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Partial differential equations for solid-liquid phase transition
with fluid motion

IKEFHE —H&(BR) BB HE (Takesi FUKAO)
Gifu National College of Technology,

Abstract

To prove the existence of a solution for nonlinear partial differential equations is
the one of the interesting subject. There are various researches of tools and methods.
Frequently the difficulty occured to proof by the systemaization of equations or the
nonlinearity of equations In this paper we shall discuss about the existence problem
of weak solutions for two models of nonlinear parabolic partial differential equations,
which describe the solid-liquid phase transition phenomena. More precisely, these
models are consisted by the Navier-Stokes equations and nonlinear heat equations
as the free boundary problem. The estimate of the heat independent of the fluid
motion is the key point to main theorems.

1 Phase transition model

The phase transition is an interesting phenomenon in which the physical state of a
material dramatically changes. We are interested in the mathematical description for
such a phenomenon. To do so we need to introduce some fundamental concepts of math-
ematical physics before exploring the phase transition. A material is a set of many atoms
and molecules. But we know that averaging the phenomena in an infinitesimal area, we
describe the heat conduction, the liquid flow and so on, without catching phenomena mi-
croscopically. The way for averaging is given by statistical mechanics. Nevertheless we do
not intend to mention here the details of statistical mechanics. We mean by a continuum
of the material which has the continuous property by averaging. The temperature or the
pressure are typical quantities in continuums. By using a variable, the so-called order
parameter, the change of the structure is described. How to define the order parameter is
also one of the important questions. But in our setting we guarantee it by using another
physical quantities, for example the difference of the density, the volume and so on. For
example, the material HyO have three kinds of phases, the ice, the water and the vapor.
And their transitions occur at some critical temperatures specified the continuum. Thus
in order to describe these phase transitions using quantities in continuums we apply some
partial differential equations which are introduced by the various rules.

Let ¢t € [0,7],0 < T < +oo and Q,(¢) C R® be the time dependent bounded domain
with smooth boundary T (t) := 8, (t) which is known smoothly in time in the following
sense:
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(A1) There exists a bounded domain © C R3 with smooth boundary I' := 0f) such that
Q,.(t) C Q for all ¢ € [0,T]. Moreover there exists a transformation y € C3(Q) :=
(C3(]0, T x §1))® which gives a C3-diffeomorphism y (¢, -) == (:(t, ), v2(ts ), ys(t, )
from © onto itself for all ¢ € [0, 7] such that

y(t, Q) = Q,(0) forallte[0,7], y(0,-)=1 (identity) on Q,(0).

In this paper we recall two famous models, Stefan problem and phase field equations:

2 Nonlinear PDEs for the phase transition

Model S (Stefan problem)
Find u == u(t, z): enthalpy, v := v(t,z): convective vector and p; == py(,z): pressure.

Di(v)u—~AB(u) = f inQn = |J {t} x m(®), (1)
1€(0,7)

Dy(v)v — Av = g(B(u)) — Vpr  in Qulu), (2)

divv =0 in Qg(u), 3

v=vp in Q,(u)US(u), (4)

B,B(u) +nB(u) =h, v=vp onX,:= U {t} x T')n(2), (5)
t€(0,T)

U(O) = Ug, V(O) = Vp n ng = Qm(O), (6)

where Dy(v) := 8/0t+v - V; f,g,h,vp,up and v are given functions; ng is a positive
constant; n = n(t,z) is a 3-dimensional unit outward normal vector. In Model S we
define the solid-liquid interface S(t) := {z € Q,,(t); u(t,z) = L/2} and unknown domains
Q(t) and Q,(t) by

Q(t) == {3} € Q) ult,z) > —g—} , Q(t) = {z € Qn(t)ult,z) < g} . (7
Moreover we define

Swy= |J {3 x8t), Qiw = {J {t}xxut) fori=4s (8)

¢t€(0,7) t€(0,T)

Q:(u) and Q,(u) stand for the liquid and solid regions, respectively. So the equations (2)
and (3) means that in the unknown liquid region, the unknown v stands for the convection
by the Boussinesq approximation g(3(u)) of the buoyancy force. On the other hand,
the equation (4) stands for the artificial movement of the unknown solid region, which
coincides with the one of Q,,,(¢). The equation (1) is called the enthalpy formulation of the
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Stefan problem, mathematically it means the weak formulation. This is the degenerate
parabolic equation because 5 : R — R is defined by

k.r if r <0,
B(ry=<¢ 0 fo0<r<L, (9)
k:g(T — L) ifr>0L,
where k,, k; and L are positive constants, where ({u) stands for the temperature. If

0 < u < L then the equation (1) becomes to the ordinary differential equation, and it
plays a role of the phase transition. We refer to the book of Visitin [27].

Model P (phase field equations)

Find 6 := 6(t, z): temperature, x := x(t,z): order parameter, v := v(t, z): convective
vector and p, = pg(t, z): pressure.

D,(v)8 + Dy(v)x — A8 = f in Qn, (10)
D(V)x —Ax+x*—x=10 inQn, (11)
Dy(v)v — Av =g(f) — Vpe in Qu(X), (12)

divw =0 in Qi(x), (13)

v=vp in Qs(x)US(x), (14)

gg:(], %:O, V=vVp O Ln, (15)
6(0,)) =6, x(0,-)=x0, Vv(0,-)=ve in o, (16)

where 6, is a given function. From the stand point of the Stefan problem it is a natural
setting that the sharp interface is defined by the O-level curve of x. But the set {(t,z) €
Qum; x(t,z) = O} has the measure in general. So in Model P we image the virtual solid-
liquid interface namely we call the set () == {z € Qn(t); x(t,z) > 0} by the liquid
region, the set

S(t) = ({3: @) Xt 7) = 01 N Qg(t)) \ Tm(t),

by the virtual interface and Q,(t) = Q\ {Q(t) U S(t)} by the solid region. If x is
continuous in Q,,, then §2,(t) and Q(t) are open sets and O (t) = Qu(t) U S(t) U Q(t)
for each t € {0, T]. Moreover we define

Sx)= U {8 xS®), Q)= |J xu) fori=4s (17)
te(0,T) t<{0,T)

We refer to the paper of Cagnalp [1}, Fix [5].

We assume the following compatibility condition for Model S and P:
(A2) Given vector function vp € C*(Q) satisfies
divvp(t,") =0 in Q,(t) forallte[0,T], (18)
Vp N =17, OO Lm, (19)

where v,(¢, ) is the normal speed of I'y,(2).
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3 Main theorems
In this paper we use the following notations:
H:=I*Q), Y :=L%Q), V:=HYQ) (=W7Q), X::=W"(Q),

with the usual norms, and Y*,V* and X* are the dual spaces of ¥,V and X; we denote
by (-, Yy-y, (-, -}y v and {-,-) x« x the duality pairs between Y* and Y, V* and V and X*
and X, respectively. Especially H is a Hilbert space with standard inner product (-, )y
and we have the following relations:

XCVsYCHCY - V*C X",

where < means that the imbedding is compact. Moreover we use the following notations
for vector valued function spaces:

D, (Q) = {z € C2(Q); diva = 0 in Q}

H:=12(Q), Y:=TLiQ), V=H)Q), X:=W*Q),

where L2(Q), L4(Q2), HL(Q) and WL4(Q) are the closures of D,(£2) in spaces L2(2) :=
H3 LYQ) = Y3, H}YQ) := V® and W4(Q) := X3, respectively. They are equipped
with the usual product norms, and Y*, V* and X* are the dual spaces of Y,V and X
with duality pairs (-, -)y+y and so on. We see that H is a Hilbert space with the usual
inner product (-, -)g and the following relations hold:

XcV=YCHCY —-V*CX".

Define a(-,-) : V.x V — R and for each ¢ € [0,7], b(t;-,-,-) : Y xV xY = R,
c(t;+,+) : H x H — R-are defined by

3
a(z,m) =14 Z/ Vz-Vndzr forallz,neV,
=1 Q
3
b(t;z,z,m) = E/((z +vp(t)) - VzZ)mdz forallz,ze Y, p eV,
i=1 Y8

3
c(t;z,m) = /Q (z - Vopi(t))pde  for all z,m € H,
=1

and for each z € L*(Q), g(z) € L*(0,T; H) is defined by g(z(t)) := Pr g (z(t))] with

ov
g.(z) == { 9,(2) — “‘3}2 — (vp-V)vp +vAvp  on Qn,
0 otherwise,

where Pr, : L?(Q) — H is the Leray projector. Our main theorems are given now.
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Theorem 1  Assume that (A1) and (A2) hold. Let f € L™®(Qw), h € L™(E,), g €
COLR), up € L*®(Qmo) and vy € L2(Qpng) with divvg = 0 on Q. Then for anye € (0,1),
there exists at least one {ug, v.} € L®(Q) X L*(Q..) such that it satisfies the following
auziliary variational form of Model S

— / ue Di(ve )ndzdt +

VB(ue) - Vndzdt + ng / B )ndlr, (t)dt
m Qm Zm

= fndzdt + /

Qm Em
where W = {n € H'(Q.);n7(T) = 0};

qndl(£)dt + / un(0)dz  for all n € W, (20)
Qmo

T

T T T
—/ (n’,ws)Hdt-%/ a(we,'q)dtJrf b(t;wg,wg,n)dt-F/ e(t; we,m)dt
o 0 0 0

= / (@(Bu)), Mssdt + (wo,n(O))gx for all 1 € Wip, +u.), (21)

where

7 e L2(0,T;H), n(T,)=0ae onQ, }

W(ps * 'U,E) = {77 € L4(O’ T X); n==~0 a.e on Q \ Qe(ﬂs * ue}

Theorem 2  Under the same assumption of Theorem 1. Let {u., V. }eso be the solution
constructed by Theorem 1. Then there exists d subsequence {€,} such that e, — 0 as
n -+ +oo and

Ue, = u  weakly in L*(Qm),

We, =Ve, —Vp —w weakly in L*(0,T;HL(Q)) asn — +oo,

u and v = w + vp satisfy the variational form of (1), (5) and (6).

Above two theorem say that Model S has at least one weak solution. However, from
the mathematical point of view it is difficult to handle this system because of the lack of
regularity of the enthalpy u. In order to avoid this difficulty we replace the liquid region
Q.(u) and solid region Q,(u) by their approximations Qg(pe * u) and the class of test
functions by W (p. * 1). As to the vector function v obtained in Theorem 2 as a limit of
{v.,}, it is not clear whether v is a solution of the variational form of the Navier-Stokes
equation, because the class W(u) of test functions for the limit w of {u.,} is not able
to be defined without the regularity of u. On the other hand, Model P may have the
solution in which the order parameter ¥ has the smoothness. So we can get the following
existence result:

Theorem 3 Assume that (A1) and (A2) hold. Let f € L™(Qm), g € C*(R), by €
HY o), Xo € H*(Qumo) and vo € L2(Qno) with divvg = 0 in Qyng. Then there ezist at
least one {8, %, v} € L®(Qm) x C(Qm) x L2(Q) such that it satisfies the variational form
of Model P.
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4 Existence problem for Model S

In this section we shall probe Theorem 1 and 2. At first we recall some important
results on the Stefan problem with prescribed convections and the Navier-Stokes equa-
tions formulated in non-cylindrical domains. Throughout this section assumptions (Al)
and (A2) are always made and the same notation as in the previous section is used.
Furthermore, given sg,s € [0,T] with 0 < so < s < T, we use the following notations:

Q(s0,5) == (50,8) X, Qmls0,8) = | J {t} x Qm(2),

te(so,s)

S(s0,8) = (50,8) X Iy S(s0,8) = [ J {t} x [m(t)-

t€(s0,s)

4.1 Auxiliary results for the Stefan problem with convections

[A](cf. Fukao, Kenmochi and Pawlow [10]) Let ¥ be a 3-dimensional vector field
defined on Q such that v € L®(0,T;H) N L*(0,T;V) and v = vp a.e. on @\ Qm, let
f € L®(Q,,) as well as ¢ € L=(%,,). Then, for each sg,s € [0,7] with 0 < s <s <T,
and 4y € L=(Qm(s0)), there exists at least one function @ on @m(se, s) such that

(i) & € L=®(Qm(so,9)), B(T(t)) € HY(Qm(t)) for ae. L € (so,5) with

[ 1BGO) ot <+

50
and the 0-extension of & onto Q{sp, s), denoted by @ again, is weakly continuous
from [sg, s] into H.

(ii) @ satisfies the variational identity

— / wDy(V)ndzdt + / Va(4%) - Vndzdt + ng / Blandl,(t)dt
Qm (50,5} Qm(s0,s) Tm(s0,8)

= / fndzdt + f gndlm(t)dt + / T (so)d, (22)
Qm{s0,5) B (s0,8) Qm(s0)

for all n € H (@ (se)) with 7(s,-) = 0 a.e. on Qs).
(iii) Putting

g

: Iﬁ(ﬁo)Imam(so»} ;

M1 = max {L, &f[Loo(Qm),
Le(Bm)

we have |3(4)| 1o (@um(so,s)) < Mi(1+T), and hence

- My, M
iulLOQ(Qm(SO,S)) < max {_k"‘l" —k“l‘ + L} (1+T) = M,.
s £
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(iv) The following inequality holds:

[ o ta [t < [ AT, @

m{s0)

where Mj is a positive constant depending only on M, MQ,A!QI, the volume of 2
and the maximum of |T',(t)], the area of I'(t) for ¢ € [0, T, 5 is the primitive of §
with 3(0) = 0, and ¢; is a positive constant satisfying that

Cllz!?Hl(Qm(t)) S Ivz*%z(gm(t)) + nolZliz(Fm(t)) fOr aﬂ z & HI(Qm(t)) and t I~ [OT}

For simplicity, we denote by (SP;¥, ) on [so,s] the variational problem (23), and
any function @ satisfying the above conditions (i)-(iv) is called a solution of (SP; ¥, %) on

[s0, s].

[B] (cf. Fukao and Kenmochi [9]) We have a sort of continuous dependence of
solutions @, obtained by the above results, upon the convection vector field v. Now,
assume that {¥,} is a bounded sequence of vector fields in L>(0, T'; H) and L0, T; V)
such that

V,=vp ae on@Q\Q, forallnecN,

¥, — v weakly-* in L®°(0,7;H) weakly in L*(0,T;V) asn — +oo.

Let i, be any solution of (SP;¥,, o) on [sg,s], and let @ is the weak—+ limit of a sub-
sequence {@,, } in L®(Q,,). Then, @ is a solution of (SP; ¥, i) on [so, s]. Moreover the
O-extension of @y, (t) onto R® weakly converges in L*(R?) to that of 4(t) uniformly in
t € [0, s] and B(il,, ) — B() in L*((so,s) X R®) as k — +oo.

4.2 Auxiliary results for the Navier-Stokes equations

We now recall an existence result for the variational problem associated with the
Navier-Stokes equation formulated in non-cylindrical domains.

The solvability for the Navier-Stokes equation in non-cylindrical domains was discussed
by many authors, for example Fujita and Sauer [6], Inoue and Wakimoto [11], Inoue and
Otani [12], Kenmochi [13], Morimoto [17], Otani and Yamada [19] and Yamada [28]. In the
existence proofs of [6] and [13] one of the main point is an extensive use of a compactness
theorem of Aubin’s type [24] and its extension of Kenmochi [14].

[C(cf. [6], [13]) We consider the following variational problem associated with the
Navier-Stokes equation in non-cylindrical domain Qm(so,s). Let § € L>(Q) with p > 0
a.e. on Q, § € L*(sq,s; H) and wo € H. Then, there exists at least one function W such
that

(i) W € L=(so,s; H) N L*(sp,5;, V) with w = 0 a.e. on Q(s0,8) \ Qm(s0,5) and W is
weakly continuous from [sg, s] into H.
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(i} w satisfies the variational identity

~/ (’f]',ﬁ')ﬁd’f‘-l—/ a(v“v,n)d'r%—/ b{(r; W, W, n)dr
s S0

0 S0

+f " ol o, m)dr + / (Pu(p), msadr = ] (@ mudr + (o, n(O) (24)

S0 so S0

for all n € Wy(sq, 5),
where for any s € [0,7

n' € L%(sp, s; H),
n{s,-) =0a.e on(,
1 =0ae. on

Q(50,5) \ @m(s0,5)

Wo(so,s) := < 1 € L*so, 5, X);

(iii) The following inequality holds:

SOk ter [ 1900+ [ gt

(so,t)

1 t
< glv"vo]%{ntf (g, W)udr for all t € [so, s], (25)

S0
where ¢, is a positive constant independent of Wy, g, § and time interval [so, 5.

We denote by (NS; §, g, W) on [sp, s} the above variational problem associated with the
Navier-Stokes equation on Q,,,, and any function W satisfying the above conditions (i)-(iii)
is called a solution of (NS; 5, §, Wy) on [sq, s]. Hereafter we first construct approximate
solutions of Model S, and then we prove Theorems 1 and 2 by discussing the convergence
of approximate solutions.

Let 0 =t} <tV <tl¥ < ... <t} =T, be the partition of [0, T] given by

T

tN =khy fork=0,1,...,N with hN:—N—.

We are now going to construct a sequence of approximate solutions by applying the exis-

tence results for (SP; ¥, 1) and (NS;f, g, W,) on each time interval [ty ,tY] mentioned

in the previous section. Let f,q,ug and vy be the data given for Model S. Moreover for
each s,t € [0,T], ©;,(-) be the C3-diffeomorphism in 2 given by

O, () =x{s,y(t,z)) forallz € Q,

where x(s,-) is the inverse of y(s,-); note that ©,, maps Q,(t) onto ,(s) for each
s,t € [0,T]. Now, for fixed positive parameters €, § € (0, 1], let us define a set of functions
{ul} 1, Wl L}y, in the following manner (1)-(4):
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(1) wl, is a solution of (NS;pf,/9, G250, Wo) on [0,1]'], where

Wp 1= Vg — VD(O),

it ) = [ (walrte ) -5)| @)

and
3% o(t,7) = g (Blus(y(t,2))) for all () € Q0,21

(2) u}; is a solution of (SP;v5;,uo) on [0,1{'], where

N N Ny,
Vsé,l = Wsé,l + vp oOn Q(Oatl );

(3) fork;‘z <k < N, wl, is a solution of (NS;pl_, /4, G0 e w1 (6 1)) on (711, 8],
where

INT-
Pt z) = [Pe * (U?g,k_l(t — h, Oty () — 5)} (z),
and

ggg,kml(ta ZE) = g(ﬁ(u?{&k-—l(t - h’Na @t,t*‘hN (CL’))) for all (t7 SC) € Q(tiv—h tkN)v

(4) for 2 < k < N, ufy, is a solution of (SP; v 4 ulf s (t1 1)) on [t t7'], where
vk = Whe+vp on Qs &)
Now, for each N € N we define two functions ul on Qn, and wil on @ by
ulk(t, @) == ul,(t,z), ifte [t ) and z € Qn(t),
wii(t, z) = wi, (t,z) ifte [t ,,tv) and z € €.
4.3 Estimates for approximate solutions

. N Wi
On account of our construction of {uls,, wisi}s

(a) u € L=(Qn), the 0-extension of ufy, denoted by ul again, is weakly continuous
from [0, T into H, B(ubs(t)) € H(Q(t)) for ae. t € [0,T] and

T
[ 1805 st < oo

(b) wh is weakly continuous from [0, 7] into H, this implies that wh € L~(0,T;H),

and wi € L?(0,7;V).
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(c) ul} satisfies the following variational identity:

— / w5 Dy (v )ndzdt + /Q VB(uY) - Vndzdt

+ng B(ulndl , (t)dt = / frndxdt + f gndl, (t)dt + /ﬂ uen(0)dz, (26)
Qm Xom 'm0

Ym

for all n € W where v := wl + vp.

(d) w’ satisfies the following variational identity:

T T T
__/ (n’,wi\c;)ﬂdt’*’/ a(wfé,n)dt—k[ b(t; wly, wik, m)dt
0 0 0

T 1 T T
+ | ct;whmdt+= [ (PeNwl), mudt= | (g, m)adt+(we,n(0)u, (27)
0 5 [} 0

for all n € Wo(0,T) where

"t 2 [pg * (uo()’(t; )= gﬂ ) (z) if (t,z) € Q(0, &),
st z) = ~
I:Pe * (u?g(t ~ hy, Oti—ny () — -;—):l (z) if(t,z)e€ QEN,T),
Mo o) 9(6(uo<y(t,z))) if (¢, 2) € Q(0,tY),
g5\l T) =

g(ﬁ(ug‘;(t By Oty (z))) it (¢,2) € Q@Y T).

Furthermore, we have the uniform estimates for v and w7 with respect toe, § € (0, 1]
and NV € N which are given in the following lemmas.

Lemma 4. Put

M, = max {L, |flre(@m)s 2 , |ﬁ(uO)|Lw(nmo)} ~
10! Lo (Spm)
Then
TAN
0 miany < Ma (14 7)< M (29
M, M,
iU:glLoo(Qm) S max {Z.}, "“k‘;f + L} eT =: M5, (29)

foralle € (0,1}, 6 € (0,1] and N €N, and there is a positive constant Mg such that

T
/Q 1Bl () 3, ydt < Ms  for alle € (0,1], § € (0,1} and N € N. (30)
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Moreover there is a positive constant M, such that
1
sup lwejrvé(t)lﬂ < M7: lwgiﬁ(ﬂ,l’;v} < Mg, "5' / pi\glwgilzdxdt < M77 (31)
0<t<T Q

for alle € (0,1], 6 € (0,1] and N € N.

We omit the proof, see Fukao and Kenmochi [8]. In the rest of this section we fix
parameters £,8 € (0,1]. On account of the uniform estimates in Lemma 4, there is
a sequence {N,} of positive integers with N, 1 +oo as n — +oco such that uly —
s weakly- * in L®(Qm) as well as wiir —» w.s weakly in L*(0,T;V) and weakly- *
in L>(0,T;H) as n — +oo. Now, put ves := Wes + vp. Then, by virtue of [B], the
0-extensions of ug;" and us onto (0,T) x R®, denoted by the same notations, satisfy that

ulr(t) = ues(t) weakly in L*(R?) and uniformly in ¢ € [0, 77, (32)

,B(Ué\é") — Blugs) in L*((0,T) x R?) asn — +oo. (33)

Next, we observe from (27) with (28), (29) and (31) that {d/ dtwl%} is bounded in
L43(0,T;X*) and {wX}yen is bounded in L*(0,T; V). Since V—H C X*, with com-
pact injections, it follows from the Aubin’s compactness theorem that {wX} is relatively
compact in L2(0,T; H), whence

whe s wy in L*(0,T;H) asn—» oo (34)
Furthermore if we put
~ N, U’O(y(ta x)) if (ta :E) € Qm(oat:zlvn),
Ues (tv Z ) = N, . ) N,
ul (t — b, Oreony, (7)) if (t,2) € Q™ T),
we have for their 0-extensions of iLQ;" and s
pe * @ — pe * ugs  uniformly on [0, T] x R®, (35)
and hence

pi\fs" - Pes == [ps * (ueg — QLZ«H uniformly on [0, T} x R3, (36)
as n — 0o. Moreover g(B(ulr)) — g{(B(ues)) in L*(0,7;H) as n — oco. Thus we can

prove the following proposition.

Proposition 5. For any ¢ € (0,1] and § € (0,1] the pair of functions {Ues, Wes} in
L®(Qm) x (L*(0,T; V)N L=(0,T; H)) satisfies the following (37)-(40):

- / : uggg—?;dzdt - / (Ves - VN)uesdadt + VB(ues) - Vndzdt
Qm m CGm

o [ Blues)ndTm()de = /Q ot + [ andCnft)at + [ went0)dz, (37

Ym m Qmo
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forallne W,

T T T T
- / (o, Wes g i+ / awes, m)dt + [ b(t: Was, Wes, m)dt + / ot Wes, m)dt
0 1 0 4]

+ % /OT(PL(pEJWEJ):n)Hdt = fc (9(B(ues)), mudt + (wo, n(0))m, (38)

for all 7 € Wo(0,T), and for a positive constant Mg, independent of € € (0,1] and
8 € (0, 1],

T
|B(ttes) Lo (@m) < Ms,  |Ues|poo(@n) < Ms, /0 Iﬁ(ﬂsé(t))ﬁ{l(gm(t))dt < Mg, (39)

1
sup [wWes()|u < Ms, |Weslr2orvy < Ms, 5 / Pes|Wes| dzdt < Ms.  (40)
0<t<T Q

Proof of Theorem 1. Fixing ¢ € (0, 1], we discuss the convergence in d. Let {ucs, Wes}
be the same family as constructed in Proposition 5. By the uniform estimates (39) and
(40), there are a sequence {d,} C (0,1] converging to 0 and functions u, € L®(Qn) and
w, € L2(0,T; V)N L>(0,T; H) such that u., — u, weakly-* in L™(Qn), Wes, — W
weakly in L?(0,T; V) as n — +oo. We denote the O-extensions of u., and u. onto
[0, T] x R® by the same notation. In this case, just as in the previous section, it follows
from the result in [B] that

Ues, () = u.(t) weakly in L*(R®) and uniformly in ¢ € [0,77, (41)
Blues,) — Blu) in L*((0,T) x R*) as n — o0, (42)

and
-f uEDt(vs)nda:dt—i-/ Vﬁ(ue)-Vnd:vdt—i—nb/ Blue)ndl . (t)dt
Qm Em

= fndzdt + f qndl',, (t)dt + / ugn(0)dz for all p € W, (43)
Qm m Qmo
where v, := w, +vp. Moreover, by (41), p, * U, — p. * 4. uniformly on [0, T7] x R? and

INT-
Des, ~ Pe = {ps'* (ue - 5)] uniformly on [0,7] x R® as n — +o0. (44)

Clearly Qq(p. * u.) is an open subset of Q,,. Let (s1,52) X w be any relatively compact
and open cylindrical subdomain of Q,(p, * u.). Then, it follows for all n sufficiently large
that weg, satisfies
T T T
- / (71’: W€5n)H dt + / a(wsén y ﬂ)dt + / b(tf Wesns Webns Ti)dt
0 0 0

+ / et We )it = / (0(B(tes, ), mmt, (45)
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where the test function 77 is taken as follows
n € Wu(0,T) with suppn C (s1,82) X w. (46)

In fact, on account of (43) we have p.s,1 = 0 on [0,T] x R? for all large n, so that (45)
is derived from (38) for any 7 satisfying (46). This together with estimates (39} and (40)
shows that {d/dtw.s,} is bounded in LY3(sy, s2; W4 14/3(,)) and {w.s,} is bounded in
L2(s1, 89; V1(w)), where V;(w) is the closure of {z € C*(w);divz = 0 in w} with respect
to the topology of H{(w). Since V;(w) «— LZ{w) C W, 1473 (1), with compact injections,
it follows from Aubin’s compactness result again that {w.,} is relatively compact in
L*(sy, s9; L2 {(w)), which implies
Wes, - W, in L¥(s), s L2 (w)) asn — +oo.

Noting that this is valid for every relatively compact and open cylindrical subdomain of
the form (s1,82) X w in Qs(pe * u.), we can conclude that

Wes, — We  in L, (Qe(pe * uc)) asn— +09, (47)

since any compact subset of Qy(p. * u.) can be covered by a finite number of subdomains
of the form (s;, s3) x w. Furthermore, letting n — co in (38) for any 1 € Wo(0,7) with
supp n(t) C Qu(t) for all ¢ € [0,T], we see with the help of the convergences (41), (42),
(44) and (47) that w, satisfies (21). Also, we have uniform estimates

T
1B ony < Mo, [tieloiany < Ms, / 1804 () Pt < M,

sup |we(t)lm < Ms, [Welr2omv) < Ms,
0<t<T

for all € € (0,1], where Mg is the same positive constants in Proposition 5. Especially,
the last estimate of (40) implies that

l:pe * (ue - %)} i |W€]2 =0 ae on(,

namely w. = 0 a.e. on Q,(p. * u). O

Proof of Theorem 2. We discuss finally the convergence in £. Let {u., ws} be the
family constructed in Theorem 1. Then there are a sequence {e.} converging to 0 and
functions u € L®°(Q,,) and w € L*(0,T; H) N L*(0,T; V) such that

u., = u weakly-* in L(Qn) hence, weakly in L*(Qm),
 w., »w weakly in L*(0,T; V), weakly-+ in L(0,T;H) asn — +oo.
By applying the result [B] we see that
U (t) = u(t) weakly in L*(R*) and uniformly in t € (0,71,

as well as
Blu.,) — Blu) in L*((0,T) x R*) asn — +o0,

and the limit u satisfies (20) where v := w + vp. Thus we obtain the conclusion. O
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5 Existence problem for Model P

In this section we shall probe Theorem 3. The essential idea is same of the previous
section. So we need to discuss about the solvability of the phase field equations with
given convection in non-cylindrical domain. Throughout this section assumptions (A1)
and (A2) are always made and the same notation as in the previous section is used.
Furthermore, given s, s € [0, 7] with 0 < s < s < T, we use the same notations.

5.1 Auxiliary results for the phasé field equations

In this subsection we discuss about the solvability of the phase field equations with
given convection. Throughout this subsection, the convective vector v is given. Now for
each sg, s € [0,T] with 0 < so < s < T, we consider the following auxiliary system: Put

e:=0+x

— / éDyndxdt + / V6 - Vndzdt = / fndzdt + / éon(so)dz, (48)
Qm(sﬂvs) Qm(SO,s) Qm(SO,S) ﬂm(sﬂ)

- f $Dendzdt + f Vi - Vndadt + / (% — %)ndadt
Qm(SO,s) Qm(so,s) Qm(50,5)

= / Ondzdt + / %on(s0)dz, (49)
Qm(SQ,S} Qm(SQ)

for all n € H'(Qm(s9, 8)) with 7(so,-) = 0 a.e. on Q2,(s0), where D, := D,(¥) = 8/ot +

V- V. Assume that 8y € H (Qm(s0)), %o € H*(Qm(s0)). Moreover v —vp € L*(0,T;V)U

L*>(0,T;H) and ¥ satisfies the following compatibility condition

V-n=1u, O Lm. (50)

Then there exists uniquely {6, ¥} € H'(Qm(so, 5)) x H"(Qm(s0,5)) such that

sup 16(8) iy < +oo, / B8) g oyt < 00,
sg

tE(SQ,S)

sup |X(t)|mamiey) < +o0, / {)Z(t)]fqzmm(t))dt < 400,
t&(sg,s) sg

and {0, %} satisfy the weak formulations (48) and (49). See Fukao [7], or more general
approach by Schimperna [23]. At first we recall the important result of the imbedding
theorem for spaces L2(0,T; H*(0)) N L>(0,T; L*(Q)). For example, Chapter 3, Section 2
in the book of LadyZenskaja, Solonnikov and Ural’ceva [15]

1-2/r 2fr
[l e < s (W“]m(o/,ﬁwm» + [“|L/°°<0,T;L2<m)> !

where g and r are arbitrary positive numbers satisfying the condition

1 3 3 .
; + 2—q s g with q € [27 6]7 TE [29 +OO]1 (51)
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where c3 is a positive constant. we have the following estimate especially the key point is
the independence of V.

Lemma 6.  For any so,s € [0,T] with 0 < sp < s < T, there exists a positive constant
Mg, independent of v such that

sup 1608) sy + / E) B oy < Mo, (52)
tE(so,s) 50
$
tES(uP5 X)) 22(0m(®) +/ X5 e+ 1% 14(@um(s0,0) < Mo (53)
so,s, SO

Proof. Firstly we recall the variational formulation (49). By using Green-Stokes’
formula with the help of the divergence freeness and the compatibility condition (50) we

see for any T € [s, s}

/ (Dix)xdzdt
Qm (50,7}
. ~ 82(1 ~2(
= — X—=—dzdt + X" (1), d0Qm (S0, T)
Qo) Ot 3Qum(50,7)

+ / (— / (V- V¥)Xdz + ] )Zzundfm(t)> dt
S0 Qm(t) Fm(t)

— / DR dodt + [ () fdz — [ ol2dz
Qm{sa,T) Qn() 2m(s0)

+ / F(R)dDn + f Pondlm(B)dt, (54)
2",,(3(},7') Em(sf)?T)

where i is the 4 dimensional normal vector outward from the lateral boundary £, defined

by .

By virtue of the relation dX,, = (Jva]? 4+ 1)¥2dT.(t)dt,

. 1 1 N
/ (D) xdadt = - f () e — & / ol?d. (55)
Qm(so,T) 2 2 Q

m(7) m,(SQ)

So taking the test function 7 = x in (49) with replacing @m(0,T) by Qm(se,7) With
T € [sg, 5] we see that ,

L / [x(T)|*dz + / Vx> dzdt + f |x|*dzdt
2 Jamm Qmls0,7) Qum(50,7)

. ) : ]
< f Oxdzdt + / |2 dzdt + —f |%o|?dz. (56)
Qm(s0,7) Qum(s0.7) 2 Jam(so)
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And the same way in (48) with the test function=e

L /ﬂ m(7)|é(r)]2dm+ [ |Veé|2dzdt

2 Qm{s0,7)

1
< / fededt + / V5 - Védodt + - f \o|2dz, (57)
Qm(50,7) Qrm(50,7) 2 Jan(s0)

for all 7 € [sq, s]. So adding (56), (57) and using Young’s inequality we see that
&(T) 22 () +/ [VE() L (0 ey Bt
S0
48 samin + [ VOBt +2 [ [ dode
E:2) S0

T T
< 3/ |8(8)] 22100, ey +3/ X (N2 (e B + |€0l72 (01 (50))
S0 sp
+ [)’Zoliz(gm(so)) + |f|12:2(Qm(so,s))-

Thanks to Gronwall’s inequality we get the conclusion. |

Using the same method of Theorem 7.1 in Chapter 3, Section 7 of the book by
Ladyzenskaja, Solonnikov and Ural’ceva [15], we obtain the following global bounded-
ness.

Lemma 7. For any sg,s € [0,T) with 0 < sg < s < T, there exists a positive constant
My independent of v such that

X2 (Qm(s0,5)) < Mio- (58)

Proof. From the independence of ¥, in order to calculate the integration by part (54)
and (55), In (49) we take n = [¥ — M|" with some large positive constant M. And then
X—~% =x1-%" < xon{(t,z) € Qm(so,s); X(t,x) > M}. So thanks to the result of
[15] it is enough to show that § is bounded with respect to the norm of L™ (s, s) as the
LT(Q,,(t)) valued functions, where r* and ¢* are arbitrary positive numbers satisfying

the condition
1 3

’IT*_E_QQ* =1—~f€, (59)
with
q*e[———w—-g +oo} 7‘*6{ ! +oo} 0<kr<l
2(1 — k)’ ’ 1- '
By virtue of (51) and Lemma 6 with x = 1/4 we get the conclusion. O

Lemma 8.  For any so,s € [0,T] with 0 < 5o < s < T, there exists a positive constant
My depend on |Vi{gz(se 511 () Such that

X ()2, oyt + S(UP X @mey < M- (60)
50

SOS
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Proof. YVe operate D, to second equation, then we get the following auxiliary equation
with U = Dy x.

DU — AU + 35U = D& in Qm(so, s), (61)
au 9 _

on E)—II(VD -Vx) onT'n(so,s), (62)

Ulsp) = U, = AXo — Xo + & in Qi (s0)- (63)

This is an initial and boundary value problem of the linear heat equation with given
coefficient so we have a weak solution because the right hand side makes in the following
sense
Diéndz = / Veé - Vndz — Vi - Vndz + fndz, (64)
Qm () JUn(t) Qm(2) Qn ()
for all n € HYQ) with n(s) = 0 ae. t € (sg,s). Moreover we assumed that € €
HY(Qm(s0)) X0 € H*(Qn(s0)). So there exist a positive constant M, such that U = D;x
satisfies the following estimate as the weak solution of the general heat equation
sup lDt)z(t)le(ﬂm(t)) S M{l (65)

t€(50,5)

Finally by virtue of Lemma 6 and 7 with the equation Ay = Dix — %° + & we get

S(HP IAX(1) 12 @m) < My + Mo + M. (66)
te(sg,s) .
Thus using Lemma 6 and Lemma 7 we get the conclusion. =

Lemma 9.  For any sq,s € [0, T} with 0 < so < s < T, there exists a positive constant
M depend on |¥|p2(s,s:vy Such that

|€]Loo(Q(s0,5)) T €] Lo (s0,5:v) F 1€l L2(s0,55m2(0)) < M. (67)

Proof. Thanks to the assumption f € L7(0,T; L9(€2)) and the estimate (58), the same
argument of Lemma 7 works to the equation of €&. And then the estimate (60) replaceing
% by € holds. So the same argument of Lemma 8 works to the equation of €. ]

We denote by (PF;¥,6p, %) on [so,s] the variational problem associated with the
phase field equations on (J;,, and any functions {6, %} satisfying the above lemmas is
called a solution of (PF;V, 8, %o) on [sg, s).

5.2 Proof of Theorem 3

Finally we show the key point of the proof of Theorem 3. In order to get the reg-
ularity of x, we consider the following imbedding theory: Let F' be a bounded set in
L*(0,T; H*(2mp)) and

T vy
/ | Deu(t) 720, @t < Mis forallu:=[uo y] with u € F,
0
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where M3 is a positive constant. Then F is relatively compact in C((0, T) xQ.m0)- Because
in our setting the the domain is time dependent, but we have the enough estimate for v.
So the boundedness of the time derivative is coming from the one of Dy;u. We can find
the related topics in Fukao [7]. Thus we can use the same manner (a)-(d) in the previous
section with replacing (SP; v, 4,) by (PF;V, 85, Xo)-
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