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Abstract

We study the positive stationary solution set of a strongly coupled diffusion system
with the Lotka-Volterra reaction term. We obtain the bifurcation branch of the
positive solutions, which extends globally with respect to a bifurcation parameter.
Furthermore, by the analysis for the shadow systems, we derive the nonlinear
diffusion effect of on the positive solution branch.

1 Introductioh

Many reaction-diffusion models have been proposed to describe the population dy-
namics in various ecological situations. In particular, the nonlinear-diffusion systems
with the Lotka-Volterra interaction terms have been extensively studied by many math-
ematicians, since the advocated work by Shigesada-Kawasaki-Teramoto [19].

In this article, we focus on the following strongly coupled diffusion system with the
prey-predator interaction terms:

U, = Au +u(a—u—cv) in QX (0, ),
®) v,:A[(,u+ 1_}_151‘)1;]+v(b+du—-v) in QX(O,QO),

u=v=>0 on 9Q X (0, c0),

u(-,)=up =0, v(-,) =020 on L,

where Q is a bounded domain in RY with a smooth boundary 0Q ; a,b,¢,d, and p
are all positive constants; f is a nonnegative constant. System (P) is a prey-predator
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model. From the ecological point of view, the unknown functions # and v, respectively,
denote the population densities of prey and predator species which are interacting and
migrating in the same habitat Q. In the reaction terms, @ and b represent the birth rates
of the respective species, ¢ and d denote the prey-predator interactions. In the sec-
ond equation, the strongly coupled diffusion term A(5%;) models a situation in which
the population pressure of predator species weakens in the high density place of prey
species. On the solvability of (P), Le. Dung [8] has recently found the global attractor
for a class of the quasilinear parabolic systems involving (P). So it becomes more inter-
esting to study the dynamical structure for the solution set of (P). As the beginning of
the study, we have been analyzing for the stationary solution set of (P), since {10]. To
my knowledge, there are few works on this fractional type of density dependence dif-
fusions in the field of reaction-diffusion systems. It should be noted that our nonlinear
diffusion term is different from the usual cross-diffusion term proposed by [19].

Our purpose is to derive the global bifurcation structure of the stationary solution
set. Then we will discuss the associate stationary problem with (P);

Au+ula-u—cv)=0 in Q,
1 .
(SP) A[(;A+ 1-l_ﬁu)v}+v(b+du—v)---0 in Q,
u=p=0 on 0.

Among other things, we are interested in the positive solutions of (SP). It is said that
(u,v) is a positive solution if both u > 0 and v > 0 satisfy (SP). From the viewpoint
of the prey-predator model, a positive solution (i, v) implies a coexistence steady state.
Hence, it is an important problem to derive the positive solution set of (SP).

In order to study the positive solution set, we need some notations. Henceforth, we
will use 4,(g) to denote the least eigenvalue of the problem

~Au+q(x)u=2Au in Q, u=0 on 9%,

where g(x) is a continuous function in Q. We simply write A; instead of A4;(0). It is
well known that the following problem

Au+ula-u)=01in Q, u=0 on 4Q (1.1)

has a unique positive solution # = g, if and only if @ > A,. Hence, (SP) has a semitrivial
solution (u,v) = (6,,0) if @ > A;. Furthermore it is easily verified that (SP) has another
semitrivial solution (u,v) = (0, (i + 1)8p/(us1)) if b > (u + 1)4;. Here, 05,41 represents
a positive solution of (1.1) with a replaced by b/(i + 1). The usual norms of the spaces
LP(Q) for p € [1, 00) and C() are defined by

1/p
flull, = ( L lu(x)[? dx) and ||ulle := max ju(x)|.

x€}



2 Positive Solution Set

2.1 Coexisténce Region

In this article, we are restricted on the case b > (u + 1)A,. The first theorem gives a
sufficient condition of the existence of positive solutions:

Theorem 2.1 ([10]). Let a* = A1 (c(u+1)8pyu+1))- Ifb > (u+1)A1, (SP) has a positive so-
lution for a > a*. From the bifurcation structure point of view, the positive solution set
of (SP) contains a local bifurcation branch I' = {(u(s), v(s),a(s)) e XX R : s € 0,8)},
such that (u(0),v(0),a(0)) = (0,(u + 1)8y/¢ry,a@"). Furthermore, I' can be extended
globally with respect to a(— o) as a positive solution branch of (SP).

We remark that the above bifurcation point
a’ = i (c(u + DOpjus1y) 2.1)

depends on (b, ¢, i), but is independent of 8. Furthermore in [10, Lemma 2.3], we have
proved that for any fixed (c, ), a* = a*(b) is a monotone increasing smooth function
with respect to b > (u + 1)A; such that Hmp ge1ya a'(b) = A; and limy, a’(h) =
co. Theorem 2.1 enables us to find the coexistence region on the (a,b) space. By
the monotone property of the curve @ = a'(b) (Theorem 2.1), one can deduce that if
(a,b) lies in the region surrounded by @ = a*(b) and b = (u + 1)A,, then (SP) has
a positive solution (see the region R; U R, in Figure 1). This region ,in case = 0,
corresponds to the exact coexistence region shown by Lépez-Gémez and Pardo [15].
From the viewpoint of the bifurcation theory, positive solutions bifurcate from (u,v) =
(0, (1 + 1)85)(u+1)) When (a, b) moves across g = a*(b).

2.2 Asymptotic Behavior of Positive Solutions as g — oo

Next, I will derive the nonlinear effect of large B on the positive solution set. For
the sake of the derivation, we will introduce two shadow systems as B — ©o0 in (SP).
We assume that {3,} is any positive sequence with lim 8, = co, and that {(t4n, Un)} is any

positive solution sequence of (SP) with B = B,. With some suitable assumptions, we
will prove that one of the following two situations necessarily occurs:

(i) There exists a certain positive solution (u,) of

Au+ula—u—c)=0 in Q,
pAv+ob+du-v)y=0 in L, (2.2)
u=v=0 on 4%,

such that lim(u,,v,) = (4, 0) in C(Q)?, passing to a subsequence.
n—oo
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(ii) There exists a certain positive solution (w, v) of

Aw + uwla —cv) =0 in £,
1
—-p) = i 2.3
A[(u-i- 1+w)v +ob-v)=0 1in Q, (2.3)
w=v=20 on 0%,

such that lim (8,u,, v,) = (w,v) in C(Q)?, passing to a subsequence.

Our convergence result (Theorem 4.1) will also ensure that if B is sufficiently large,
any positive solution of (SP) can be approximated by a suitable positive solution of
either (2.2) or (2.3). Hence it is natural to ask which of (2.2) and (2.3) (or both) can
characterize positive solutions of (SP), according to each coefficient value.

The positive solution set of the first shadow system (2.2) has been extensively stud-
ied by many mathematicians (e.g., {21, [4], [S], [6], {131, [14], [15], [16], [20]). As
a summary of their all results, we know the next result on the positive solution set of
(2.2):

Theorem 2.2, Let & = Ai(cub,.). Then (2.2) has a positive solution if and only if
a > &. From the bifurcation structure point of view, the positive solution set of (2.2)
contains a local bifurcation branch I'y = {(u(s), v(s),a(s)) € X X R : s € (0,68)}, such
that (u(0),v(0), a(0)) = (0, ubps,, @). Furthermore, I can be extended in the direction
a > & as an unbounded positive solution branch of (2.2).

Here we note that for any fixed (c,1), & = Ai(cuby,) is a monotone increasing
smooth function with respect to b > udy, such that limy. 3, #(b) = A; and lim,,., &(b) =
oo, Furthermore, it can be verified that a*(b) < a(b) for all b > (u + 1)4; (see Figure 1).

Hence, it becomes a crucial part of this article to study the positive solution set of
the second shadow system (2.3). By regarding a as a bifurcation parameter, we will
show that the branch of the positive solution set of (2.3) bifurcates from the semitrivial
solution with w = 0 at a = g, and moreover that this branch extends globally and
blows up with respect to |[wll,, at a = & '

Theorem 2.3 ([12]). Suppose that b > (u + 1)A,. Positive solutions of (2.3) bifurcate
Jrom the semitrivial solution curve {(0, (u+ 1)6pju+1), @) : a € R,}ifand only ifa = a".
To be precise, all positive solutions of (5.2) near (0, + 1)*6p/u41),4*) € X X R,
can be parameterized as I'; = {(w(s),v(s),a(s)) € X X R, : s € (0,8)}, such that
(w(0), v(0),a(0)) = (0, by, @). Furthermore, I';(C X X R,) can be extended as an
unbounded positive solution branch (of (2.3)), which contains an unbounded smooth
curve which is parameterized by a; {(w(a),v(@),a) € X x [a — k, &)} with a certain
positive number k. Here, (w(a), v(a)) is a smooth function such that

lim flu(@lles = oo, li}l}v(a) = ubyy, in C'(Q).
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Furthermore, it can be proved that (2.3) has no positive solution if ¢ > @ :=
Ai(cp Mgt + 1)%8,),). Here, we note that @ = Ay(cp™ (it + 1)%6,,,) is also a monotone
increasing smooth function for b > uA,, such that limp 4z, @(b) = Ay and limy, 4(b) =
oo. Furthermore, it holds that a*(b) < a(b) < a(b) for all b > (u + 1)4, (see Figure 1).

Consequently, it follows that if @ € (a*, &), (2.3) has at least one positive solution
while (2.2) has no positive solution, and that if a > &, (2.3) has no positive solution
while (2.2) has at least one positive solution. Owing to such studies on the shadow
systems, we will prove the approximate result in large S case:

Theorem 2.4 ([12]). Suppose that {(u,,v,)} is any positive solution sequence of (SP)
with B = B, and rli_)rg B, = co. Let & and & be arbitrary small positive numbers. Then,
there exist posilivle numbers @ > a*(> Ay) such thatifa € (@*,a - 81U [a +6,00), b >
(u + 1A, and n is sufficiently large, either the following situation (i) or (ii) necessarily
occurs :

(i) There exists a certain positive solution (u,v) of (2.2) such that

max |, (x) — u(x)| + max lv,(x) — v(x)] < &.
xeQd xeQd

(i) There exists a certain positive solution (w,v) of (2.3) such that

max | Buita(x) — w(x)| + max [v,(x) — v(x)| < &.
xeld xed

Furthermore, there exists a number a(> &) such that if a € [ a, ), the situation of (ii)
can not occur, and if a € {a*,a — 8], the situation of (i) can rot occur.

(jt + 1)/11

7751 S

0 /121

Figure1: The region R; gives the exact coexistence region for (2.2). The region -
R, yields the sufficient condition for existence of positive solutions of (2.3).
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3 A Priori Estimates

In this subsection, we introduce a semilinear elliptic system equivalent to (SP),
and give some a priori estimates for positive solutions of the semilinear system ([10]).
These a priori estimates will play an important role in the succeeding sections. Since
we are restricted on nonnegative solutions, it is convenient to introduce the unknown
function V by

V=(,u+ )v. (3.1)

1+Bu

There is a one-to-one correspondence between (i, v) > 0 and (, V) > 0. Then, (SP) is
rewritten in the following equivalent form:

Au+ula—u—cv)=0 in Q,
(EP) SAV+ub+du—v)=0 in Q,
u=V=90 on 9Q,

where v = v(u, V) is understood as the function of (i, V) defined by (3.1). It is easy to
show that (EP) has two semitrivial solutions

W, V) = 8,,0) for a> 2, and (u, V)= (0, + 105 qen) for b> (u+ 1)y,

in addition to the trivial solution (u, V) = (0,0). We obtain the following a priori
estimates for positive solutions of (EP) (or equivalently (SP)):

Lemma 3.1. Suppose that (u,v) is any positive solution of (SP). Let V be the positive
Junction defined by (3.1). Then,
0 <ulx) <a, ﬂzeb,(,,ﬂ,(x) <V(x)<ux) < (1 + i—I;) b+ ad)

forall x e Q.

We refer to [10] and [12] for the proof of Lemma 3.1. The next lemma gives a
nonexistence region for positive solutions of (EP):

Lemma 3.2. Ifa < A; or (1 + Ba)(b + ad) < A, (EP) (or equivalently, (SP)) has no
positive solution.

Proof. Suppose for contradiction that (i, V) is a positive solution of (EP) with the case
(1 +Ba)b+ ad) < A,. Since u < a by Lemma 3.1, then

~AV = v(b + du—v) = V(1 + Bu)(b + du — v) < V(1 + Ba)(b + ad)



in Q. Then by taking L?(Q) inner product with V, we obtain
IVVI < (1 +Ba)(d + ad)|[VI3. (3.2)

Since HVVI[% > /MIVH:% by Poincaré’s inequality, (3.2) obviously yields a contradiction.
Observing that u(a — u — cv) < au in Q, we can derive the assertion in the case a < 4;

along a similar way.
u]

4 Existence of Two Shadow Systems as 8 — oo

In what follows, we will concentrate ourselves on the special case when 8 is suf-
ficiently large. Our purpose is to derive the nonlinear effect of large B on the positive
solution set of (SP). The next theorem ensures the existence of two shadow systems as
B — oo. We refer to [12] for the proof of the theorem.

Theorem 4.1. Let a := Ai(cuby,) and b > (u + 1)A1. Suppose that {(uy,v,)} is any
positive solution sequence of (SP) with 8 = B, and lim B, = co. Then, for any small

positive numbers 6 and &, there exists a large integer N (which depends on 6, € and the
coefficients of (SP)) such that if

ac(Ad,a~-o6juUfa+é,00)(=:Iy)
and n > N, either the following property (i) or (ii) holds true :
(i) There exist a certain positive solution (u,v) = (,0) of (2.2) such that

| — %l +1l0s — Tl < &.

(ii) There exist a certain positive solution (w,v) = (W, 7) of (2.3) such that

UBnttn — Wl +lvn — Ve < e&.

5 Second Shadow System

5.1 A Priori Estimates

In this section, we will study the second shadow system (2.3). By employing a new
unknown function .
7= (y+ )u, | 5.1)

1+w
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we reduce (2.3) to the following semilinear elliptic system ;

c(l +w)z .
_—— L Q,
Aw+w{a ;1(1+w)+1} 0 in
(1+w) {b_ (1+w)z }:o inQ (5.2)
ud+w)+1 w(l+w)+1
w=z=0 on 9Q.

Because of the one-to-one corresponding between (w,v) > 0 and (w,z) > 0, we may
concentrate ourselves on (5.2). We note that (5.2) has a semitrivial solution (w,z) =
O, (u+ 1)291,,(,,“)) if b > (u + 1)4;. The following lemma gives the a priori bounds for
the v (resp. z) component of any positive solution of (2.3) (resp. (5.2)).

Lemma 5.1. Suppose that b > (u + 1)A;. Let (w,v) be any positive solution of (2.3),
and let z be the positive function defined by (5.1). Then, it follows that

2 +1 2 )
]lﬁ- 191;/0”1) <y < ) 9[,/# and ﬂng/’(l“l) <z< (u + 1)28;,/,_, in Q. (53)
Furthermore, if
cu? ' cu+1)?
asi (#i‘ 19b/m+1)) or az Ay (-017-)—917/;1),

both of (2.3) and (5.2) have no positive solution.

The above nonexistence region of the positive solutions can be led from (5.3) with
the aid of the comparison argument. We refer to [12] for the proof of Lemma 5.1.

5.2 Local Bifurcation Structure of the Positive Solution Set
For the framework of our bifurcation analysis, we prepare two Banach spaces

X = [W(Q) N W,7(Q) ] x [ W22(Q) n WiP(0)1,
Y = LP(Q) x LP(Q)

for p > N. We note that X < C(Q) x C'(Q3) by the Sobolev embedding theorem.
For the positive number a* = A;(c(u + 1)83;u+1y) introduced in (2.1), we define the
associate positive eigenfunction ¢*, which satisfies

~A¢" +{c( + Dpysny —a'}¢" =0 in Q, ¢"=00ndQ, |[Fh=1 (54

We recall that (5.2) has the semitrivial solution (w,2) = (0, (u + 1)29;,,0,”)). Positive
solutions of (5.2) bifurcate from the semitrivial solution curve (€0, ( + 1)*6yusy, @) €
X x R,} at the same point a = a@* to the original (EP) case:



Proposition 5.2. Suppose that b > (u + 1)A;. Positive solutions of (5.2) bifurcate from
the semitrivial solution curve {(0, (u + 1)%0y/(us1),a) : a € R,} ifand only ifa = a*. To
be precise, all positive solutions of (5.2) near (0, (i + 1)?6pyque1y, @) € X X R, can be
parameterized as

Ty := (5" + W), (1 + Dlyyuany + sy +Es)),als)) : 0<s<8) (5.5

for some 6 > 0 a~nd X € X. Here, (W(s),%(s), a(s)) is a smooth function with respect to
s and satisfies (W(0), 2(0), a(0)) = (0,0,a") and [, W(s)¢" = 0.

Proof. In view of the nonlinear terms of (5.2), we put

g drwz
f(w,z,a>—w{a ﬂ(1+w)+1}’ (5.6)
- 1 +w)z b (1 +w)z |
0w = i i m i)

By Taylor’s expansion at the centre of (w*,z*), we reduce the differential equations of
(5.2) to the form
( Aw + f(w*, 2", a) )+( fo )( w-w )+( plw-w',z~2'4a) ) _ ( 0 ) 5.7
Az +g(w*,z") gy 9, N\ z2—2 pPw-wz-2"0a) 0/,
where f; = f,(w",z",a) and the other notations are defined by similar rules. Here,
pw—w',z—z",a) (i = 1, 2) are smooth functions such that 0£0,0,a) = péw,z)((), 0,a) =
0. We note that (0, (u + 1)*6;,441), @) = 0 and

ST

g(0, (U + 1)*p/¢ueny) = (U + DBsyqueny (b — @ + Dhyueny} = = + 1*Abpyurn)-
By lettlng (w',z") = (O, (ﬂ + 1)26;,/(,“,1)) and7:=z— (]l + 1)291,/(}”.1) in (5.9), after some
calculations, we obtain
( Aw ) +[ a—c(u+ 1)0b/01+l) b 0 ]( )
Z 6, b—-2(u+ 16 — — 26
AZ b s 13 W+ 1Bpusny) P b (1) 5.8)
+( pl(w,z,a) )=( 0 )
pHw,Z,a) ’
where p'(w,Z,a) (i = 1, 2) are smooth functions satisfying
Pwp(0,0,a) = p% -(0,0,a) = 0 forall a> 0. (5.9)

We define a mapping F : X X R, — Y using the left-hand side of (5.10):

F(w,z,a)
Aw + {a — c(u + DOyypunlw + p'(w, Z, ) (5.10)
- b _ _ |
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Since (w,z) = (0, (i + 1)*63¢4 1)) is a semitrivial solution of (5.2), F(0,0,a) = 0 for
a > 0. It follows from (5.11) and (5.12) that the Fréchet derivative of F at (w,z) = (0,0)
is given by ‘

Ah+ {a —c(u+ 1)9&/0”1)}’2

h
= b c
Fup(0.0, a)( k ) ( Ak + Oppuay (D — 20t + D)pyuanyth + (m - 29b/ou+l)) k ]

From (5.6), we know that Ker F(,5(0, 0, a) is nontrivial for a = a* and that
Ker F 57 ,(0,0,a") = span {¢", ¢/}

Here, ¢ is defined by

b N .
¥ = (—A e 205/(,”1)) (eb/(m-l)[b = 2(u + Dboyusn)}@ ),

where (—A - ;% + 291;/(;”1))_1 is the inverse operator of —A — ;Ti‘f + 20441y with the
homogeneous Dirichlet bourid?.ry condition on 8. (Recall that —A — #—f{—l + 20,441y 18
invertible, see, e.g.,[4].) If (h, k) € Range F,3(0, 0, a"), then

Ah+{a—c(u+ Dypanth = h in Q,
b _

Ak + gb/w+1){b - 2([1 + 1)9},/(;“.1)}’1 + (m - ng/(ﬂﬂ))k =K in £,

h=k=0 on JQ2

for some (h,k) € X. By virtue of the Fredholm alternative theorem, we know that the
first equation has a solution 4 if and only if fgiz¢* = 0. For such a solution 4, the
second equation has a unique solution k because —A — E-'I:T + 264441y 18 invertible. Then,
it follows that codimRange F,7(0,0,a") = 1. In order to use the local bifurcation
theory of Crandall-Rabinowitz [3] at (w,Z, @) = (0,0, a*), we need to verify

Funal0.0,) j ) ¢ Range Fiu5(0,0,0").

Since piwym(O, 0,a") = 0 by (5.11), the differentiation of (5.12) yields
F(W,E)ﬂ(os Oa a*)( i ) = ( % )‘

Suppose for contradiction that there exists a certain function 1 € W>P(Q) 0 W,?(Q)
such that
Ah + {a — C(u + 1)9;,,@”1)}}1 = ¢*



Multiplying the above equation by ¢* and integrating the resulting expression, we have
ll$*ll2 = 0, which contradicts the fact that ||¢*]l; = 1. Sincez =z — (u + 1)?0p/(u41, ODE
can obtain expression (3.7) by using the local bifurcation theorem ([3]). We note that
the possibility of other bifurcation points except a = a* is excluded by virtue of the
Krein-Rutman theorem. Then we accomplish the proof of Proposition 5.3. |

5.3 Asymptotic Behavior of the Global Bifurcation Branch

In this subsection, we will extend I's globally as a positive solution branch of (5.2).
It will be proved that the global branch is uniformly bounded with respect to (z,a),
while Jjwll. blows up along the branch at a = a(= A1(ctOp/u))- Before discussing the
global extension, we should prove the following inequality.

Lemma 5.3. Let a* = A1(c(u + DBpjany) and @ = Ai(cuby). (These two positive
numbers have been introduced in (2.1) and Theorem 4.1, respectively.) If b > (u+ 1)4,,
a* <a.

Lemma 5.4 can be proved by the comparison argument (e.g., [4, Lemma 1]). See
[12] for the detail.

Proposition 5.4. Assume that b > (u+ 1)A. Let I's be the local bifurcarion branch
obtained in Proposition 5.3. Then I's(C X X R,) can be extended as an unbounded
positive solution branch [ of (5.2). Furthermore, [ contains an unbounded smooth
curve which is parameterized by a;

{(w(a),z(a),a) e X x [a—«k,a)} 5.11)
with a certain positive number k. Here, (w(a),z(a)) is a smooth function such that

li}r;ﬂw(a)ﬂm = o0, li;%z(a) = 126y, in C'(Q). (5.12)

Proof. Suppose that b > (u + 1)4;. For the local bifurcation branch I's obtained in
Proposition 5.3, let [" be a maximum extension of I's as a solution curve of (5.2). Ac-
cording to the global bifurcation theory (Rabinowitz {18]), one of the following two
properties must hold true;

(i) I is unbounded in X X R;

(ii) " meets the trivial or a semitrivial solution curve at a certain point except for
(w,z,a) = (0, (it + 1)291,/(,”1),(1*).

We introduce the following positive cone

P:i={(w,2) :w>0,z>0inQ, and @<O,§-§-<00n5.(2 ,
on on
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where n denotes the unit outward normal to Q2. Assume that there exists (i, 2,a) € r
such that (@, Z) € dP. Then it follows from Lemmas 5.1 and 5.2 that

2 PP o s [t
H 9b/(;1+1) <z< G i ) 91,/,, in Q, A4 (ml:_ 191,/0“.1)) <ax /ll( 91,/# .

m+1 u
(5.13)
respectively. Hence (i, 2) € 9P implies that & > 0,2 > 0 in Q and
W(x0)2(xo) = O at a certain xp € Q (5.14)
or s 3
—w(xl)—(xl) = 0 at a certain x; € 9. (5.15)

By applying the strong maximum principle to (5.2), it is possible to verify that each
of (5.19) and (5.20) leads to @ = 0 or 2 = 0. By taking account for (5.18), we must
assume that & = 0 and Z > 0 in Q. We recall that positive solutions of (5.2) bifurcate
from the semitrivial solution curve {(0, (u + 1)*0y/u11),a) : a € Ry} only at a = a*.
This fact leads to (@,2,2) = (0, (u + 1)26;,/(,”1), a*), which contradicts (ii). Therefore,
the situation of (i) necessarily occurs. Together with the a priori estimates of z and a
(Lemmas 5.1 and 5.2), we can deduce that I consists of a continuum, which is un-
bounded with respect to “wllwlp From the continuum, we take any positive solution
sequence {(W, z,,a,)} C [ with hm [lwyllwir = co. In order to prove hm Hwalloe = o0,

we use the standard elliptic regulanty theory (see e.g., [9]). From the first equation of

(5.2), we obtain
w.da — o(w, + l)zn
1 pw,+ D+ 1

for a certain positive constant C independent of n. Since z, and a, are uniformly
bounded with respect to n (see Lemmas 5.1 and 5.2), (5.21) ensures a certain posi-
tive constant C’ such that |jw,|lw2s < C'|Jwnll. Hence, it follows that hm [[walloo = o0.

Next we will show hm ay = a(= A;(cuby,.)). Since {a,} is a bounded sequence from
Lemma 5.2, we can put Ao = hm ay, subject to a subsequence. Furthermore, we put

) (5.16)

lwnllwzr < C (“wn“p +

Wy, := Wy/ljwyllw. Therefore, a s1m11ar compactness argument to the proof of Theorem
4.1 enables us to find a certain (@, v.) € C*(Q)? such that

Hm (,, z,) = (@, tvee) in C(Q)?, (5.17)

and moreover,
AD + (@0 — CVs) =0 in Q,
PAVS + 00— 1) =0 in Q, (5.18)
W=0,=0 on 9Q, '



passing to a subsequence. Since v, > 0 in Q from (5.22) and Lemma 3.1, the second
equation of (5.23) implies ve, = ufy;,. Therefore, we obtain a, = & from the first
equation of (5.23). Consequently, we have proved that

&im [Wallow = 00, lim 2z, = 1?6y, in C}(Q), lima, = a. (5.19)
— 00 n—00 R0

Next, we will obtain the expression (5.16). Our aim is to prove the non-degeneracy
of {(Wn,2n, @)} C I for sufficiently large n € N, because such a non-degeneracy yields
(5.16) by virtue of the implicit function theorem. With respect to (5.2), we define the
associate linearized operator at (w, z) = (Wp, 2,) by

L ( h — Ah ___( SoWns Zus @n) ;W Zns ) ) h )
" k ) Ak gw(wm zrz) - gz (wm Zn) k ’
where f and g are nonlinear terms defined by (5.8). By direct computations, we obtain

~(i)=-(&)

clp(l +wn)? + 2w, + lzw cw,(1 +w,)
. 1+ w,) + 1P n A+ w)+1 ( h )
Zn 21+ wze drw, [ 20+wdz } k)
(1 +w,) + 1}2 {u(1+w,,)+1 } u(1+wu)+l{u(1+wn)+1

Henceforth, we write 7, to denote the principal eigenvalue of L,. Furthermore we put
m, = llwpll and @, := w,/m,. In order to study the behavior of 7, as n — oo, we
modify L, to the form

{(2)--(2)

clu(l + wy)? + 2w, + 1)z, cwn(l + Wa)

(1l +wy) + 11 Gn (L + wy) + 1)

h
¥ s {2(1+wn)zn b} L +w, {2(1+wn)zn _b} (k)

l+wy+1 u(d +wy) +1

{u(l +w,) + 12 w1l +w,) +1

(5.20)

It is possible to verify that the spectrum set of L, coincides with that of L, for any
n € N. We recall that

i (@, Zr ) = (B, 120, 8) in CY(Q)* X R, (5.21)

where i satisfies the linear elliptic problem

—AD + by = 8 in Q, Wlaa =0, llle = 1. (5.22)
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Therefore, letting n — oo in (5.25), we know that L, converges to

PR LA T A R (h
<\ 1 1= 7\ Ak 651, (244657, — b) 2&m—; k

in the sense of the operator norm. (Here we note that the operator norms of the original
sequence {L,} are unbounded with respect to n.) Consequently, the associate eigenvalue
problem with L., can be expressed as

~Ah + (¢, — @h = nh in Q,
—Ak + 6y, (2uby; — bYh + (20;,,;, — S)k =gk in Q, (5.23)
h=k=0 on 88

From the first equation of (5.28), we know that all eigenvalues of L., consist of infinitely
many real numbers. It follows from (5.27) that (h, i7) = (@, 0) satisfies the first equation
of (5.28). We will show that 7 = 0 is the least eigenvalue of L. Since A,(q) is
monotone increase with respect to g € C(Q), we observe from the second equation of
(5.28) thatif h=0and k # 0,

nz Ay (295/# - 2) > Ay (9[,/‘,z - g) =0. (524)

Here, we note that the right equality comes from the definition of 6,,,. At once, (5.29)
also yields the invertibity of —A + 26, — 5. Therefore, by letting (h,n7) = (@, 0) in the
second equation of (5.28), we obtain '

b\l
k= (—-A + 29b/y - [_/t) (gb/},(b - Zﬂgb/p)lf}) (:: koo)

Consequently, together with the positivity of @, we obtain that n = 0 is the least eigen-
value of L, and that (4, k) = (@, k) is the associate eigenfunction. With the aid of the
perturbation theory of T.Kato [11], we may assume that r, are single real eigenvalues
for sufficiently large n € N, and that

Tim (P, K 1) = (@, ks 0) in C'(Q) X R. (5.25)

Here, (h,, k,) denotes the positive eigenfunction of L, with ||#,]l. = 1. Then, (h,,k,)
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satisfies
clu(l + wa)? + 2w, + 1)z, . z .
[ o
|+ o Tw) 1P {,u(l +wln;+”1 -b h; 1
+li(1 ++wl:;+ 1 {ﬂ(i ++wL:')l)f-n1 - b} G =m0 £
N on 9Q.

(5.26)
By multiplying the first equations of (5.2) with (w, z, @) = (Wn, Zs, a,) by ¥ and integrat-
ing the resulting expression, we have

. (1 + w,)zn N
nA nT T T T . 1 n . .
j;w wdx+fﬂ{a u(1+w,,)+1}w i dx (5.27)

By substituting (5.27) for (5.32), we obtain
- (1 + wn)zn _
a-—a, n = - ——————— Wi dx. 2
(@—a )Lw dx cL{;ﬂbm ;u(1+w,,)+1}w wdx (5.28)
The same procedure for the first equation of (5.31) leads to

. ) (1l + wo)* + 20, + Lzn )
(@ a,,)Lhnwdx+cL[ Wt w) + 17 1By | Pl dX

wp(1 + w,) " f .
n = 1fn n dx.
+6Lm§{u(1+wn)+1}k wdx=n ghw X

Multiplying (5.34) by m, and letting n — oo in the resulting expression, we know along
with (5.26) and (5.30) that

2 s
lloll; im m,n,
n—oo

(5.29)

5.30)
2 e rn . (1 + wy)? + 2w, + 1}z, , (
= - n " - 9 d A
ll@; im (& — a)my + ¢ Lim m, J;[ TETAESIE by, | 0 dx
Since w, = Myiby, letting n — o in (5.33) yields
12 1 . (I+wnz | -
> - = - RGP dx. 5.31
0 5im@ ~ e = i, [ {uo - o aax 63D
Therefore by substituting (5.36) for (5.35), we obtain
)3 Lim o
X {u(1 + w,)? + 2w, + 1}z, 14w, s
= . — d
"Pf‘i”’"ﬂ Wi+wgrlP  pdrwy+i]” o O

w, C
o= i n id ﬁ)zd = - T > 0.
climm [ oy e
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Furthermore, it follows from (5.35) and (5.37) that

1113 lim @ — ax)m,
2
(1 +wy)* + 2w, + 1}z, P dx

{u(l +wy,) + 1P

. . eb/u
= Lim mynp, + e + e lim m, L {(l +w,) + 112 &

. ..
= lim my7, = —l@ll; > 0.
n—oo ﬂ

= lim m,n, + ¢ lim m, f {,uﬂb/,, - b
Q

n-—00 n—-oo

(5.33)

Hence (5.37) and (5.38) imply that 5, > 0 and a, < @ for sufficiently large n € N,
respectively. Consequently, we have proved that the linearized operator L, is non-
degenerate if n € N is large enough. Since L, is invertible for such n € N, the implicit
function theorem gives a positive number &, and a neighborhood O, of (wy,z:) € X
such that all positive solutions of (5.2) in O, can be parameterized as

{(w(a),z(a),a) : an— kK, £ A< Ay + Ky},

where O, := O, X (a, — Ky, a, + &,) and (w(a), z(a)) is a smooth function satisfying
(wla,), z2(a,)) = (Wy,z,). By using the covering argument (see e.g., Du-Lou [7, Ap-
pendix]) for {O,}, we can construct the unbounded smooth curve (5.16). Since a, < &
for sufficiently large n € N, it follows that a < & in (5.16). Hence (5.17) comes from

(5.24). Thus we accomplish the proof of Proposition 5.5.
0

By the one-to-one correspondence between (w, v) > 0 and (w, z) > 0 (see (5.1)), we
can give the following result on the positive solution set of (2.3), as a summary of this
section:

Theorem 5.5. If b > (u + 1)y, the positive solution set of (2.3) contains a local bifur-
cation branch I'; = {{w(s), v(s), a(s)) € XX R : s € (0, 6)}, such that (w(0),v(0), a(0)) =
O, (u+ 1)9’#&(& 1, @*). Furthermore, I'; can be extended as an unbounded positive solu-
tion branch I'; of (2.3) with the following properties :

() Any (w,v,a) € I, satisfies
2 )2
Hb/(lﬂ.l) <v <

r 1 Bb/ﬂ in Q,

cu® clu + 1)?
/ll (ﬂ T 191,/0”1)) <a< /11 (Tab/ﬂ) . (534)




(ii) [, contains an unbounded smooth curve parametrized with respect to a;
{(U)(a), U(a)’ a) € X X [& - K9& )}
for a certain positive number k. Here (w(a), z(a)) is a smooth function such that

li/r,nilw(a)um = o0, li}r}u(a) = by, in C'(QY).

6 Completion of the Proof of Theorem 2.4

In this section, we will acéomplish the proof of Theorem 2.4. Hence Theorem
4.1 yields the convergence properties (i) and (ii) in Theorem 2.4. With respect to the
first shadow system, from Theorem 2.2, we know that (2.2) has at least one positive
solution if and only if @ > &. On the other hand, form Theorem 5.6, we have proved
that the second shadow system (2.3) has at least one positive solution if ¢* < a < @,
and no positive solution if @ > @. Here we put @ := Ai(c(u + 1)*u™65,,), which is
the number in (5.39). Therefore, by combining Theorem 4.1 with such information on
the positive solution sets of two shadow systems, we can deduce that as 8 — co, any
positive solution of (SP) approaches a certain positive solution of (2.2)(resp. (2.3)) if
ac (a6 (resp. a € (a*,a—4&1). Furthermore, it follows that if B is sufficiently large
and a € (a@*,a — 8], any positive solution (,v) of (SP) satisfies |lull. = O(1/B). Then
the proof of Theorem 2.4 is complete.
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