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Abstract

This paper deals with the solvability of a system of linear operator equations in
the linear space. In particular, we provide necessary and sufficient conditions under
which certain kinds of differential and difference equations are solvable.

1. Introduction

Let G be a semigroup of commuting linear operators on a linear space S. The solvability
of a system of equations L;f = ¢; ; ¢ = 1,...,r (1), where [; € G, ¢; € S, was considered
by Dahmen and Miccheli (in [1], On multivariate E-splines, Adv. Math, 76, 1989). In
theirs studies, the compability conditions Li¢; = Li@;; ¢ # j (2) are neccessary for the
system (1) to have a solution in S. However, in general, they do not provide sufficient
conditions. In [4] (Solvability of systems of linear operator equations, Proc. of AMS, 120,
1994), R. Q. Jia, S. Riemenschneider and Z. Shen gave some kinds of conditions on the
operators [; so that the compability conditions guarantee sufficiently for solvability of (1).
In this report, we give some another conditions on operators [; so that the compability
condition will be sufficient for this. Actualy, we give some generalizations for the results
of [4].

2. Solvability of a system of linear operator equations

Let X be a linear space on a field F. The operator D € L(X) is called right invertible if
there is an operator R € Lg(X) satisfies RX C dom D and DR = I. We call R a right
inverse of D and denote by R(X) the set of all right invertible operators. The set of all
right inverses of D € R(X) is denoted by Rp.

The operator L € L(X) is called left invertible if there is an operator L* € L(X) such
that LX C dom L* and L*L =I. . o
We call L* a left inverse of L and denote by L(X) the set of all left invertible operators.
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The set of all left inverses of L € L(X) is denoted by Lj.

The operator A € L(X) is called generalized invertible if there exists an operator
B € L{X) so that In A C dom A, Im B C dom A and ABA = A on dom A. '
We call B a generalized inverse of A and denote by W(X) the set of all generalized
invertible operators. The set of all generalized inverses of A is denoted by Wy.

Definition 2.1. (/8/) Let G be a semigroup of commuting operators on a linear space S
with the group operation of position. We say that G possesses s—dimensional additivity
if for any s+ 1 elemens I, 1,15,...,1, € G,

dim(ker(Lil;, 1z, - . ., 1)) = dim(ker(ly, 1z, .. . , 1)) + dim(ker(ly, I, . . . , k)),
where ker(ly,..., L) :={f € $,5f=0,j=1,...,s}.

Definition 2.2. ([8]) Let M be a subspace of S. An element | € G is said to be nilpotent
on M if for any ¢ € M, there ezists a positive integer m such that I™¢ =0 (m may depend
on ¢). We say that M is compatible with G if the following conditions are satisfied:

1. M is invariant under G, i.e., for any | € G, (M) C M.

2. For anyl € G,l|a is either invertible or nilpotent.

Theorem 2.1 ([4] by R. Q. Jia, S. Riemenschneider, Z. Shen). Let G be a semi-
group of commuting operators on a linear space S, and let ly,. .. 1, be elements in G.
Assume that one of them, say ly, is invertible on S. Then for given ¢1,...,¢, in S, the
system of equations

Lf=di i=1,...,7, ‘ (2.1)
has a solution in S if and only if the following compatibility conditions hold
lj¢k = lkgﬁj, 1<j<k<g. (2.2)

We can state another theorem that is equivalent Theorem 2.1

Theorem 2.2. Let G be a semigroup of commuting operators on a linear space S, and
let ly,...,1. be elements in G. Assume that one of the operators L, Ll L, o Ll
is invertible on S for the i = 1,2,...,7. Then for given ¢1,...,¢. in S, the system of
equations :
l.?f:¢]1 j=1,...,7',
has a solution in S if and only if the following compatibility conditions hold
Lidr = L, 1<j<kxgr

Theorem 2.3. Let G be a semigroup of commuting operators on a linear space S, and let
li,...,l. € G. Suppose that there ezist 0,0, . .. ,ar € F so thatl = alitagly+- - a.l, €
G is invertible on S. If the following compatibility conditions hold

lj¢k = lk¢j1 1 gj <k< Ty (23)
for given ¢q,...,¢r in S, then the system of equations
.ljfzqu;j:la“'ar? ‘ ‘ | (24)

has a solution in S.
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Proof. System (2.4) is equivalent the system

rl.lf =¢
Lf =

P (2.5)
If =zi¢1+--+z:¢r

L =¢r
Since !/ is invertible on S and l;éy = l¢;, 1 < j < k < r, we obtain

(x4 -+ + 200y) = Iy (2.6)
Thus, the compability conditions is satisfied, the proof is complete. 0

Example 2.1. Let S be a linear space of all polynomials (it can be n variables z,y, ... , z),
theirs degrees are not exceeded n. Consider two operators determined in S as follows

l] =1I- sz s

lz = :UDa; .
Note that Iy, 13 is not invertible, because of li{(z) = 0,l2(c) = 0. Obviously, LIz = lol; =
zD — zDzD — z2D?. Althought 14, l; are not invertible, but [ = l; + l; is invertible on S,

provided | = I. So in this case, the assumption of Theorem 2.1 is not satisfied, but the
assumption of Theorem 2.3 is.

Theorem 2.4. Let G be a semigroup of commuting operators on a linear space S, and

let ly,...,l. be elements in G. Assume that one of them, say ly, is generalized invertible
on S. Then for given ¢1,...,¢r in S, the system of equations
Lf=d57=1,...,m (2.7

has a solution in S if and only if the following conditions hold: YI* € W,,, there exists
z € kerly such that

(I =L =0, ¢ =L(l"1 +2), Vi=2,...7. (2.8)

Proof. 1. Necessity. Suppose that the system (2.7) has a solution f € S. From l; f = ¢,
it implies ¢; € Im/;. There exist fg € S such that

o1 =Ulfo. (2.9)
We then have
¢1 =Ll fo= ULy, forl* eW,. (2.10)

Then, (I — 44i*)¢1 = 0. Hence, ljf = lil*¢; ie. L(f — I*¢1) = 0. So we receive
f—1'¢1 =z for any z € kerly, i.e. f=1"¢; + 2. Thus,

¢ =L(lF'¢1+2), 1<ig<r
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2. Sufficiency: If (I — l11*)¢y = 0 then ¢y = L1*¢y. Clearly, f = I"¢; + z is a solution
of (2.7). :
O

Two immediate consequences of Theorem 2.4 as follows

Corollary 1. Let G be a semigruop of commuting operators on a linear space S, and let
li,..., 1 be elements in G. Suppose that one of them, say l,, is right invertible on S. Then
for given ¢1,...,¢, in S, the system of equations

ijzgéj; j:]-)-"ar7

has a solution in S if and only if the féllowing conditions hold: For any R € Ry, there
exists z € kerly such that

¢i=L{(Rpr+2)Vi=2,...1.

Corollary 2. Let G be a semigroup of comfnutz'ng operators on a linear space S, and let
li,..., I be elements in G. Suppose that one of them, say Iy, is left invertible on S. Then
for given ¢y, ..., ¢, in S, the system of equations

ljf:¢33 .7 :17"'17':
has a solution in S if only if the following conditions hold
(I—ULl*)$1=0, ¢ps=Ul"py, " €Ly, i =2,...7.

Comment 1. If the operators I; in Theorem 2.4, in Corallary 1 as well in Corollary
2 are invertible, then the conditions stated there turn out the compability conditions of
Theorem 2.1. So, at the present we also call all of them compability conditions.

Now we recall another theorem

Theorem 2.5 ([4], R. Q. Jia, S. Riemenschneider, Z. Shen). Let G be a semigroup
of commuting operators on a linear space S which possesses s— dimentional additivity.
Suppose that S is a direct sum of two subspace M and N which are invariant under G.
Moreover, assume that ly,ly,...,l; € G are nilpotent on M and they have the property
dim(ker(ly,ly,...,k)) < oo. Letr € {1,2,...,s}. Then for given ¢1,...,¢r € M, the
system of equations

ljfquj; J=1..,7

_ has a solution in M if and only if the following compatibility conditions hold
Ligp =i, 1<j<ksT
Here are our generalizations:

Theorem 2.6. Let G be a ring (under the addition and coposition) of commuting op-
erators on a linear space S which possesses s—dimentional additivity. Suppose that S
is a direct sum of two subspace s M and N which are invariant under G. Assume
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that Ul +l2,..., i + I+ --- + I, € G are nilpotent on M and they have the prop-
erty dim(ker(ly,lz,...,L)) < oco. Letr € {1,...,s}. Then for given ¢1,...,¢r € M, the
system of equations

ljf:(ﬁj, j:-l,...,?', (211)
has a solution in M if and only if the following compatibility conditions hold
lj¢k = tk¢j, 1<ji<k<gr (212)

Proof. Obviously, (2.11) is equivalently to the following system

hf =P
'(ll +h)f : ¢1+¢2 (2.13)

(it tb)f =it +¢r

! j ! j
Put [; = Elii by = 2(;5,‘ , {1 <4< r). Then (2.13) becomes
i= o=

Lf =4
l! — )
.2f ' ¢2 (2. 14)
Lf =4
We prove the system (2.14) sastisfies the assumption of Theorem 2.5. We have
i k ik
=D kD ¢m=D D litm
i=1 m=1 i=1 m=1 .
. PR
=) D lmbi=bhe;, 1<i<k<r
t=1 m=1
Thus, the system (2.14) has a solution in S. This means that (2.11) also has solution in
S. O

Comment 2. From the nilpotence of I, Iy, . . . I it follows that the operator Iy + Iy +- -1,
is so. However, the operators ly = I + D,,l; = —1I are not nilpotent, but l; + Iz = D, is
nilpotent. So the assumption of Theorem 2.6 is more weakly than what of Theorem 2.5.

Theorem 2.7. Let G be a semigroup of commuting operators on a linear space S which
possesses s—dimentional additivity. Suppose that S is a direct sum of two subspaces M and
N which are invariant under G. Moreover, assume that Ili,lp,...l1; € G,
dim(ker(ly,lp,...,L)) < oo and satisfy: for any g € M and for any pair of operators
(1) A < i< j < s) there exist my,m; € N such that I/“[]7g = 0. Taker € {1,...,s}.
For given ¢y,...,¢, € M, the following compatibility conditions hold

Lide=Ud;, 1<j<ksr (2.15)
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Then, the system

Lf=¢; 7=1,...,r, (2.16)
has a solution in M. |
Proof. By induction on .
Step 1. We consider the special case when r =5, ¢g =+ = ¢; = 0. We have
é1 € ker (I, ..., 1s). (2.17)

There exists my, ms € N* such that

Mgy = 0. (2.18)

Put H = ker(I152,1,,...,L) .
By (2.17) and (2.18), we obtain

preH . (2.19)
Write
H:=ker(E"V52 L, ...,L),
H" : =%er(ly,la,...,1L) .

It is easy to see that H'CH CH.
We prove I;(H) C H'. For some z € H we have.

Mty =0
l =0
| (2.20)
lyx =0.
Then
iy (hz) =0
lg(lliﬂ) =0

It implies lyz € H'. Hence, l;(H) C H'. We prove ker (I; |g) = H' Suppose that « €
ker (I |g), ie. = € H and li{z) = 0. It is easy to see z € H'. Ifz e H C H,
then I;(z) = 0. Hence, I, maps H to H' and its kernel is exactly H' . By assumption

dim H < oo, we obtain
dimH = dimH" + diml, (H). (2.21)
Provided G possesses s—dimensional additivity‘ semigroup, then

dimH = dimH” + dimH . , (2.22)
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We then have , )
dimll(H):dimH or ll(H)ZH _
Hence, I, maps H onto H'. Because of ¢; € H ' there exists f € H so that
LWi=¢1.
It is clearly [;f =0, Vj=2,...,s. Put f =fi+ fa, i € M, fo € N. Then
hh=¢, Lfi=0, Vi=2,...,s.

Thus, fi € M is a solution of system (2.15).
Step 2. The case r = 1: The system (2.15) becomes

l1f =¢,

then [; is nilpotent on M. In this case, it turn out the case of Theorem 2.6.
Step 3. Assume that for any 7 > 1, there exists fi € M so that

Lfi=d¢;, Yi=1,...,7r—1. (2.23)
We prove that the system
Lf=¢i, Yi=1,...,r (2.24)
has a solution in M. Write g = I, f;, then g € M. We obtain
Lg =Ll fi) =L(LAH) =L =L, Vi=1,...,m
1t follows
Li{¢r —g)=0, Vi=1,...,r—1. (2.25)

On the other hand, ¢, — g € M so for any j € {r +1,...,s} there exists my; , m; € N*
such that

B9 —g) =0, Vi=r+1,..,s. , (2.26)
Cousider the following system

L;h =0, i=1,...,r—1
I.h =¢.—g (2.27)
UYL =0, j=r+1,...,s

In this case, this system turns out the case os Step 1. So the system (2.27) has solution
he M. Put f = fi + h. We have

Lf=Lfitlh=¢;, i=1,...,7—1,
lrf:lrf1+lrh=g+¢,—g:¢,_

Hence, f is a solution of system (2.15). 4 O
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Corollary 3. Let G be a semigroup of commuting operators on a linear space S which
possesses s—dimentional additivity. Suppose that S is a direct sum of two subspaces

M and N which are invariant under G. Moreover, assume that ly,lp,...,ls € G,
dim(ker(l3,1p,...,L)) < oo and satify: for k € {1,...,s} fized, g € M and for any
pair of opetators l; ..., L) (1 <4 < -+ iy < 8) there exist myy, ..., my, € N such that

L % g =0.

21 £

Letr € {1,...,s}. For given ¢1,...,¢ € M, the following compatibility conditions hold
lj¢k:lk¢j, 1$j<k<'[‘.

Then, the system

ljf:¢j; jzli--','r)
has a solution in M.
Theorem 2.8. Let G be a semigroup of commuting operators on a linear space S which
possesses s—dimentional additivity. Suppose that S is a direct sum of two subspaces M and
N which are invariant under G. Moreover, assume that li,la,...,ls € G,

dim(ker(ly, 1y, ...,L)) < oo and that they are all idempotency on M, i.e., for some g € M
and for any l; (i € {1,...,8}) there exists m; € N such that

g =lg.

Toker € {1,...,s}. For given ¢1,...,¢, € M, the following compatibility conditions hold

Ligr =lo;, 1<j<k<T (2.28)
Then, the system
LI=¢5 §=1,....1, (2.29)
-has a solution in M.
Proof. By induction on r .
Step 1. We consider the case when r =35, ¢ = -+ =¢; =0. We have
¢y € ker (ly, . .., 1y)- (2.30)

There exists m; € N* such that
l{nl ¢1 = L.

Equivalently,
(l’;nl _ zl)ﬁbl =Q. (2.31)

So we have

hreH , (2.32)
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where
H =ker(I™ —ly,la,...,1).

Put

H:=ker (It —12,1y,...,1),

H' :=ker(l,lz,...,1).

It is clearly that H C H C H. We prove L(H) C H'. For any = € H we have

lf‘l“lfm =0
1266' =0
lyz = Q.
Equivalently,
(I —)(he) =0
lg(llm) =0
ls(llm) = 0

Since, lyz € H'. Now, we prove ker (I; |g) = H'. Indeed, if z € H and [z = 0 then
z € H". Hence, ker (h |l) = H".
By the assumption dim H< oo we then have

dimH = dimH" + diml; (H).
By the s—dimensional additivity of G, we obtain
dimH = dimH" + dimH'.
From (48) and (49) it together implies
diml; (H) = dimH .

Moreover,
LWH)CH and dimH < oo.

So
LW(H)=H'. (2.33)
Hence, {; maps H onto H'. Since (2.32) and (2.33), there exists f € H so that

llfmél ,and
ljf:(), Vj=2,...,8.
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Put f = f; + f2, where f; € M , fy € N. By the assumption that M, N are invariant
under G, we have

l —
i =, (2.34)
ljf] =0, V} =2,...,S .
Hence, f is a solution of the system (2.29) in the case whenr =35, ¢ =+ =¢; =0.
Step 2: The case r = 1. (2.29) becomes
Lf=¢1.

There exists m; € N* such that
¢ = Ligs.

It follows
¢1 € H17
where
H, :=ker (i7" — 1) .
Write |

Hy:=ker (I - 1),
H, : =%ker (Iy).
Applying the method in Step!, we obtain
L(Hy) = H, endker(l|m)=H,. (2.35)
Since ¢, € Hy and (2.35) there exists f € H; such that

Lf=¢1.

Put f = fi + fa, where fy € M ,f; € N. Because of M, N are invariant under G, then

Lfi =¢1.
Step 8: Suppose that for r > 1, there exists f; € M such that

liflz(ﬁ,;,, V’l:zl,...,'l.‘—'l.

We prove the system
5¢fz¢1;, \f?',:].,...,'l"

has a solution in M. Put g = I, f1. Then g € M and
Lig= li(lrfl) = lr(lifl) =l = ligr , 1= L...,m
Hence,

Li(pr —g) =0, Vi=1,...,7—1. (2.36)
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Because of ¢, — g € M, so for any j =r + 1,...,s there exists m; € N* so that
(¢ — 9) = 1i(dr — 9)-
Equivalently,
G =) —9)=0, Vi=r+1,...,s. (2.37)
Consider the following system

lih :0, z'=1,...,r—1
Lk =¢r—g (2.38)
(¥ =1)h =0, j=1+1,...,s

The last system turn out the case of Step 1. So, the system (2.38) has a solution h € M.
Put f = f; + h, then f € M and

lz’fZIifl-*-lih:gb.,;, Vi=1,...,7r—1,
Lf=Lh+Lh=g+¢ —g=¢r
Therefore, f is a solution of system (2.29). . O

Conjecture. Theorems 2.5, 2.6, 2.7, 2.8 are still true in the case when
dim(ker(ly, la, . .., L)) = oo.

Example 2.2. Let S is a linear space of the functions, which is generated by: {sinz,
cosz, €'} (z,y are two variables) on R. It is clearly that, S = M & N where M is
generated by {sinz ,cosz}, N is generated by {e¥}. Denote by G a linear comutative
semigroup generated by the differentials D,, D, on S. It is easy to see that M and N are
invariant under G and D, |5 , Dy|a also are idempotency on M.

Theorem 2.9. Let G be a semigroup of commauting operators on a linear space S and let
li,..., I, € G. Suppose that [;(K) D K for any subspace K of S, 1 =1,...,7. Assume
that the following compatibility conditions hold

Lk =lids, 1<j<k<rm (2.39)
Then, the system

Lf=¢s €8, i=1,...,r (2.40)
has a solution in S.

. Proof. By induction on 7.
Step 1. The case r = 1. The system (2.40) becomes

hWi=a:.

There exists f € S such that
LWf=¢1.
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Step 2. Assume that for r» > 1, system of r—eéquations
Lf=¢;, 1=1,...,7r—1
has a solution f; in S. We prove the system of equations
Lf=¢;, i=1,...,r
has solution in S. Put I.f; = g € S. We then have

bg=UlLfi=LLfi=L¢i=1id,, i=1,...,7—1.

It implies
L(¢p,—g) =0, Vi=1,...,7r—1L (2.41)
Hence,
¢7‘. —g€ H}
where

H:=ker(ly,...,lr-1) -

It is easy to verify that H is a subspace of S . There exists h € H so that ¢, — g = l.h.
Put f = h + fi. So we have

Lf=Lh+Lfi=¢:, Vi=1,...,r—1,
lrfzirh‘*‘zrfl:‘;ﬁr_g‘f'gngr- l

Hence, f is a solution of (2.40) in S. O

Theorem 2.10. Let G be a semigroup of commauting operators on a linear space S which
possesses s—dimentional additivity. Suppose that S is a direct sum of two subspaces M
and N which are invariant under G. Let ly,. .. 1. € G so that Li(K) = K, where K is an
arbitrary subspace of S that is invariant under G. Assume that the following compatibility
conditions hold

lide = oy, 1< J<k<T (2.42)
Then the system
Lf =¢i; €M, i=1,...,7 (2.43)
has a solution in M.

Proof. By induction on r.
The case r = 1. Then the system (2.43) becomes

llf = ¢17 ¢1 € M.
There exists f € M such that l; f = ¢;. Assume that for r > 1 the system

lifzéi, ’521,...,7'—1
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has a solution f in M. We prove the system
Lf=¢i,t=1,...,7
has solution in M. Put .f; =g € M, then' o
Lg = kb fo = blify = Ly = lihr, Yi=1,...,7 — L.

It implies
Li(¢pr—g)=0,Vi=1,...,r—1.
Equivalently,
¢ —g € H,
where

H:=ker(ly,...,lr-1).
It is easy to verify that H is a subspace of S and that H is invariant under [; for i =
1,...,r — 1. So we have [.(H) = H. There exist an h € H such that ¢, — g = l.h. It
follows ;h =0, 2=1,...,7— 1. Put f =h+ f1. Then

Lgf = l,h—f‘lﬁ,fl :¢i; VZ = ].,.‘.,T— 1,
lrf:lrh+lrfl =¢1'_g+g:¢1"
Therefore, f is a solution of (2.43) in S. U

Example 2.3. Denote by S a space of the functions which are generated by {e”*¥,sin(z+
y),cos(z + ¥)} on R. Assume that D,, D, are two differential operators on 5, G is
the semigroup generated by {D,, D,}. This is easy to verify that G is a commutative
semigruop and § = M @ N, where M is generated by {e”*¥} and N is generated by
{sin(z + y),cos(z + y)}. It is easy to see that S has the subspaces O, M, N, S which are
invariant under G.

3. Solvability of differential and difference equations

In this section, we prove that certain systems of differential and difference equations
are solvable provided the compatibility conditions. From now on, we denote by X an
algebraic closed field of characteristic zero, and the ring of polynomials in s indeterminates
Xi,..., X5 over X is denoted by K[Xy, ..., X,] = [[(K?).
For a given ideal I of K[Xj,...,X,] we denote by V(I) the (affine) algebraic variety
determined by I:
V(I):={a€ K*:p(a) =0 forall pel}.

An algebraic variety V is said to be reducible if it can be represented as a union of two
algebraic varieties, both different from V. Otherwise, we call V an irreducible algebraic
variety. Given an algebraic variety V', denote by I(V) the ideal of all polynomials which
vanish on V. The ring

K[V]:=K[Xy,...,X,|/I(V)

is called the coordinate ring of V. If V' is irreducible, then K[V] is an integral domain. If
it is in case, the quotient field of K[V] is called the field of rational functions on V, and
denoted by K (V).
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Definition 3.3. The dimension of an irreducible variety V, dim(V), is the transcendence
degree of K(V') over K. The dimension of a variety is the mazimum of the dimensions
of its irreducible components.

A single point has dimension 0, and the dimension of any algebraic variety V C K? is
at most s. Let V C K* be an algebraic variety. For a polynomial f € K{Xj,..., X,], we
define the variety V; :— {a € V : f(a) = 0}. We say that f does not vanishon Vif V; # V.

Theorem 3.11. (Dimension Theorem, [7]) Let V be an irreducible variety of dimension
n>1in K*. If a polynomial f € K[Xy,...,X,] does not vanish on V and V; # @, then
every irreducible component of Vs has dimension n — 1.

Theorem 3.12. ({7]) Suppose that every irreducible component of a variety U in K* has
the same dimension n (n > 1). Let 8 = (6y,...,0,) € U. Then there ezists an element
v=(v1,...,Us) € K*® such that

F’U = (Xl_gl)v1+"'+(X3_as)vs E K[Xl,...)Xs}

does not vanish on any component of U. Consequently, every irreducible component of
UNV(F,) has dimension n — 1.

Here are our generalization

Theorem 3.13. Suppose that the minimum of the dimensions of irreducible components
of a variety U in K® isn (n > 1). Let 8 = (64,...,0s) € U. Then, there exists an element
v=(v,...,us) € K* such that

Fy = (X; —0)vr + - + (X5 — bs)us € K[Xy,..., X
does not vanish on any component of U and U (\V(F,) is a finite set.

Proof. Let U = Uy|J+--|JUn be the decomposition of U into irreducible components
with U; € U; for all ¢ # j. Suppose that the dimension of U; is at smallest, it is n,
i=1,...,m. For any j € {1,...,m}, we set

L; = {v = (v1,...,v;) € K*: F, vanishon U;}, j =1,...,m.

Clearly, L; is a linear subspace of K°. The maxnimum dimension of Lj, (j = 1,...,m} is
s — n. Thus, the set K*\ U]~ L; is nonempty. For any v € K° dimU; <, F, does not
vanish on any of U; for each j = 1,...,m and the set UV (F,) is finite. O

Corollary 4. Suppose that the minimum of the dimensions of every irreducible compo-
nents of a variety U in K* isn (n > 1). For any 6 € U there exists n polynomials
D1,....Pn Of degree 1 such that they vanish at 0 and such that U NV(p1,---,Pn) is @
finite set.

Theorem 3.14 ([4]). Let p1,...,pr (r < s) be polynomials on K°. Assume that the
variety V(py, . .., pr) is either empty or each of its irreducible components has dimension
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s —r. Then for given polynomials (resp. ezponential polynomials) ¢,..., -, the system
of differential equations ‘ '

pj(D)f :¢ja J = 1:"-3T7
has a polynomial (resp. exponential polynomial) solution. f if and only if the following
compatibility conditions hold:

pi(D)ér = pr(D)gs, L<j<k <

Corollary 5 ([4]). Letpy,...,p, be polynomials on K* such that V(p,,...,p;) is a finite
set. The system of differential equations

pj(D)f:¢j3 .7 = 1>7"'787

where the ¢; are exponential polynomials, has a solution in the space of ezxponential poly-
nomials if and only if the following compatibility conditions hold:

pi(D)pr = pr(D)g;, 1 <j<k<s.
A generalization of Theorem 3.14 is

Theorem 3.15. Let py,...,p, (r < 8) be polynomials on K°. Assume that the variety
V(p1,...,pr) is either empty or the minimum dimension of its irreducible components is
s — 1. Then for given polynomials (resp. ezponential polynomials) ¢1,...,¢,, the system
of differential equations

piD)f =¢5, j=1,...,m, (3.44)

has a polynomial (resp. exzponential polynomial) solution f if and only if the following
compatibility conditions hold

pi(D)Ypr =pr(D)s, 1< j<k <.

Proof. Let S be the linear space of all exponential polynomials on K* and G := Gyx»)(D).
Because of eg [[(K?) is invariant under G, so it is sufficiently to consider ¢; € es [[(K*)
for some 8 = (f1,...,0,) € K°. Let M = es [[(K®), ¢1,...,¢6- € M, we consider the
solvability of the system (3.44) in M. If p;(6) # O for some j, then p;(D) is invertible on
M. Hence, the solvability of (3.44) follows immediately from Theorem 2.1.
If pi(f) =0 forall j =1,...,r, then & € V(py,...,pr). By applying Corollary 5 to
- V(p1,-..,p.), there exists polynomials p,,y,...,p, of degree 1 such that they vanish at ¢
and the set

V(pl: ce 1 PryPridy e - ap-‘?)

is finite. In particular, all p; are exactly p;(D), 7 = 1,...,s. Thus, an application of
Theorem 2.2 gives the disired result. ]

Let V C K° be an algebraic variety. A subset U C V is_said to be closed if U itself
is an algebraic variety. A subset O C V is said to be open if V\O is closed in V.
Let O be a nonempty open set of an irreducible algebraic variety V. If a polynomial
f € K[Xy,...,X,] vanishes on O, then it must be vanished on V, (if otherwise, V =
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(V\O)J V; gives a decomposition of V with V\O # V and Vy # V. It contradicts to the
irreducibility of V). Thus, I(O) = I(V). Hence, the coordinate ring K[O] is the same as
the coordiate ring K[V]. Consequently, the quotient field K(O) of K[O] is the same as
K (V). In particular, this shows that dim(O) = dim (V) for any nonempty open subset O
of an irreducible variety V. Mareover, if V is irreducible, then K[O] = K[V is an integral
domain, hence O is also irreducible. :

Let V be an algebraic variety and let V = Ui[)---|JUn be a decomposition of V
into its irreducible components. For an open subset O C V, O(\U; is open in U; for
each j =1,...,m. If O U; is nonempty, then O\ U; is an irreducible component of O.
Thus, after discarding some possible empty sets,

0 =NwU--UeNUm).

which gives a decomposition of O into its irreducible components.

Theorem 3.16 ([4]). Let O C K* be an open subset of an algebraic variety with all irre-
ducible components having the same dimension n. Then for any 6 € O there exist n poly-
nomials py,...,pn of degree 1 such that they vanish at 6 and such that ONV(p1,..-1pn)
is a finite set.

Our generalization as follows

Theorem 3.17. Let O C K* be an open subset of an algebraic variety with the minimum
dimension of all irreducible components isn. Then for any 8 € O there exist n. polynomials
D1, Pn Of degree 1 such that they vanish at § and such that OV (p1,-- . ,Pn) 8 a finite
set.

Finally, we recall the theorem about difference equations.

Theorem 3.18 ([4]). Let p1,...,p, (1 < s) be polynomials on K*°. Assume that the
intersection of the variety V(p1,...,pr) with (K\{0})* is either empty or each of its
irreducible components has dimension s — . Then for given polynomial sequences (resp.
ezponential polynomial sequences) ¢1,..., ¢y, the system of difference equations
pj(T)f :¢:)’7 j=1..,7
has a polynomial sequence (resp. exzponential polynomial sequence ) solution f if and only
if the following compatibility conditions hold
pi(T)dx = pr(T)¢i, 1< <k <.
The following is our generalization

Theorem 3.19. Let py,...,pr (r < s) be polynomials on K®. Assume that the intersec-
tion of the variety V(py, . . ., pr) with (K\{0})® is either empty or the minimum dimension
of its irreducible components is s —r. Then for given polynomial sequences (resp. expo-
nential polynomial sequences) ¢1,...,¢», the system of difference equations

pj('r)f:qu} Jj= L...,m

has a polynomial sequence (resp. ezponential polynomial sequence) solution f if and only
if the following compatibility conditions hold '

pi(T)ék = pi(T)gj, L <G <k <
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Proof. Let S be the linear space of all exponential polynomial K — sequences on Z°. Since
60 TI(K*) is invariant under G, then without loss of generality, we may assume

1, ¢r € OO [[(K*) = M.

If p;(8) # O for some j, then p;(f) is invertible on M, so the proof is implied by
Theorem 2.1. Suppose that p;(8) =0 for all j = 1,...,r. Then 8 € V(p1,...,pr) . The
minimum dimension of irreducible components of V{(ps,...,p-) [ (K\{0})* is s — 7. By
Corollary 5, ther exist polynomials p,;1,...,ps of degree 1 such that they vanish at ¢ and

the set

V(p1,-- -2 Pr Pris -5 0s) [ JE\{0})®
is finite. By using Theorem 2.2, the proof is complete. O
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