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Abstract

We study the positive stationary solution set of a strongly coupled diffusion system
with the Lotka-Volterra reaction term. We obtain the bifurcation branch of the

positive solutions, which extends globally with respect to a bifurcation parameter.
Furthermore, by the analysis for the shadow systems, we derive the nonlinear

diffision effect of on the positive solution branch.

1 Introduction
Many reaction-diffision models have been proposed to describe the population dy-

namics in various ecological situations. In particular, the nonlinear-diffision systems

with ffie Lotka-Volterra interaction terms have been extensively studied by many math-
enaticians, since the advocated wgrk by $\mathrm{S}\mathrm{b}_{\wedge}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{d}\mathrm{a}- \mathrm{K}\mathrm{a}\mathrm{w}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{k}\mathrm{i}- \mathrm{T}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}[19]$ .

In ffiis article, we focus on ffie following strongly coupled diffision system with the

prey-predator interaction terms:

(P) $\{$

$u_{t}=\Delta u+u(a-u-cv)$ in $\Omega \mathrm{x}(0, \infty)$ ,

$v_{t}= \Delta[(\mu+\frac{1}{1+\beta u})\not\in+v(b+du-v)$ in $\Omega \mathrm{x}$ $(0, \infty)$ ,

$u=v$ $=0$ on $\partial\Omega \mathrm{x}$ $(0, \infty)$ ,

$u(\cdot,t)=u_{0}\geq 0$ , $v(\cdot, t)=v_{0}\geq 0$ on $\Omega$ ,

where 0 is a bounded domain in $R^{N}$ with a smooth boundary an ; a,b,c,d, and $\mu$

are all positive constants; $\beta$ is a nonnegative constant. System (P) is a prey-predator
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model, From the ecological point of view, the unknown functions $u$ and $v$, respectively,
denote the population densities of prey and predator species which are interacting and
migrating in the same habitat $\Omega$ . In the reaction terms, $a$ and $b$ represent the birth rates
of the respective species, $c$ and $d$ denote the prey-predator interactions. In the sec-
ond equation, the strongly coupled diffusion term $\Delta(\frac{v}{1+\beta u})$ models a situation in which
the population pressure of predator species weakens in the high density place of prey
species. On the solvability of (P), Le. Dung [8] has recently found the global attractor
for a class of the quasilinear parabolic systems involving (P). So it becomes more inter-
esting to study the dynamical structure for the solution set of (P). As the beginning of
the study, we have been analyzing for the stationary solution set of (P), since [10]. To
my knowledge, there are few works on this fractional type of density dependence dif-
fusions in the field of reaction-diffusion systems. It should be noted that our nonlinear
diffusion term is different from the usual cross-diffusion term proposed by [19].

Our purpose is to derive the global bifurcation structure of the stationary solution
set. Then we will discuss the associate stationary problem with (P);

(SP) $\{$

$\Delta u+u(a-u-cv)$ $=0$ in $\Omega$ ,

$\Delta||(\mu+\frac{1}{1+\beta u})\not\in+v(b+du-v)=0$ in $\Omega$,

$u=v$ $=0$ on an.
Among other things, we are interested in the positive solutions of (SP). It is said that
$(u, v)$ is a positive solution if both $u>0$ and $v$ $>0$ satisfy (SP). From the viewpoint
of the prey-predator model, a positive solution $(u, v)$ implies a coexistence steady state.
Hence, it is an important problem to derive the positive solution set of (SP).

In order to study the positive solution set, we need some notations. Henceforth, we
will use &i (q) to denote the least eigenvalue of the problem

$-\Delta u+q(x)u=\lambda u$ in $\Omega$ , u $=0$ on an,
where $q(x)$ is a continuous function in $\overline{\Omega}$ . We simply vite $\lambda_{1}$ instead of $\lambda_{1}(0)$ . It is
well known that the follow ing problem

$\Delta u+u(a-u)=0$ in $\Omega$ , u $=0$ on an (1.1)

has a unique positive solution $u=\theta_{a}$ if and only if $a>\lambda_{1}$ . Hence, (SP) has a semitrivial
solution $(u,v)$ $=(9\mathrm{a},0)$ if $a$ $>\lambda_{1}$ . Furthermore it is easily verified that (SP) has another
semitrivial solution $(u, v)=(0,0/+1)\theta_{b/\psi+1)})$ if $b>(\mu+1)\mathrm{A}\mathrm{i}$ , Here, $\theta_{b/\{\mu+1\}}$ represents
a positive solution of (1.1) with $a$ replaced by $b/(\mu+1)$ . The usual norms of the spaces
$L^{p}(\Omega)$ for $p\in[1, \infty)$ and $C(\overline{\Omega})$ are defined by

$|[u||_{p}:=( \int_{\Omega}|u(x)|^{p}dx)^{1/p}$ and $||u||_{\infty}:=\mathrm{m}_{X\epsilon^{\frac{\mathrm{a}}{\Omega}}}\mathrm{x}|u(x)|$.
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2 Positive Solution Set

2.1 Coexistence Region

In this article, we are restricted on the case b $>(\mu+1)\lambda_{1}$ . The first theorem gives a
sufficient condition of the existence of positive solutions:

Theorem 2.1 ([10]), Let $a^{*}=\lambda_{1}(c\omega+1)\theta_{b/\{\mu+1)})$ . $Ifb>(\mu+1)\lambda_{1}$ , (SP) has apositive so-
lutionfor $a>a^{*}$ . From the bifurcation structure point ofview, the positive solution set

of (SP) contains a local bifurcation branch $\Gamma=\{(u(s),v(s),a(s))\in X\mathrm{x} R : s\in(0,\delta)\}$,

such that $(u(0), v(0),a(0))=(0,(\mathrm{p}+1)\theta_{b/\{\mu+1\rangle},a^{*})$. Furthermore, $\Gamma$ can be extended
globally with respect to $a(arrow\infty)$ as a positive solution branch of (SP).

We remark that the above bifurcation point

$a^{*}=\lambda_{1}(c\phi+1)\theta_{b/(u+1)})$ (2.1)

depends on $(b, c,\mu)$ , but is independent $\mathrm{o}\mathrm{f}\beta$ . Furthermore in [10, Lemma 2.3], we have

proved that for any fixed $(\mathrm{c},/\mathrm{i})$ , $a^{*}=a^{l}(b)$ is a monotone increasing smooth function
with respect to $b>(\mu+1)\lambda_{1}$ such that $\lim_{b\backslash \zeta\mu+1)\lambda_{1}}a^{*}(b)=\lambda_{1}$ and $\lim_{b\prec\infty}a^{*}(b)=$

$\infty$ . Theorem 2.1 enables us to find the coexistence region on the $(a,b)$ space. By
the monotone property of the curve $a=a^{*}(b)$ (Theorem 2.1), one can deduce that if

$(a,b)$ lies in the region surrounded by $a=a^{*}(b)$ and $b=(\mu+1)\lambda_{1}$ , then (SP) has

a positive solution (see the region $R_{1}\cup R_{2}$ in Figure 1). This region ,$\mathrm{i}\mathrm{n}$ case $\beta=0$ ,

corresponds to the exact coexistence region shown by L\’opez-G6mez and Pardo [15].

From the viewpoint of the bifurcation theory, positive solutions bifurcate from $(u, v)$ $=$

$(0, y +1)\theta_{b/(\mu+1)})$ when $(a, b)$ moves across $a=a^{*}(b)$ .

2.2 Asymptotic Behavior of Positive Solutions as $\beta\sim$ $\infty$

Next, I will derive the nonlinear effect of large $\beta$ on the positive solution set. For

the sake of the derivation, we will introduce two shadow systems as $73arrow$ oo in (SP).

We assume that $\psi_{n}$ } is any positive sequence with $\lim_{n\prec\infty}\beta_{n}=\infty$ , and that $\{(u_{n},v_{n})\}$ is any

positive solution sequence of (SP) with $\beta=\beta_{n}$ . With some suitable assumptions, we
will prove that one of the following two situations necessarily occurs:

(i) There exists a certain positive solution $(u,v)$ of

$\{$

$\Delta u+u(a-u-cv)=0$ in $\Omega$ ,

$\mu\Delta v+v(b+du-v)=0$ in $\Omega$,

$u=v$ $=0$ on an,
(2.2)

such that $\lim_{narrow\infty}(u_{n},v_{n})=(u,$v) in $C(\overline{\Omega})^{2}$ , passing to a subsequence



78

(ii) There exists a certain positive solution $(w, \mathrm{v})$ of

$\{$

$\Delta w$ $+w(a-cv)$ $=0$ in $\Omega$ ,

$\Delta[(\mu+\frac{1}{1+w})v]+v(b-v)=0$ in 0,

$w$ $=v$ $=0$ on $\partial\Omega$,

(2.3)

such that $\lim_{narrow\infty}(\beta_{nn’ n}u\iota\})=(w,$v) in $C(\overline{\Omega})^{2}$ , passing to a subsequence.

Our convergence result (Theorem 4.1) will also ensure that if $\beta$ is sufhciently large,
any positive solution of (SP) can be approximated by a suitable positive solution of
either (2.2) or (23). Hence it is natural to ask which of (2.2) and (23) (or both) can
characterize positive solutions of (SP), according to each coefficient value.

The positive solution set of the first shadow system (2.2) has been extensively stud-
ied by many mathematicians (e.g., [2], [4], [5], [6], [13], [14], [15], [16], [20]). As
a summary of their all results, we know the next result on the positive solution set of
(2.2):

Theorem 2.2, Let a $=\lambda_{1}(c\mu\theta_{b/\mu})$ . Then (2.2) has a positive solution if and only if
a>\^a. From the bifurcation structure point of view, the positive solution set of (2.2)
contains a local bifurcation branch $\Gamma_{1}=\{(\mathrm{w}(\mathrm{s}),\mathrm{v}(\mathrm{s}),\mathrm{a}(\mathrm{s}))\in X\mathrm{x} R : s\in(0,\delta)\}$ , such
that $(u(0),v(0),a(0))=(0,\mu\theta_{b/\rho},\text{\^{a}})$ . Furthermore, $\Gamma_{1}$ can be extended in the direction
a>\^a as an unbounded positive solution branch of (22).

Here we note that for any fixed $(\mathrm{c},/\mathrm{i})$, $\text{\^{a}}=\lambda_{1}(c\mu\theta_{b/\mu})$ is a monotone increasing
smooth function with respect to $b>\mu\lambda_{1}$ , such that $\lim_{b\forall\lambda_{\mathrm{t}}}\mathrm{a}(\mathrm{b})=\lambda_{1}$ and $\lim_{barrow\infty}$ \^a(b)=
$\infty$ . Furthermore, it can be verified that $a^{*}(b)<\ (\mathrm{b})$ for all $b>(\mu+1)\lambda_{1}$ (see Figure 1).

Hence, it becomes a crucial part of this article to study the positive solution set of
the second shadow system (23). By regarding $a$ as a bifurcation parameter, we will
show that the branch of the positive solution set of (2.3) bifurcates from the semitrivial
solution with $lB$ $\equiv 0$ at $a=a^{*}$ , and moreover that this branch extends globally and
blows up with respect to $||w||_{\infty}$ at a=\^a:

Theorem 2,3 ([12]). Suppose that $b>(\mu+1)\lambda_{1}$ . Positive solutions of (2.3) bifurcate
from the semitrivial solution curve $\{(0, \mathrm{Q}l +1)\theta_{b/(u+1)},a) : a\in R_{+}\}$ ifand only if$a=a^{*}$ .
To be precise, all positive solutions of (52) near (0, (ju $+1$ ) $\theta_{b/\zeta\mu+1)}$, $a^{*}$ ) $\in X\mathrm{x}$ $R_{+}$

can be parameterized as $\Gamma_{2}=\{(w(s),v(s),a(s))\in X\mathrm{x} R_{+} : s\in(0,\delta)\}$ , such that
$(w(0),v(0),a(0))=(0,\mu\theta_{b/\mu}, \text{\^{a}})$. Furthermore, $\Gamma_{2}(\subset X\mathrm{x} R_{+})$ can be extended as an
unbounded positive solution branch (of (23)), which contains an unbounded smooth
curve which is parameterized by $a$ ; $(\mathrm{w}(\mathrm{a}), \mathrm{v}(\mathrm{a})$ $)\in X\mathrm{x}$ [\^a-\kappa , \^a)} with a cenain
positive number $\kappa$. Here, $(w(a), v(a))$ is a smoothfunction such that

$\lim_{a\nearrow\hat{a}}||w(a)|\}_{\infty}=\infty,\lim_{a\nearrow\hat{a}}v(a\grave{)}=\mu\theta_{b/\mu}$ in $C^{1}(\overline{\Omega})$ .
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Furthermore, it can be proved that (2.3) has no positive solution if $a\geq$ a $:=$

$\lambda_{1}(c\mu^{-1}(\mu+1)^{\gamma}\sim\theta_{b/\mu})$ . Here, we note that $\tilde{a}=\lambda_{1}(c\mu.(\mathrm{J}p +1)^{9}\sim\theta_{b/\mu})$ is also a monotone
increasing smooth function for $b>\mu\lambda_{1}$ , such that $\lim_{b\backslash _{\mu\lambda_{\mathrm{I}}}}$

$\text{\^{a}}\langle b$) $=\lambda_{\mathrm{t}}$ and $\lim_{barrow\infty}$ \^a(b)=
$\infty$ . Furthermore, it holds that $a^{*}(b)<\mathrm{a}(\mathrm{b})<\tilde{a}(b)$ for all $b>(\mu+1)\lambda_{1}$ (see Figure 1).

Consequently, it follows that if $a\in(a^{*},\text{\^{a}})$ , (2.3) has at least one positive solution
while (2.2) has no positive solution, and that if $a>\overline{a}$ , (2.3) has no positive solution
while (2.2) has at least one positive solution. Ow ing to such studies on the shadow
systems, we will prove the approximate result in large $\beta$ case:
Theorem 2.4 ([12]). Suppose that $\{(u_{n}, v_{n})\}$ is any positive solution sequence of (SP)

will $\beta=\beta_{n}$ and ,$\lim_{\iotaarrow\infty}\beta_{n}=\infty$. Let $\epsilon$ and 6 be arbitrary small positive numbers. Then,

there exist positive numbers a $>a^{4}(>\lambda_{1})$ such that if $a\in(a^{*}, \text{\^{a}}-\delta 1\cup [\hat{a}+\delta, \infty)$ , $b>$

$(p +1)\lambda$ . and $n$ is sufficiently large, either the following situation (i) or (ii) necessarily
occurs :

(i) There exists a certain positive solution $(u, v)$ of (2.2) such that

$\mathrm{m}_{X\in}|u\frac{\mathrm{a}\mathrm{x}}{\Omega},$‘ $(x)-u(x)|+\mathrm{m}_{X\epsilon^{\frac{\mathrm{a}\mathrm{x}}{\Omega}}}|v_{n}(x)-v(x)|<\epsilon$.

(ii) There exists a certain positive solution $(w, v)$ of (2.3) such that

$\mathrm{m}_{\lambda\in}\frac{\mathrm{a}\mathrm{x}}{\Omega}|\beta_{r\iota}u_{\mathit{1}},(x)$ $-w(x)|+\mathrm{m}_{X\epsilon^{\frac{\mathrm{a}\mathrm{x}}{\Omega}}}|v_{n}(x)-v(x)|<\epsilon$ .

Furthe rnore, there exists a number $\tilde{a}(>\hat{a})$ such that if $\mathrm{a}\in$ [ $\tilde{a}_{\backslash }\infty)$ , the situation of (ii)

can not occur, and if $a\in(a^{*}$ .a $-\delta$ ], the situation of (i) can not occur.

Figure 1: The region $R_{\mathrm{J}}$ gives the exact coexistence region for (2.2). The region
$R_{2}$ yields the sufficient condition for existence of positive solutions of (2.3)
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3 A Priori Estimates
In this subsection, we introduce a semilinear elliptic system equivalent to (SP),

and give some a priori estimates for positive solutions of the semilinear system ([10]).
These a priori estimates will play an important role in the succeeding sections. Since
we are restricted on nonnegative solutions, it is convenient to introduce the unknown
function $V$ by

$V=( \mu+\frac{1}{1+\beta u})v$ . (3.1)

There is a one-to-one correspondence between $(u,v)\geq 0$ and $(u, V)\geq 0$ . Then, (SP) is
rewritten in the following equivalent form:

(EP) $\{$

$\Delta u+u(a-u-cv)=0$ in $\Omega$ ,

$\Delta V+\nu(b+du-v)=0$ in $\Omega$ ,

$u=V=0$ on $dn$,

where v $=v(u,$V) is understood as the function of (u, V) defined by (3.1). It is easy to
show that (EP) has two semitrivial solutions

(u,$V)=(\theta_{a},0)$ for a $>\lambda_{1}$ and (u,$V)=(0, \psi +1)^{2}\theta_{b/(u+1)})$ for b $>(\mu+1)\lambda_{1}$ ,

in addition to the trivial solution (u,$V)=(0,$ 0). We obtain the following a priori
estimates for positive solutions of (EP) (or equivalently (SP)):

Lemma 3.1. Suppose that $(u, v)$ is any positive solution of (EP) Let $V$ be the positive
function defined by (3. 1). Then,

$0<u(x)<a$, $\mu^{2}\theta_{b/(\mu+1)}(x)<\mathrm{V}(\mathrm{x})\leq v(x)<(1+\frac{1}{\mu})(b+ad)$

for all $X$ $\in\Omega$.
We refer to [10] and [I2] for the proof of Lemma 3.1. The next lemma gives a

nonexistence region for positive solutions of (EP):

Lemma 3.1. If a $\leq\lambda_{1}$ or $(1+\beta a)(b+ad)\leq\lambda_{1}$ , (EP) (or equivalently, (SP)) has no
positive solution.

Proof Suppose for contradiction that (m, V) is a positive solution of (EP) with the case
$(1+\beta a)(b+ad)\leq\lambda_{1}$ . Since u $<a$ by Lemma 3.1, then

–ISV $=v(b+du$ -v) $=V(1+\beta u)(b \dagger$du $-v)<V(1+\beta a)(b+ad)$
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in O. Then by taking $L^{2}(\Omega)$ inner product with V, we obtain

$ll\nabla V|[_{2}^{2}<(1+\beta a)(b+ad)]|V||_{2}^{2}$. (3.2)

Since $||\nabla V||_{2}^{2}\geq\lambda_{1}||V$] $\}_{2}^{2}$ by Poincare’s inequality, (3.2) obviously yields a contradiction.
Observing that $u(a-u-cv)$ $<au$ in $\Omega$, we can derive the assertion in the case $a\leq\lambda_{1}$

along a similar way.
$\square$

4 Existence of Tvvo Shadow Systems as $73-\neq\infty$

In what follows, we will concentrate ourselves on the special case when $\beta$ is suf-
ficiently large. Our purpose is to derive the nonlinear effect of large $\beta$ on the positive
solution set of (SP). The next theorem ensures the existence of two shadow systems as

$\betaarrow\infty$ . We refer to [12] for the proof of the theorem.

Theorem 4.1. Let a $:=\lambda_{1}(c\mu\theta_{b/\mu})$ and $b>(\mu+1)\mathrm{A}\mathrm{i}$ . Suppose that {(un, $\mathrm{v}\mathrm{n})$ } is any
positive solution sequence of (SP) with $\beta=\beta_{t}$, and $\lim_{narrow\infty}\beta_{n}=\infty$. Then, for any small
positive numbers 5 and $\epsilon$, there exists a large integer $N$ (which depends on $\delta$, $\epsilon$ and the
coefficients of (SP)$)$ such that if

$a\in(\lambda_{1},\hat{a}-\delta]\cup[\hat{a}+\delta, \infty)(=:I_{\delta})$

and $n\geq N$, either thefollowing property (i) or (ii) holds true :

(i) There exist a certain positive solution (u,$v)=(\overline{u},\overline{\iota’})$ of(2.2) such that

$||u_{n}-\overline{u}||_{\infty}+||v_{n}-\overline{v}|[_{\infty}<\epsilon$.

(ii) There exist a certain positive solution $(w, v)=(\overline{w},\overline{v})$ of(2.3) such that

$\{|\beta_{n}u_{n}-\overline{w}||_{\infty}+||v_{n}-\overline{v}||_{\infty}<\epsilon$ .

5 Second Shadow System

5.1 A Priori Estimates
In this section, we will study the second shadow system (2.3). By employing a new

unknown functio
$z$ $:=( \mu+\frac{1}{1+w})v$, (5.1)
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we reduce (2.3) to the following semilinear elliptic system ;

$\{$

$\Delta w+w\{a-\frac{c(1+w)z}{\mu(1+w)+1}\}=0$ in $\Omega$ ,

$\Delta z+\frac{(1+w)z}{\mu(1+w)+1}\{b-\frac{(1+w)z}{\mu(1+w)+1}\}=0$ in $\Omega$,

$w=z=0$ on $\partial\Omega$ .

(5.2)

Because of the one-to-one corresponding between $(w, \mathrm{v})$ $\geq 0$ and $(\mathrm{w},\mathrm{z})\geq 0$ , we may
concentrate ourselves on (5.2), We note that (5.2) has a semitrivial solution $(w, z)=$
$(0, \psi +1)^{2}\theta_{b/(\mu+1)})$ if $b>(\mu+1)\lambda_{1}$ . The following lemma gives the a priori bounds for
the $v$ (resp. $z$) component of any positive solution of (2.3) (resp. (5.2)).

Lemma 5.1. Suppose that $b>(\mu+1)\lambda_{1}$ . Let $(w, n)$ be any positive solution of (23),
and let $z$ he the positive function defined by (5.1). Then, itfollows that

$\frac{\mu^{2}}{\mu+1}\theta_{b/(u+1)}<v<\frac{(_{\vee}\mu+1)^{2}}{\mu}\theta_{b/\mu}$ and $\mu^{2}\theta_{b/\zeta\mu+1)}<z<(\mu+1)^{2}\theta_{b/\mu}$ in O. (5.3)

Funhermore, if

$a \leq\lambda_{1}(\frac{c\mu^{2}}{\mu+1}\theta_{b/\{\mu+1)})$ or $a \geq\lambda_{1}(\frac{c(\mu+1)^{2}}{\mu}\theta_{b/\mu})$ ,

both of (2.3) and (5.2) have no positive solution.

The above nonexistence region of the positive solutions can be led from (5.3) with
the aid of the comparison argument. We refer to [12] for the proof of Lemma 5.1.

5.2 Local Bifurcation Structure of the Positive Solution Set
For the framework of our bifurcation analysis, we prepare two Banach spaces

$\{$

$X:=[ W^{2.p}(\Omega)\cap W_{0}^{1_{P}}’(\Omega)]\mathrm{x}[W^{2,p}(\Omega)\mathrm{n} W_{0}^{1,p}(\Omega)]$ ,
$\mathrm{Y}:=L^{p}(\Omega)\mathrm{x}L^{p}(\Omega)$

for $p>N$ . We note that $X\subset C^{1}(\overline{\Omega})\mathrm{x}C^{1}(\overline{\Omega})$ by the Sobolev embedding theorem.
For the positive number $a^{*}=\lambda_{1}(c(\mu+1)\theta_{b/(\mu+1)})$ introduced in (2.1), we define the

associate positive eigenfunction $\phi^{*}$ , which satisfies

$-\Delta\phi^{*}+\{c(\mu+1)\theta_{b/\{\mu+1\}}-a^{*}\}\phi^{\mathrm{r}}=0$ in $\Omega$, $\phi^{*}=0$ on $\partial\Omega$, $||\phi^{*}||_{2}=1$ . (5.4)

We recall that (5.2) has the semitrivial solution $(w,z)=(0, \omega +1)^{2}\theta_{b/\{\mu+1)})$ . Positive
solutions of (5.2) bifurcate from the semitrivial solution curve $\{(0, (u+1)^{2}\theta_{b/(\mu+1)},$ $a)\in$

$X\mathrm{x}R_{+}\}$ at the same point $a=a^{*}$ to the original (EP) case
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Proposition 5.2. Suppose that $b>(\mu+1)\lambda_{1}$ . Positive solutions of(5.2) bifurcate from
the semitrivial solution curve $\{(0, (\mu+1)^{2}\theta_{b/(\mu+1)},a) : a\in R_{+}\}$ ifand only $ifa$ $=a^{*}$ . To
be precise, all positive solutions of (5.2) near $(0, \phi +1)^{2}\theta_{b/(\mu+1)},a^{*})\in X\mathrm{x}R_{+}can$ be
parameterized as

$\Gamma_{\mathit{5}}:=$ $\{(s(\phi^{*}+\tilde{W}(s)), \psi +1)^{2}\theta_{b/(\mu+1)}+s(\chi+\tilde{z}(s)),a(s)) : 0<s\leq\delta\}$ (5.5)

for some $\delta>0$ and$\mathcal{X}\in X$. Here, $(\tilde{W}(s),\tilde{z}(s),a(s))$ is a smoothfunction with respect to
$s$ and satisfies $(\tilde{W}(0),\tilde{z}(0),a(0))=(0,0, a^{*})$ and $\int_{\Omega}\tilde{W}(s)\phi^{*}=0$.
Proof. In view of the nonlinear terms of (5.2), we put

$f(w, z,a)=w \{a-\frac{c(1+w)z}{\mu(1+w)+1}\}$ ,

(5.6)
$g(w,z)= \frac{(1+w)z}{\mu(1+w)+1}\{b-\frac{(1+w)z}{\mu(1+w)+1}\}$ .

By Taylor’s expansion at the centre of $(w^{\mathrm{r}},z^{\triangleleft})$ , we reduce the differential equations of
(5.2) to the form

$(\Delta w+f(w^{*},,z_{Z}^{*}a)\Delta z+g(w^{*\ddagger}))+(\begin{array}{ll}f_{w}^{*} f_{z}^{*}g_{w}^{*} g_{z}^{*}\end{array})(\begin{array}{l}w-w^{*}z-z^{\mathrm{s}}\end{array})$$+(\begin{array}{lll}p^{1}(w-w^{*} ,z-z^{\mathrm{r}} ,a)\rho^{2}(w-w^{*} ,z-z^{s} ,a)\end{array})$ $=(\begin{array}{l}00\end{array})$, (5.7)

where $f_{w}^{*}:=f_{w}(w^{*},z^{*},a)$ and the other notations are defined by similar rules. Here,
$\rho^{i}(w-w^{*},z -z^{*},a)(\mathrm{i}=1,2)$ are smooth functions such that $\rho^{i}(0,0, a)=\rho_{(w,z)}^{i}(0,0,a)=$

$0$ . We note that /$(0, (\mu+1)^{2}\theta_{b/\zeta\mu+1)}$ , $a)=0$ and
$g(0, (\mu+1)^{2}\theta_{b/\zeta\mu+1\}})=(\mu+1)\theta_{b/(\mu+1)}\{b-(\mu+1)\theta_{b/(\mu+1)}\}=-(\mu+1)^{2}\Delta\theta_{b/\zeta\mu+1)}$ .

By letting $(w^{*},z^{*})=(0, (\mu+1)^{2}\theta_{b/\zeta\mu+1)})$ and $\overline{z}:=z-(\mu+1)^{2}\theta_{b/[\mu+1)}$ in (5.9), after some
calculations, we obtain

$(\begin{array}{l}\Delta w\Delta\overline{z}\end{array})+(\begin{array}{llll}a-c(\mu +1)\theta_{b/\{\mu+1)} 0\theta_{b/\{\mu+1)}\{b-2(\mu+1)\theta_{b/(\mu+1)}\} \frac{b}{\mu+1} -2\theta_{b/\{\mu+1)}\end{array})$$( \frac{w}{z})$

(5.8)

$+(\begin{array}{l}\rho^{1}(w,\overline{z},a)\rho^{2}(w,\overline{z},a)\end{array})$ $=(\begin{array}{l}00\end{array})$,

where $\rho^{i}(w,\overline{z},a)(i=1,2)$ are smooth functions satisfying

$\rho_{(\iota v,7z}^{1}(0,$0,$a)=\rho_{(w,z3}^{2}(0,0, a)=0$ for all a $>0$. (5.9)

We define a mapping F : Xx $R_{+}arrow Y$ using the left-hand side of (5.10):

$F(w,\overline{z},a)$

$=[ \Delta\overline{z}+\theta_{b/(\mu+1)}\{b-2(\mu+1)\theta_{b/\zeta\mu+1)}\}w+(\frac{1)1wb}{\mu+1}-2\theta_{b}/\{\mu+1))\overline{z}+\rho^{2}(w,\overline{z},a)\Delta w+\{a-cM+1$

)
$\theta_{b/(\mu+}+\rho^{1}(w,\overline{z}’ a))$ .

(5.10)
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Since $(w,z)=(0, \psi +1)^{2}\theta_{b/(\mu+1)})$ is a semitrivial solution of (5.2), $F(0,0,a)=0$ for
$a>0$ . It follows (5.11) and (5.12) that the Frechet derivative of $F$ at $(w,\overline{z})=(0,0)$

is given by

$F_{\{w,\mathrm{z}\gamma}(0, 0, a) (\begin{array}{l}hk\end{array})=[\Delta k+\theta_{b/(\mu+1)}\{b-2(\mu+1)\theta_{b/\zeta\mu+11}\}h+(\frac{1)\}bh}{\mu+1}-2\theta_{b/(\mu+1)})k\Delta h+\{a-c(\mu+1)\theta_{b/(\mu+})$ .

From (5.6), we know that $\mathrm{K}\mathrm{e}\mathrm{r}F_{(w,\overline{z})}(0,0, a)$ is nontrivial for $a=a^{*}$ and that

$\mathrm{K}\mathrm{e}\mathrm{r}F_{(\overline{U},z)}(0,0,a^{*})=$ span $\{\phi^{*},\psi\}$ .
Here, $\psi$ is defined by

$\psi=(-\Delta-\frac{b}{\mu+1}+2\theta b/(\mu+1))^{-1}(\theta b/\psi+1)\{b-2(\mu+1)\theta_{b/(\mu+1)}\}\phi^{*})$ ,

$\mathrm{h}\mathrm{o}\mathrm{m}o\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{s}\ddot{\mathrm{m}}\mathrm{c}\mathrm{h}1\mathrm{e}\mathrm{t}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{n}\partial\Omega.(\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}11\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}’\Delta-\frac{\theta_{b}b}{\mu+1}+2\theta_{b/(\mu+1)}\mathrm{i}\mathrm{s}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}(-\Delta-\frac{b}{\mu+1,\mathrm{D}’}+2\theta_{b/\{\mu+1\}})^{-1}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}s\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{f}-\Delta-\frac{b}{\mu+1,-}+2_{/(\mu+1)}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}$

invertible, see, e.g., [4].) If $(\tilde{h},\tilde{k})\in$ Range $F_{(w,z7}(0,0,a^{*})$ , then

$\{$

$\Delta h+$ $\{a-c(u+1)\theta_{b/(\mu+1)}\}h=\tilde{h}$ in $\Omega$ ,

$\Delta k+\theta_{b/\{\mu+1)\{b-2(\mu+1)\theta_{b/\mathrm{t}u+1)}\}h+}(\frac{b}{\mu+1}-2\theta_{b/\{\mu+1)})k=\tilde{k}$ 1n $\Omega$ ,

$h=k=0$ on $\partial\Omega$

for some $(h,k)\in X$ . By virtue of the Fredholm alternative theorem, we know that the
first equation has a solution $h$ if and only if $\int_{\Omega}\tilde{h}\phi^{*}=0$ . For such a solution $h$, the
second equation has a unique solution $k$ because $- \Delta-\frac{b}{\mu+1}+2\theta_{b/\{\mu+1)}$ is invertible. Then,
it follows that $\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}F_{(w,\overline{z})}(0,0,a^{*})=1$ . In order to use the local bifurcation
theory of Crandall-Rabinowitz [3] at $(\mathrm{w},\mathrm{z}7a)=(0,0, a^{*})$ , we need to verify

$F_{\mathrm{t}^{\mathrm{p}\}},\overline{z}\mathrm{J},a}(0,$0,$a^{*})(\begin{array}{l}\phi^{*}\psi\end{array})\not\in$ Range $F_{(\iota v,7\mathrm{z}}(0,0,a^{*})$ .

Since $\rho_{(w,7z,a}^{i}(0,0,a^{\mathrm{r}})=0$ by (5.11), the differentiation of (5.12) yields

$F_{(w,3z,a}(0, 0, a^{*})(\begin{array}{l}\phi^{*}\psi\end{array})=(\begin{array}{l}\phi^{*}0\end{array})$ .

Suppose for contradiction that there exists a certain function $h\in W^{2,p}(\Omega)\cap W_{0}^{1,p}(\Omega)$

such that
$\Delta h+\{a-c(\mu+1)\theta_{b/(\mu+1)}\}h=\phi^{*}$
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Multiplying the above equation by $\phi^{*}$ and integrating the resulting expression, we have
$||\phi^{*}||_{2}=0$ , which contradicts the fact that $||\phi^{*}||_{2}=1$ . Since $\overline{z}=z-(\mu+1)^{2}\theta_{b/\zeta\mu+1)}$ , one
can obtain expression (5.7) by using the local bifurcation theorem ([3]). We note that
the possibility of other bifurcation points except $a=a^{*}$ is excluded by virtue of the

Krein-Rutman theorem. Then we accomplish the proof of Proposition 5.3. $\square$

5.3 Asymptotic Behavior of the Global Bifurcation Branch

In this subsection, we will extend $\Gamma_{\delta}$ globally as a positive solution branch of (5.2).

It will be proved that the global branch is uniformly bounded with respect to $(z,a)$ ,

while ] $|w||_{\infty}$ blows up along the branch at $a=\hat{a}(=\lambda_{1}(c\mu\theta_{b/\mu}))$. Before discussing the

global extension, we should prove the following inequality.

Lemma 5.3. Let $a^{*}=\lambda_{1}(c(\mu+1)\theta_{b/\{\mu+1)})$ and a $=\lambda_{1}(c\mu\theta_{b/\mu})$ . (These two positive
numbers have been introduced in (2.1) and Theorem 4 $\mathrm{J}$ , respectively. ) if $b>(\mu+1)\lambda_{1\prime}$

$a^{*}<\text{\^{a}}.$

Lemma 5,4 can be proved by the comparison argument (e.g., [4, Lemma 1]). See
[12] for the detail.

Proposition 5.4. Assume that $b>(\mu+1)\lambda_{1}$ . Let $\Gamma_{\mathit{5}}$ be the local bifurcation branch
obtained in Proposition 5.3. Then $\Gamma_{\delta}(\subset X\mathrm{x}R_{+})$ can be extended as an unbounded
positive solution branch $\hat{\Gamma}$ of (5.2). Furthermore, $\hat{\Gamma}$ contains an unbounded smooth
curve which is parameterized by $a$ ;

$\{(w(a),z(a),a)\in X$ x$[\text{\^{a}}-\kappa, \text{\^{a}})\}$ (5.11)

with a certain positive number K. Here, $(w(a),z(a))$ is a smoothfunction such that

$\lim_{a\nearrow\hat{a}}||w(a)[|_{\infty}=\infty,\lim_{a\nearrow\hat{a}}z(a)=\mu^{2}\theta_{b/\mu}$ in $C^{1}(\overline{\Omega})$ . (5.12)

Proof. Suppose that $b>(\mu+1)\lambda_{1}$ . For the local bifurcation branch $\Gamma_{\mathit{5}}$ obtained in

Proposition 5.3, let $\hat{\Gamma}$ be a maximum extension of $\Gamma_{\delta}$ as a solution curve of (5.2). Ac-

cording to the global bifurcation theory (Rabinowitz [18]), one of the following two

properties must hold true;

(i) $\hat{\Gamma}$ is unbounded in $X\mathrm{x}$ $R$ ;

(ii) $\hat{\Gamma}$ meets the trivial or a semitrivial solution curve at a certain point except for
$(w, z,a)=(0, (\mu+1)^{2}\theta_{b/(\mu+1)},a^{*})$.

We introduce the following positive cone

$P:=\{(w,z)$ : $w>0$ , $z$ $>0$ in $\Omega$ , and $\frac{\partial w}{\partial n}<0$ , $\frac{\partial z}{\partial n}<0$ on $\partial\Omega\}$ ,
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where $n$ denotes the unit outward normal to $\partial\Omega$ . Assume that there exists $(\hat{w},\hat{z},\hat{a})\in\hat{\Gamma}$

such that $(\mathrm{w},\mathrm{z})\in\partial P$. Then it follows from Lemmas 5.1 and 5.2 that

$\frac{\mu^{2}}{m+1}\theta_{b/\zeta\mu+1)}\leq\hat{z}\leq\frac{(\mu+1)^{2}}{\mu}\theta_{b/\mu}$ in $\Omega$ , $\lambda_{1}(\frac{c\mu^{2}}{m+1}\theta_{b/(u+1)})\leq\hat{a}\leq\lambda_{1}(\frac{cM+1)^{2}}{\mu}\theta_{b/\mu})$,

(5.13)
respectively. Hence $(\hat{w},\hat{z})\in\partial P$ implies that $\hat{w}\geq 0,\hat{z}\geq 0$ in $\Omega$ and

$\hat{w}(x_{0})\hat{z}(x_{0})=0$ at a certain $x_{0}\in\Omega$ (5.14)

or
$\frac{\partial\hat{w}}{\partial n}(x_{1})\frac{\partial\hat{z}}{\partial n}(x_{1})=0$ at a certain $x_{1}\in$ an. (5.15)

By applying the strong maximum principle to (5.2), it is possible to verify that each
of (5.19) and (5.20) leads to $\hat{w}\equiv 0$ or $\hat{z}\equiv 0$ . By taking account for (5.18), we must
assume that $\hat{w}\equiv 0$ and $\hat{z}>0$ in $\Omega$ . We recall that positive solutions of (5.2) bifurcate
from the semitrivial solution curve $\{(0, \psi +1)^{2}\theta_{b/\zeta\mu+1)},a) : a\in R_{+}\}$ only at $a=a^{*}$ .
This fact leads to $(\hat{w},\hat{z}, \text{\^{a}})$ = $(0, (\mu+1)^{2}\theta_{b/(\mu+1\}},a^{*})$ , which contradicts (ii). Therefore,
the situation of (i) necessarily occurs. Together with the a priori estimates of $z$ and $a$

(Lemmas 5.1 and 5.2), we can deduce that $\hat{\Gamma}$ consists of a continuum, which is un-
bounded with respect to $||w||_{W^{1.p}}$ . From the continuum, we take any positive solution
sequence $\{(w_{n},z_{n},a_{n})\}\subset\hat{\Gamma}$ with $\lim_{arrow\infty}$

$||w_{n}||_{W^{1.p}}=\infty$ . In order to prove $n.\neg\infty \mathrm{h}\mathrm{m}||w_{n}||_{\infty}=\infty$,
we use the standard elliptic regularity theory (see e.g., [9]). From the first equation of
(5.2), we obtain

$||w_{n}||_{\mathrm{W}^{2p}}| \leq C(\{|w_{n}||_{p}+||w_{n}\{a_{n}-\frac{c(w_{n}+1)z_{n}}{\mu(w_{n}+1)+1}\}||_{p})$ (5.16)

for a certain positive constant $C$ independent of $n$ . Since $z_{n}$ and $a_{n}$ are uniformly
bounded with respect to $n$ (see Lemmas 5.1 and 5.2), (5.21) ensures a certain posi-
tive constant $C’$ such that $|[w_{n}|]_{\mathrm{W}^{2p}}\leq C’||w_{n}||_{\infty}$ . Hence, it folows that Jim $|[w_{n}||_{\infty}=\infty$ .
Next we $\mathrm{w}\mathrm{i}\mathrm{U}$ show $n\varliminf,\infty a_{n}=\hat{a}(=\lambda_{1}(c\mu\theta_{b/\mu}))$ . Since {an} is a bounded$\prec\infty \mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ from
Lemma 5.2, we can put $a_{\infty}:= \lim_{narrow\infty}$ an, subject to a subsequence. Furthermore, we put
$\overline{w}_{n}:=w_{n}/||w_{n}]|_{\infty}$ . Therefore, a similar compactness argument to the proof of Theorem
4.1 enables us to find a certain (u), $v_{\infty})\in C^{1}(\overline{\Omega})^{2}$ such that

$\lim_{narrow\infty}(\tilde{w}_{n},z_{t},)=(\tilde{w},\mu v_{\infty})$ in $C^{1}(\overline{\Omega})^{2}$ , (5.17)

and moreover,

$\{$

$\Delta\tilde{w}+\overline{w}(a_{\infty}-cv_{\infty})=0$ in $\Omega$,
$\mu\Delta_{I\mathit{1}_{\alpha}},$ $+v_{\infty}(b-v_{\infty})=0$ in $\Omega$ ,
$\overline{w}=v_{\infty}=0$ on on,

(5.18)
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passing to a subsequence. Since $v_{\infty}>0$ in $\Omega$ from (5.22) and Lemma 5.1, the second
equation of (5.23) implies $v_{\infty}=\mu\theta_{b/\mu}$ . Therefore, we obtain a\infty =& from the first
equation of (5.23). Consequently, we have proved that

$\lim_{narrow\infty}||w_{n}||_{\infty}=\infty,\lim_{narrow\infty}z_{n}=\mu^{2}\theta_{b/\mu}$ in $C^{1}(\overline{\Omega}),$

$n’\infty\varliminf a_{n}$ =\^a. (5.19)

Next, we will obtain the expression (5.16). Our aim is to prove the non-degeneracy
of $\{(w_{n},z_{n},a_{n})\}\subset\hat{\Gamma}$ for sufficiently large $n\in N$ , because such a non-degeneracy yields
(5.16) by virtue of the implicit function theorem. With respect to (5.2), we define the
associate linearized operator at $(w,z)=(w_{n},z_{n})$ by

$L_{n}$ $(\begin{array}{l}hk\end{array})$ $:=-$ $(\begin{array}{l}\Delta h\Delta k\end{array})-(\begin{array}{llll}f_{w}(w_{n},z_{n} a_{n}) f_{z}(w_{n},z_{n} a_{n})g_{w}(w_{n} z_{n}) g_{\mathrm{z}}(w_{n} z_{n})\end{array})(\begin{array}{l}hk\end{array})$ ,

where $f$ and $g$ are nonlinear terms defined by (5.8). By direct computations, we obtain

$L_{n}$ $(\begin{array}{l}hk\end{array})=-(\begin{array}{l}\Delta h\Delta k\end{array})$

$+\{$

$\overline{\{\mu(1+w_{n})+1\}^{2}}-a_{n}$

$c\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{h}$
$\frac{cw_{n}(1+w_{n})}{\mu(1+w_{n})+1}$

$\frac{z_{n}}{\mathfrak{h}x(1+w_{n})+1\}^{2}}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}$

$\frac{1+w_{n}}{\mu(1+w_{n})+1}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}\ovalbox{\tt\small REJECT}$
$(\begin{array}{l}hk\end{array})$ .

Henceforth, we write $\eta_{n}$ to denote the principal eigenvalue of $L_{n}$ . Furthermore we put
$m_{n}:=|||v_{n}||_{\infty}$ and $\tilde{w}_{n}:=w_{n}/m_{n}$ . In order to study the behavior of $\eta_{n}$ as $narrow\infty$ , we
modify $L_{n}$ to the form

$\tilde{L}_{n}$
$(\begin{array}{l}hk\end{array})$ $:=-(\begin{array}{l}\Delta h\Delta k\end{array})$

$+\{$

$\frac{c\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}-a_{n}$ $\frac{cw_{n}(1+w_{n})}{m_{n}^{2}\{\mu(1+w_{n})+1\}}$

$\frac{m_{n}^{2}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}$

$\frac{1+w_{n}}{\mu(1+w_{n})+1}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}\ovalbox{\tt\small REJECT}$
$(\begin{array}{l}hk\end{array})$ .

(5.20)

It is possible to verify that the spectrum set of $L_{n}$ coincides with that of $\tilde{L}_{n}$ for any
n $\in N$ . We recall that

$\lim_{narrow\infty}(\tilde{w}_{n},z_{n},a_{n})=(\tilde{w},\mu^{2}\theta_{b/\mu}, \text{\^{a}})$ in $C^{1}(\overline{\Omega})^{2}\mathrm{x}R$ , (5.21)

where $\tilde{w}$ satisfies the linear elliptic problem

$-\Delta\tilde{w}+c\mu\theta_{b/\mu}\tilde{w}=\hat{a}\tilde{w}$ in $\Omega,\tilde{w}|_{\partial\Omega}=0$, $||\tilde{w}||_{\infty}=1$ . (5.22)
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Therefore, letting n $arrow$ oo in (5.25), we know that $\tilde{L}_{n}$ converges to

$\tilde{L}_{\infty}$
$(\begin{array}{l}hk\end{array})$ $:=-(\begin{array}{l}\Delta h\Delta k\end{array})$ $+$ ( $c\mu_{\gamma}\theta_{b/\mu}-\text{\^{a}}(arrow\mu\theta_{b/\mu}-$

b)
$2 \theta_{b/\mu}-\frac{b}{\mu}0$ ) $(\begin{array}{l}hk\end{array})$

in the sense of the operator norm. (Here we note that the operator norms of the original
sequence $\{L_{n}\}$ are unbounded with respect to $n.$) Consequently, the associate eigenvalue
problem with $\tilde{L}_{\infty}$ can be expressed as

$\{$

$-\Delta h+(c\mu\theta_{b/\mu} -\text{\^{a}})h=\eta h$ in $\Omega$ ,

$- \Delta k+\theta_{b/\mu}(2\mu\theta_{b/p}-\mathrm{b})\mathrm{h}+(2\theta_{b/\mu}-\frac{b}{\mu})k=\eta k$ in 0,

$h=k=0$ on $\partial\Omega$.

(5.23)

From the first equation of (5.28), we know that aU eigenvalues of $\tilde{L}_{\infty}$ consist of infinitely
many real numbers. It follows from (5.27) that $(h,\eta)=(\tilde{w},0)$ satisfies the first equation
of (5.28). We will show that y7 $=0$ is the least eigenvalue of $\tilde{L}_{\infty}$ . Since $\lambda_{1}(q)$ is
monotone increase with respect to $q\in C(\overline{\Omega})$, we observe ffom the second equation of
(5.28) that if $h=0$ and $k\neq 0$ ,

$\eta\geq\lambda_{1}(2\theta_{b/\mu}-\frac{b}{\mu})>\lambda_{1}(\theta_{b/\mu}-\frac{b}{\mu})=0$ . (5.24)

Here, we note that the right equality comes from the definition of $\theta_{b/\mu}$ . At once, (5.29)
also yields the invertibity of -A $+2 \theta_{b/\mu}-\frac{b}{\mu}$ . Therefore, by letting $(h,\eta)=(\mathrm{w}, 0)$ in the
second equation of (5.28), we obtain

$k=(- \Delta+2\theta_{b/\mu}-\frac{b}{\mu})^{-1}(\theta_{b/\mu}(b-2\mu\theta_{b/\beta})\tilde{w})(=:k_{\infty})$.

Consequently, together with the positivity of $\tilde{w}$, we obtain that $\eta=0$ is the least eigen-
value of $\tilde{L}_{\infty}$ , and that $(h, k)=(\mathrm{w}, k_{\infty})$ is the associate eigenfunction. With the aid of the
perturbation theory of T.Kato [11], we may assume that $\eta_{n}$ are single real eigenvalues
for sufficiently large $n\in N$ , and that

$\lim_{narrow\infty}(h_{n},k_{n},\eta_{n})=(\tilde{w}, k_{\alpha},,$0) in $C^{1}(\overline{\Omega})^{2}\mathrm{x}$ R. (5.25)

Here, (hn,kn) denotes the positive eigenfunction of $\tilde{L}_{n}$ with $||h_{n}||_{\infty}=1$ . Then, (hn,kn
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satisfies

$\{$

$- \Delta h_{n}+[|\frac{c\{\mu(1\cdot\dotplus\cdot w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}-a_{n}\ovalbox{\tt\small REJECT} h_{n}+\frac{cw_{n}(1+w_{n})}{m_{n}^{2}\{\mu(1+w_{n})+1\}}k_{n}=\eta_{n}h_{n}$ in 0,

$- \Delta k_{n}+\frac{m_{\hslash}^{2}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}h_{n}$

$+ \frac{1+w_{n}}{\mu(1+w_{n})+1}\{\frac{2(1+w_{n})z_{n}}{\mu(1+w_{n})+1}-b\}k_{n}=\eta_{n}k_{n}$ in $\Omega$ ,

$h_{n}=k_{n}=0$ on $\partial\Omega$.
(5.26)

By multiplying the first equations of (5.2) with $(w,z,a)=(w_{n},z_{n},a_{n})$ by $\tilde{w}$ and integrat-
ing the resulting expression, we have

$\int_{\Omega}w_{n}\Delta\tilde{w}dx$ $+ \int_{\Omega}\{a_{n}-\frac{c(1+w_{n})z_{n}}{\mu(1+w_{n})+1}\}w_{n}\tilde{w}dx$. (5.27)

By substituting (5.27) for (5.32), we obtain

$( \hat{a}-a_{n})\int_{\Omega}w_{n}\tilde{w}dx=c\int_{\Omega}\{\mu\theta_{b/\mu}-\frac{(1+w_{n})z_{n}}{\mu(1+w_{n})+1}\}w_{n}\tilde{w}dx$. (5.28)

The same procedure for the first equation of (5.31) leads to

$( \hat{a}-a_{n})\int_{\Omega}h_{n}\tilde{w}dx+c\int_{+C\int_{\Omega}}\Omega[$

$\frac{\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}-\mu\theta_{b/p}\ovalbox{\tt\small REJECT}$ $h_{n}\tilde{w}dx$

(5.29)

$\frac{w_{n}(1+w_{n})}{m_{n}^{2}\omega(1+w_{n})+1\}}k_{n}\tilde{w}dx=\eta_{n}\int_{\Omega}h_{n}\tilde{w}dx$ .

(5.32)

Multiplying (5.34) by $m_{n}$ and letting $narrow\infty$ in the resulting expression, we know along

with (5.26) and (5.30) that

$||\tilde{w}||_{2}^{2}1\mathrm{i}\mathrm{m}m_{n}\eta_{n}narrow\infty$

$=[| \tilde{w}|]_{2}^{2}\lim_{n\prec\infty}(\hat{a}-a_{n})m_{n}+c\lim_{narrow\infty}m_{n}\int_{\Omega}[\frac{\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}-\mu\theta_{b/\mu}\ovalbox{\tt\small REJECT}\tilde{w}^{2}dx.$

$(5.30)$

Since $w_{n}=m_{n}\tilde{w}_{n}$ , letting $narrow\infty$ in (5.33) yields

$|| \tilde{w}|]_{2}^{2}\lim_{narrow\infty}(\delta-a_{n})m_{n}=c\lim_{narrow\infty}m_{n}\int_{\Omega}\{\mu\theta_{b/\mu}-\frac{(1+w_{n})z_{n}}{\mu(1+w_{n})+1}\}\tilde{w}^{2}dx$. (5.31)

Therefore by substituting (5.36) for (5.35), we obtain

$|| \tilde{w}||_{2}^{2}\lim_{narrow\infty}m_{n}\eta_{n}$

$=c \lim_{narrow\infty}m_{n}\int_{\Omega}[\frac{\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}-\frac{1+w_{n}}{\mu(1+w_{n})+1}]\tilde{w}^{2}dx$

$=c \lim_{narrow\infty}m_{n}\int_{\Omega}\frac{w_{n}}{\{\mu(1+w_{n})+1\}^{2}}\tilde{w}^{2}dx$ $= \frac{c}{\mu^{2}}||\tilde{w}||_{1}>0$ .
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Furthermore, it follows from (535) and (5.37) that

$||\tilde{w}||_{2_{n}}^{2}\varliminf_{4\infty}(\hat{a}-a_{n})m_{n}$

$= \lim_{narrow\infty}m_{n}\eta_{n}+c\lim_{narrow\infty}m_{n}\int_{\Omega}\ovalbox{\tt\small REJECT}_{\mu\theta_{b/\mu}-\frac{\{\mu(1+w_{n})^{2}+2w_{n}+1\}z_{n}}{\{\mu(1+w_{n})+1\}^{2}}]\tilde{w}^{2}dx}$

(5.33)
$= \lim_{n\prec\infty}m_{n}\eta_{n}+\mu(\mu+1)c\lim_{narrow\infty}m_{n}\int_{\Omega}\frac{\theta_{b/\mu}}{\{\mu(1+w_{n})+1\}^{2}}dx$

$= \varliminf_{1\infty}m_{n}\eta_{n}=\frac{c}{\mu^{2}}||\tilde{w}||_{1}n>0$.

Hence (5.37) and (5.38) imply that $\eta_{n}>0$ and $a_{n}$ <\^a for sufficiently large $n\in N$,
respectively. Consequently, we have proved that the linearized operator $L_{n}$ is non-
degenerate if $n\in N$ is large enough. Since $L_{n}$ is invertible for such $n\in N$, the implicit
function theorem gives a positive number $\kappa_{n}$ and a neighborhood $O_{n}$ of $(w_{n},z_{n})\in X$

such that all positive solutions of (5.2) in $\tilde{O}_{n}$ can be parameterized as

$\{(w(a),z(a),a) : a_{n}-\kappa_{n}\leq a\leq a_{n}+\kappa_{n}\}$ ,

where $\tilde{O}_{n}:=O_{n}\mathrm{x}(a_{n}-\kappa_{n},a_{n}+\kappa_{n})$ and $(w(a),z(a))$ is a smooth function satisfying
$(\mathrm{w}(\mathrm{a}), \mathrm{z}(\mathrm{a}))=(\mathrm{w}\mathrm{n},\mathrm{z}\mathrm{n})$ . By using the covering argument (see e.g., Du-Lou [7, Ap-
pendix]) for {On}, we can construct the unbounded smooth curve (5.16). Since $a_{n}$ <\^a

for sufficiently large $n\in N$, it follows that a<& in (5.16). Hence (5.17) comes from
(5.24). Thus we accomplish the proof of Proposition 5.5.

$\square$

By the one-to-one correspondence between $(w, v)>0$ and $(w, z)>0$ (see (5.1)), we
can give the following result on the positive solution set of (2.3), as a summary of this
section:

Theorem 5,5. If $b>(\mu+1)\lambda_{1}$ , the positive solution set of (2.3) contains a local bifur-
cation branch $\Gamma_{2}=\{(w(s),v(s),a(s))\in X\mathrm{x}R : s\in(0,\delta)\}$ , such that $(w(0),u(0),a(0))=$
$(0, \psi +1)\theta_{b/\psi+1)},a^{*})$. Furthermore, $\Gamma_{2}$ can be extended as an unboundedpositive solu-
tion branch $\Gamma_{2}$ of (23) with thefollowing properties :

(i) Any (w,$a)\in\hat{\Gamma}_{2}$ satisfies

$\frac{\mu^{2}}{\mu+1}\theta_{b/(\mu+1)}<v<\frac{(\mu+1)^{2}}{\mu}\theta_{b/\mu}$ in $\Omega$ ,

$\lambda_{1}(\frac{c\mu^{2}}{\mu+1}\theta_{b/\langle u+1)})<a<\lambda_{1}(\frac{c\psi+1)^{2}}{\mu}\theta_{b/\mu})$ . (5.34)
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(ii) $F_{2}$ contains an unbounded smoth curve parametrized with respect to $a$ ;

{($w(a)$ , $v(a),a)\in X\mathrm{x}$ [ a - $\kappa$ , \^a)}

for a certain positive number $\kappa$. Here $(w(a),z(a))$ is a smoothJunction such that

$\lim_{a\nearrow\hat{a}}||w(a)||_{\infty}=\infty,\lim_{a\nearrow\hat{a}}v(a)=\mu\theta_{b/\mu}$ in $C^{1}(\overline{\Omega})$ .

6 Completion of the Proof of Theorem 2.4
In this section, we will accomplish the proof of Theorem 2.4. Hence Theorem

4.1 yields the convergence properties (i) and (ii) in Theorem 2.4. With respect to the
first shadow system, from Theorem 2.2, we know that (2.2) has at least one positive
solution if and only if a>\^a. On the other hand, form Theorem 5.6, we have proved
that the second shadow system (2.3) has at least one positive solution if $a^{*}<a<\partial$ ,

and no positive solution if $a\geq\tilde{a}$ . Here we put $\tilde{a}:=\lambda_{1}(c\psi +1)^{2}\mu^{-1}\theta_{b/\mu})$, which is
the number in (539). Therefore, by combining Theorem 4.1 with such information on
the positive solution sets of two shadow systems, we can deduce that as $\betaarrow\infty$, any
positive solution of (SP) approaches a certain positive solution of (2.2)(resp. (2.3)) if
$a\in(\tilde{a},\delta^{-1}]$ (resp. $a\in(a^{*},$ \^a-\mbox{\boldmath $\delta$}] $)$ . Furthermore, it follows that if $\beta$ is sufficiently large
and $a\in(a^{*},$ \^a-\mbox{\boldmath $\delta$}], any positive solution $(u, v)$ of (SP) satisfies $||u||_{\infty}=O(1/\beta)$ . Ren
the proof of Theorem 2.4 is complete.
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