follows that fa(t) = ho(t); hence, Z(¢) = 0 for 0 < t < co. Thus it has been shown
that S(¢)U = U for every 0 < t < o0, namely, U must be an equilibrium. . O
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