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1 Introduction

This paper is based on the result of {12]. We consider the following initial-boundary
value problem in quasi-linear thermoelasticity (TE):

uy + A%u - vAu, = V- (GO) Hyu(Vu) + H gu(Vu)), (1.1)
[1—8G"(0)H(Vu)l6; — A = 0G' ()8, H(Vu) + v|Vu,]® in Qr, (1.2)
u=Au=V8-n=0 on Sr, (1.3)
u(0,) =ug, w0,-)=uy, 6(0,")=6,2>0 in Q, (1.4)

where Q@ C R” (n = 2,3) is a bounded domain with a smooth boundary 8¢, {ip :=
(0,T) xQ, S =[0,T) x 8%, and n is unit cutward normal to 9f2. Let u = (u;) € R®
denote the displacement vector, 8 the absolute temperature and F' € R is called the
elastic energy density.

We use the following notation

o o o ) ( ap)
=gy fi= gy V=) Fee= {5

where u; ; = g%

In this artlcle we consider the following structure of the elastic energy density:
(A) G(8), H(Vu) and H(Vu) satisfy the following conditions.

(i) G € C}(R,R) is as follows:
Ci8  if6€0,6]
GB) = () iff € [6h,04]
ngr if 6 € [92, OO),



122

where ¢ € C3(R,R), ¢" < 0 and C; and C, are positive constants for some
fixed 8;, 8, satisfying 0 < 8; < 6 < co. We extend G defined on R as an odd

function.

(i) H € C3(R™ R) satisfies that H(Vu) > 0, where R” denotes the set of
symmetric second order tensors in R¢.

(i) H € C3(R™,R) satisfies that [I(Vu) > —Cs, where Cj are some real number.

(iv) H(Vu) and H(Vu) satisfy the following growth conditions:

Hwu(Va)| < OVul™, [H 9u(Vu)| < OV},
IH,VuVu(vu)l < Cqu|K1—2’ [F,VuVu(Vu)‘ < Ctvu!}'\'g—-‘z,
IH,VuVuVu(vu)! < C!VH|K1_37 !ﬁ,VuVuVu(vu)l < CIVUJK2~3

for large |Vul.

Here we note that the regularity assumption for H(Vu) and H(Vu) assures that
there exists a positive constant M such that

Hou(Vu)| + |Hyuva(Vu)| + |Hyuvuva(Vu))|
+ ]F,Vu(vu)[ + }_B—,VuVu (Vu)! + lﬁ,VuVuVu(vu)] S M

for small |Vul.
For the related results, we refer to [11] and [12]. Our main result of this paper
is as follows.

Theorem 1.1. (i) Let 5 < p < ¢ < oo. The exponents v, K; and K satisfy the
following conditions

0§r<2, 0< Ky,K, <86, 6r + K; < 6. (1.5)

Then, for any T > 0 and (ug,uy,8;) € Bazp/? x B2Y? x B2, =: U(p,q), there
exists at least one solution (u,8) to (1.1)~(1.4) satisfying

(u,0) € W;*(Qr) x W (Qr) =: Vi(p, q)-

Moreover, if we assume ming 0y = 8, > 0 then there exists a positive constant w
such that
8 > 0. exp(—wt) in Qr.

(11) Let 4 < p < ¢ < o0 and assume that
0<r<l, 0< Ky, Ky < 0. (1.6)

Then for the two-dimensional system (TE), the same conclusion as in (i) holds.



Here, we have used and will be used the following function spaces.

o [P(Qp) = LELP = L*(0,T; LP(Q)) is the standard Lebesgue space. We often
use the notation LF(Q;) = LYLP for some interval I.

. Wz;%’l(ﬂrp) is the Sobolev space equipped with the norm

21
Hu”wgl'l(gi,,) :mz Z | D Dgul| o),

7=0 2r+al=j

— 8 — o o ..
where Dy :=13;, Dy = H Dg* and Dy == zé—% for multi index o = (o;)2.

a=ai+o2+03

o Hi(Q) := Wi(Q), where W is the Sobolev space equipped with the norm
Huﬁwgm) = zia[gg’ | Dgullce(a)-

¢ B, = B;’Q(Q) is the Besov space. Namely, B = [LP(Q), W] (Q)]s/j,, where
[X,Y]s/jq is the real interpolation space. For more details we refer to [1] by
Adams and Fournier.

o C*?/2(Qr) is the Holder space: the set of all continuous functions in Qr sat-
isfying Holder condition in z with exponent o and in ¢ with exponent of2.

For completeness we recall also the uniqueness result which follows by repeating
the arguments of the corresponding result in [9, Section 6]

Theoz;em 1.2. In addition to assumptions of Theorem 1.1, suppose that F(Vu,0) €
C4R™ xR*,R). Then the solution (u,8) € Vr(p,q) to (1.1)~(1.4) constructed above
is untque.

We prove Theorem 1.1 by using the Leray-Schauder fixed point principle. The
key estimates are the maximal regularity estimate for (1.1), and the classical energy
estimate and the parabolic De Giorgi method for (1.2). In general, the derivative
of & solution is less regular than the right-hand side of the corresponding equation.
However, for parabolic equations such a loss of regularity does not occur, as in the
case of elliptic equations. The estimate ensuring this regularity is called the maximal
regularity. For more precise information on the maximal regularity, we refer to {2]
and for more recent topics of the maximal LP-regularity we refer to [4]. Since the
maximal regularity theory is limited to linear parabolic equations, we cannot use
it directly for the quasilinear equation (1.2). To obtain the higher order a priori
estimates we also use the classical energy methods and the parabolic De Giorgi
method (see [6], [7]). Using these methods we can show the Holder continuity of 6.
By virtue of such regularity, we arrive at the estimate in higher Sobolev norm.
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Throughout this paper C and A are positive constants independent of time T
and depending on time 7', respectively. In particular, we may use A instead of
A(||{uo, u1,80)|x) for some X if there is no danger of confusion.

Remark. We can obtain the same result for the system replacing A in (1.1) with
() defined by

Qu=pAu+ A+ p)V(V - u),

where correspondingly we have to replace Vu on the system with the shear strain
tensor € = (Vu+7Vu)/2 (see [12]).

2 Preliminaries

In this section, we present some auxiliary results which will be used in the subsequent
sections.

Lemma 2.1 (Maximal Regularity). (i) Letp € (1,00). Denote by u the solu-
tion of the linear problem

Uy + AQu - l/AU.t =V f mn QT,
u=Au=0 on Sr,
u(0,:) =ug, w(0,-)=u; nQ.

Then the following estimates hold

”u“WJ;‘J{QT) < C(HHOHBM}% + ”ulnB’z—% + ”V ’ f”L”(ﬂr')) (2'1)

oy
for any (ug,w) € Byp™? x B2*? and V - f € LP(Qr), and

[Vullyzan < Cllluofl sz + ludll iz + 1 flizean) (2.2)

PP
for any (ug,uy) € BEP x BI,YP and f € LP(Q7).

(i) Let g € (1,00). Assume that p(z) is Holder continuous in X such that infq p >
0. Denote by 0 the solution of the linear problem

Ht, - pAB =g n QT:
n-Vo=20 on Sr,
8(0,2) = bo(z) in Q.

Then the following estimate holds

180hwzscary < CUGOM -3 + lgloce) (2.9)

for any 8, € Ba7*'?, where C' depends on infg p.
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For the proof of (i) we refer to {10, Lemma 2.1, Proposition 2.4], and (1%) is the
particular case of [5, 3.2 Examples A), 2)]. Next, we recall the useful space-time
embedding lemma.

Lemma 2.2 (Embedding [6, Lemma I1.3.3]). Let f € W2"(Qp). Then, for
I € Zt and multi inder «, it follows that

1D: D3 fllzegary < CJJ_lﬁ[[f”WgU(gT) + C57Y)| fllze () (2.4)

provided g > p andz/):zr—}«l%—]%—"—}g(%—%) <L Ilfe=r+d4 B2 <1, then

1D D5 f ||y < 055_“’Hffiwgf»l(gﬂ + C67%]{ flloar)s (2.5)

moreover, D{ DS f is Holder continuous. Here, 6 € (0, min(T,¢?)], ¢ is the altitude
of the cone in the statement of the cone condition satisfied by €.

Lemma 2.3. Let ¢ be given in (A)~(i). Then the function ¢(s) satisfies
¢(s) —s¢'(s) > 0 | (2.6)
for any s € |61, 0]

Proof. Putting f(s) = ¢(s) — s¢/(s), we have f'(s) = —s¢"(s) > 0 and f(6,) = 0.
Then f(s) = ¢(s) — s¢'(s) > 0 in [6;,65). O

To show Theorem 1.1 we apply the Leray-Schauder fixed point principle. We
recall it here in one of its equivalent formulations for the reader’s convenience .

Theorem 2.4 (Leray-Schauder Fixed Point Principle [3]). Let X be a Banach
space. Assume that ® : [0,1] x X — X is a map with the following properties.

(L1) For any fized 7 € [0,1] the map ®(7,) : X — X is compact.

(L2) For every bounded subset B of X, the family of maps ®(-,€) : [0,1] = X,
& € B, is uniformly equicontinuous.

(L3) ®(0,-) has precisely one fized point in X.

(L4) There is a bounded subset B of X such that any fized point in X of ®(7,-) is
contained in B for every 0 <7 < 1.

Then ®(1,-) has at least one fized point in X.
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3 Proof of Theorem 1.1 (Existence)

We only prove the existence theorem in three-dimensional case. We apply Theorem
2.4 to the map ®, from Vi (p, q) into Vr(p, ¢),

®, : (4,0) = (u,6), T € 0,1],
defined by means of the following initial-boundary value problems:
uy + A%u — vAw, = 7V - [0 Hyu (V) + H vu(Vu)],
9,1 A =71 {QGH(H QtH(VU) -+ 96"(9)&5 (VU) + V[Vu,,}‘z} in QT,
u=Au=V0-n=0 on Sr,
u(0,) =1y, w(0,:) =7w(z), 6(0,:)=716 in Q.

A fixed point of ®,(1,-) in Vi(p,q) is the desired solution of the system (T'E)s.
Therefore to prove the existence statement it is sufficient to check that the map &
satisfies assumptions (L1)-(L4) of Theorem 2.4. We can check assumptions (L1),
(L2) and (L3) in the same way as that in [8, Section 3]. Then it is sufficient to
check the assumption (L4), namely, to derive a priori bounds for a fixed point of the
solution map ®,. Without loss of generality we may set 7 = 1. Hence from now on
our purpose is to obtain a priori bounds for (TE)s. To this end we prepare several
lemmas.

Lemma 3.1 (Energy Conservation Law). Assume that 0 > 0 a.e. in{Qr, K2 <6
and 6r + K; < 6. Then for any t € [0,T] a smooth solution of (1.1)~(1.4) satisfies

10 iy + @)l e + A |2 < Cl(ao, us, 6o}l mexrexer).  (3.1)

Proof. Multiplying (1.1) by u; and integrating the resulting equation with respect
to the space variable, we have

%(;mm;+;[ hrhfﬂwm¢0+3/ﬁm$mﬁfc 0, H (Vu)da = 0.

Integrating (1.2) over {2, we obtain

p Hd:z:-——u/ [Vutizdm%—feG'(B H(Vu)dx+/0G"(6’)9t (Vu)dz.

Combining these equalities, we deduce
4 l“ i12+3A[;2 /Hd H(Vu)d
=7 { 5wz 2” ulls: + A x+/9 (Vu)dz
= / (9@’(9)%H(Vu) +6G"(9)6;H(Vu) — G(B)(%H(Vu)) dz
Q

= —%L@(@)H(Vu)dm,
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where G(#) = G(#) — 8G'(0). Consequently, we have

%(%Hutﬂiz#—é—lllkul[iz " fQ baz + /Q H(Vu)dz + /Q E(a)ﬂ(vu)dx) =0,

Here we recall that § > 0 and H (Vu) > 0. By the structure of G(§) the function
G(8) is as follows:

0 if 4 € [0, 6],
G(r) =S (0) —04/(6) if6 € [6;,064],
02(1 - T)gr if g e [02, OO)

Since from Lemma 2.3 we have G(f) > 0. Consequently, it follows from {A)-(iii)
that ,

o)1+ S + 100)les < 3ol + 3wl + [6ollas + ColeY

+f |H(Vup)|dz + f [0(B) — o' (60) | H(Vug)dz + Co(1 — 1) [ 85H(Vug)dz
Q

{62>80>6,1NQ {fo>62}00

Since the smooth function ¢(s) — s¢'(s) is bounded for s € [0y, 6,], we have

/[ (6o) — Boy'(60)] H(Vuo)dz < C/ [Vug| %1 dz
7

2 >05>01 N6

< Clluollz}

for Ky <6,

00H (Vug)dr < CHQOHDHVHOHKI
{8p>8:1000

< Cl8olff1 fuoll b

for 6r + K; < 6 and
/ H(Vuo)lde < [[uoll3
¢

for K, < 6. Hence we conclude the assertion. O

Lemma 3.2. Assume that § > 0 a.e. in Qp and (1.5) holds. Then for any
(t6,u1,60) € Blgtarsss ¥ Biapsess X L? = Us, the solution (u,6) to (1.1)~(1.4)
satisfies

IVullyzs @p + 1VO]lL2@p) + [0llgers < A, (3.2)

where A depends on T and || (g, uy, 8)||v,. Moreover we have

IVullzery + 10l orsary < A (3.3)



128

Proof. Remark that ||(ug, u1,80)|lmzxzexr: < Cl|(ue, us, 6o)llv, (see [1]). From the
Gagliardo-Nirenberg inequality and Lemma 3.1 it follows that

< GHVUHWQJ(QT) (34)
and
L 3
18llz35(0a) < © 18132 eyl18 ey |-
T
L 3
< Ol16) o 1 16113 s (35)
< A(IV8ll gy + 10)lzgr2) .
It follows from (3.4) that
7 (V)| s/sagy < AVl S, < AHVuHWmm 11VunwmmT> +A

for Ky € [1,6), and
H u (V)| po/sgap) < M| <
for KQ IS {0, 1)

We first consider the case of K; > 1. Applying the growth condition and the
Young inequality, we have

GO Hya(Vu)li s g ) < IIHWLg(QT)HV ul| "k o
i ct
+ GOVl ek,
ges[g,r;z]l AV IR
< A!ié’ll’ HVuHmeT + AVl g,

for 6r + K; < 6 {(and K; < 6). Then we have

”9“28/3(QT)”VHH?G—(;ZT) + [|Vul LlG(Q )
. (K1-1)/5 (K1-1)/5
< A(IV8llan) + 602, Va0 Al 20

1 187
< 7IVullyzs an) + AV 2r) + 16l Lso ) TEED + A
for 6r + K; < 6 (and K; < 6). From the maximal regularity (2.2) it follows that

IVallyz ap) < Cll(uo, us, 80)loy + CUGO) Hyu( V)l pioss(0p)
+ C”F,VH(VU)HLIG/S(QT‘} (36)
§ O”<u07 uj, BO)HU;; -+ A + A(HVQHLZ(QT) -+ I[O}!L%Lz)‘i(ﬁl—frk’ﬁ.



Next, multiplying (1.2) by # and integrating over 2, we have

5 21802 + V81

z/02G"(9)9tH(Vu)dx+/02G’(6)5tH(Vu)dcc+u/QIVuti2dw

Q 0 0

:/ﬂG’z(ﬂ)BtH(Vu)dm+LG2(9)8tH(Vu)d:c (3.7)
+2/@2(9)&H(Vu)dm+I//H$Vut|2d$

- % /Q Go(6)H(Vu)d + 2 /Q Ga(8)0,H(Vu)dz + v /Q 0|V uy|2ds,

where G5(0) = 02G'(0) — G5(0) and Gy(6) = 2 [ sG'(s)ds. Noting that

Gy(9) = O?‘T—(:;—}-)—Q’"H <0 and Gy(8) = 35’_27; g+ for 8 > 85,
and -
sup |Go(6)|+ sup |Ga(0)] =1 M < oo,
6€[0,82] 4¢[0,82)
we have
—/ Gy()H(Vu)dz = ~ | Go(8)H(Vu)dz — [ Gy(0)H(Vu)dz
Q Qn{a>8;} QN{6:1<<82}

> M / \H(Vu)|da.
Q
Hence integrating (3.7) with respect to time variable, we obtain

S8l za + VO < 10003 + [GaOH (V) 12 + B0 11c0r)

+ M sup /IH(Vu )]da:+/)G2 (6o)H(Vug)ida.

t€(0,T7)

By (3.4), (3.5) and the assumptions we have

1678, H (V)i ar) < AT 1llwas, o [V ullEa,,

(r-i—l

1+ 5
< A(IVOl 2 ar) + [1llzger,) 2 “H “v:iz,;(ﬂﬂ’

161Vl r) < ClBILg o, )HVutHi%m

< A(|V8ll 20 + 10llsrLa) IVuellis g

128
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[ 1H(Vu®)lds < Clu@)f < A
and i
165+ B (Vo) 110y < Clfol 5y [V ual
< Cllboll i luoli 7 qy-

Consequently we arrive at

16035 22 + V0] 2z < AUl (uo, ur, 80)lo)

, 3(r+1 4, K1
+ AV + 10l T IValEST (5.8

+ A1Vl e gar) + 8]l 5 ) Tl Vuael|? 1o

L5 ()
Substituting (3.6) into (3.8), we have
101212 + 1V0]IZ20p) < Alll(uo, u1, 60) llus)

RN

3(r+1)

+ AU lan)+ 101z2) % (s, 00l + (01T )

167

2
A6l zxry + 18l (H(uo 3,80, + V6] zziﬂ*;l;) .

Here from the assumption 6r + K; < 6 it follows that

3(r+1) 157 (é N g_) _ 30r+3(6 - K) <9
& Ti6-K)\5 75 16— K1) ’
S, 30 o
4(6 — K1)

Thus we obtain
16|22 + 190 2gry < Al (1o, 1, 80) ;) + AVl 2 -

Here we use p— to denote a number less than p. Hence by the Young inequality we
have

0]l 222 + %HgHLZ(nT) < A(l[(wo, 11, o) [us)-

Substituting the above inequality into (3.6), we also obtain the following
IVallwzt ) < Alll(uo, w1, 60)lvs)-

Next, we consider the case of 0 < Ky < 1 and 0 <r < 5/6. In this case it follows
that
|H vu(Vu)] < C < 0.
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From an argument similar to the above we have

IVl

16/5

or) < 1w, 1, 0)lus + |G (O) Hwu(Vu)llpessiay,

< luto, s, O}l + CUON g ) + C sup GO) (3.9)

< {|(ug, us, 0)|lws + A“an%(m«) +C.

Noting that
16718, H (V) 1ar) < Al I0llw car):

we obtain

18175 12 + V0l Faary < I160lfZ2 + 1670, H (V)| r2 gy + 10V el 22 r)

+M sup]/QQH(Vu(t))]dqu[Qle(Ho)H(Vuo)fdx

t<f0,T
< Al (o, 11, 00) o) + Al o, lallwa cary + CllOlzorscan a2 oy

< A(||(wg, 1, 80)llws) + AVl z20r) + 18]]pgor2) > HD/4

Since 3(2r + 1)/4 < 2, we obtain the desired estimate (3.2).
The estimate (3.3) follows with the help of the embeddings

Hvu“Lm(QT) < A“VUHWIQ(;;S(QT)

and of the inequality

< CIILE L1013

10/3 — Lo L2
LT T

8lrscamy < C 1617550 161345

This completes the proof. O

Lemma 3.3. Assume that 8 > 0 a.e. in Qr and (1.5) holds. Then for any
(w0, 1y, 80) € BYY x By} x H' = Uy the following estimate holds

HV“”WfJ(QT) + HVQHL;?L? + HBHWZ,Z’I(QT) <A,

where constant A depends on T and ||(uo, u1,0o)||y,. Moreover, we have
”VBHL]O/B(QT) + “9”[,10(91‘) + “Au“Lm(QT) < A.

Proof. Remark that Uy — Us. Using (3.3) we have

AWHEWS(QT)HVqu{(éT) <A K21,

. (3.10)
Asup 1H,Vum9”210/3(QT) <A if Ky <1,

1G(0)H vu(VW)llzaar < {
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for 7 < 5/6. Then from the maximal regularity (2.2) it follows that

[Vully2: < Cli(ug, uy, 0}y, + CIIG(O) Hgu(Vu)lire < A. (3.11)
Maultiplying (1.2) by ¢, and integrating over Qr, we get

1 1
1600ar + 51V < Gl + [ | 0206 (8)H(Vu)dadt
T

+/ HtGG’(B)ﬁtH(Vu)d:cdt-F/ 0,/ Vuy|*drdt
Qr

Qe

[u—

18ol{z + CliEellz2en 16" Hwu(Vu)ll 2o Vatsl s + Cli6, |2 | Vsl 7

PN

< 18015z + Al (o, w1, 60) Iz ) 116:] 22y

A([H(wo, s, 6o)llo,) + gilﬁzllmmﬂ,

where we applied (3.10) and (3.11). Therefore we arrive at

10ell 2 (@) + VO]l 2 < A(| (w0, us, 60)l]vr)- (3.12)

[Vullyzigay +

Next multiplying (1.2) by T%"_(?—% and integrating over {2, we have

A6
5 IVo0E + [ e
/n 1 — BGIIJ(AHO)H(V‘H) (GG’(Q)BtH(Vu) -+ ’/lvuz|2) di

Here we recall that
1<1~- GG”(H)H(Vu) <1+ MA,

where 0 < supg,(—0G"(#)) =: M < oo. Then integrating with respect to time

variable, we conclude that

176)15: + ——%—-—A;_,-lraalrim.>

< |IV6lj%- t1 AA/[]}AQHLZ(QT) +(1+AM) ||9G'(9)0,H(Vu) + |V, ”Lé(n )

1
< A+ m”ﬁﬂ”lg(gﬂ + AHHTH,Vu(Vu)Hm(QT)HVutHLq(QT) + A”VutH%L;(QT)

1
< — (2

due to (3.10) and (3.11). Consequently we obtain the first assertion.
With the help of Lemma 2.2, we also obtain

IVOllzors(ar) + 16llzor) + 1AW z20gig) < A8z 0y + [Vl apy) < A,

which completes the proof. O
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Lemma 3.4. Let p € [20/9,10/3] and assume that § > 0 a.e. in Qr and (1.5) holds.
Then for any (ug, 1y, 6p) € Bfi,;z/p X Bg,;Z/p x H' =: Us(p), the solution (u,8) to
(1.1)(1.4) satisfies
”u“W;’Z(QT) S A-7
where A depends on T' and ||(ug, uy, 0p)||vs(p)-
_2 5 .
Proof. Since the embedding B:,,,” <+ BZ, holds for any A < p, by the Lemma 3.3
we have
19l + 1Bl < AL 10,00, 00) 75 )

< A(H (an uy, 90) HBS,;,Q/”ng;Q/prl)‘

For any p < % we have
IV - (G(O)H vu (V) lzoiar) < MV Lo 1G (O]l Lo 1 H vu (V)£ (0r)
+ All0]| 0@p |Aullzoo@n | Hvuva(Va)l =)
<A
and N o
IV - H vu(Vu)lzriar) < AllAuf|po@nl|H vuvu(Vu)llie@r) < A,
thanks to Lemmas 3.2 and 3.3. Then by the maximal regularity (2.1) we have
laliysap < Cli(uo, us, 0)lus) + CIV - (GO Hgu(Vu)llzran)
+C|IV - H ou(Vu)| e (ar)
<A.
This completes the proof. O

Lemma 3.5. Let | > 2 be integer and p € (1,00). Assume that§ > 0 a.e. in{r and
17/5

(1.5) holds. Then for any (ug,u1,8) € Byyjs 1q/5 X BZ51/53,10/3 x (LY HY) =: Ug(l),
the solution (u,6) to (1.1)-(1.4) salisfies

HGHL,}'?LIm S A‘a
where A = A(T, ||(wg, u1, 6o) ||wsqy) - Moreover, if (g, uy, 8y) € Ug(oo) we have

181l Loy < A,
where A = A(T, {[(a0, w1, 00)lvs(oc)), and for (o, us,60) € (Bap™? N Biy)s 107s) ¥
(le’;z/p N B%?a,m/a) x (L® N HY) =: Uy(p) it holds that
HVungd(gT) <A,

where A = A(T, ||(uo, us, 00)|lvs(»))
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Proof We can deduce that
: dt[wuﬂ(z 1) f 02|V 0 dz = / Gi(0)0,H (Vw)dz+v / 61V, 2z, (3.13)
where we set G;(8) = 0'G'(8) — G1(8), G,(t) = lfp s~1G'(s)ds and

6=90 (1 — mgﬁm) > 0. (3.14)

Since ||H vu(VU)|| o) = A < oo from (3.3), we have

< CN6" ey 18] oo @) [ Vel oo (@ HH v (V) || oo )

/ Gi{0)8,H(Vu)dz
< A[[QHLJ(Q)Iwqu(Q)Hvui“ff”(ﬂ)

Therefore, we conclude from (3.13) that

HHHLZ(Q) < A[Vuy| o Hg“m(n)Hg”Le(m + |V n)”m L) (3.15)

l dit
Here note that &IIGII = 1114]}} iy (Q)é?tl]@]} i) and that from the Sobolev embedding
and Lemma 3.4
HVutHLz r <AVl 2Wlo/s < A”u“wfoﬁs(nr) <A,

10l < 18llyzsgamy < A

where A is independent of {. Thus, integrating (3.15) with respect to time variable,
we obtain

1llzene < Wollzs + AllVuellzg reo 16)l 2.2 + Al Vuellfs e
< A+ ol
Since we have 6y < 6 (14 IMA)*" the desired result can be obtained. For the
T/Vg’l-norm of Vu, we have
IVally2iqn < Cli(ao, us, 0)lloy ) + AllO Lo ) 1 v (V) |2 027
+ A Hou(Vu)|z=(az < A

for p € (1,00), by virtue of the maximal regularity (2.2). This completes the proof.
O

The same procedure as in [8, Section 6] yields that § € C®*/?(Qy) for some
Holder exponent 0 < o < 1 depending on T, supg 8 and ||0|/z=(q,). Essentially
the proof relies on the classical parabolic De Giorgi method. For more precise
information of this method we refer to [6, Chapter II, §7] and [7, Chapter VI, §12].
Here we note that Vu is Holder continuous because of Lemma 2.2.
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Lemma 3.6 ([8, Lemma 6.1]). Assume that k = supg 8y < co. Suppose that

[ Vullizop) + 10wz, + 10l < A (3.16)
holds for any s € (1,00). Then 0 € C**%(Qr) with Hélder exponent e € (0,1)
depending on A and k.
Lemma 3.7. Assume that (3.16) holds. Then for any (ug,uy,6p) € U(p,q) and
5 < p,g < oo we have

(0, 0)llvir(pg) = HUHW:’Q(QT) + “'gnwf-l(gr) <A,

where A depends on ||(ug, w1, Op)llup,q) and T.

Proof. By using Lemma 3.6 we have 6 is Holder continuous. For brevity of nota-
tion we denote 1 — 8G"(9)H(Vu) by c¢(Vu,8), and 8G'(6)0,H(Vu) + v|Vu|* by
R(Vu,0). Then the equation (1.2) can be rewritten as

co(Vug, 8)8; — A8 = (cp(Vuo, by) — co(Vu, 8))8, + R(Vu, ).
It follows from the assumptions that

IRV, 8) || ragar) < OOl 5eeiam H vu (VW) 1o () | Ve 2ag0r) + ClIV @l F20 0y
<A.

From Holder continuity it follows that
llco(Vuo, 8) — co(VW, 0) || e=(ar,) < KT*%,

where K is Holder constant independent of T;. Here T} <« T will be determined

later.
Next we show that 1/¢o(Vu,8)(z, To) is Holder continuous with respect to the

space variable for 7} fixed in [0,7]. We remark that
Gly) =yG"(y) <M

and G € C! is Lipschitz continuous. Then we have

I%(m,Tg) - %(m',ﬁ)
G6(«', T2))H(Vu(z', T)) — G(0(=z, T))H(Vu(z,T3))

{1 - Q(B(x, Tz))H(Vu(.’L‘, T2))}{1 - g(@(:z:” TZ))H(vu(x’a TQ))}
< {G(0(, To))H(Vu(r', Ty)) — G(8(z, T2)) H(Vu(z', T2)) }

+{6(8(z, o)) H(Vu(z', Tz)) — G(8(z, T»)) H(Vu(z, Ta)) }
< |H(Vu(e', 1)) 19(0(2', T2)) — G(6(z, T2))|

+16(0(z, ) |H(Vu(z', T2)) — H(Vu(z, T2))]
< AKlz —2'|* + CM|z — 2'|*
< Az — 2|9,
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where A is independent of T3. Therefore [1/co(Vu,8)](z, T2) is Hélder continuous
for any T; € [0,T]. Moreover, we have supg_[1/co(Vu,6)] > 1/(1 + MA). These

assure that mmzx has thle maximal regularity property according to (2.3).

Hence, taking T} = (m) *, we have

HQHW(;‘”I(QTI) < A(K, M, T)||es(Vug, b} — co(Vu, H)“L“(ﬂﬂ)”etﬂm(ﬂﬁ)
+ A(K, M, T)HR(VII, 9)”139(97’1) + CHQOHB‘?‘;Q/‘?(Q)

< S0l psan,) + A+ Allfo]l ga-2re gy

DI =

which yields
18l < A+ Alfoll go-ore

Here we remark that

0T ga=2re < CUTOM w20,y < CTNA A+ Alluo]] g-2re)

thanks to the embedding W2 (Qg,) — BUC([0, T3], Bj; *) (see [2]). Then similarly
for the interval [T}, 277] we have

Hellwgil(nm‘wﬂ) <A+ A”u(Ti)HBi;zm <A+ AHUOHB(?,;E/«; <A
Repeating the same operation, we obtain

”9“WZ’I{Q[le,(kH)TU) s

Summing the inequalities from & = 0 to £ = m satisfying {m + )77 > T and
m1; < T, we conclude that
HQHqu,l(QT) < A.

Next we estimate the norm [[ul|ys2q, ). From Lemma 2.2 it follows that
1VOlle(ar) + |Aulzor) < A
for ¢ > 5. Therefore, by virtue of the maximal regularity (2.1) we have

lallwez ) < Cli(ao, u, Mug + CIV - (GO) Hya (V)| zr@n)
+ ||V - Hyu(VU)||r )
< Cli{uo, i, 0)llvipg) + AVO Lo@rllG' ()| 2o (02 1 H wu (VU || L= 027)
+ AHQHEOO(QT)“AUHLUO(QT)HH,VuVu(Vu) HL°°(QT)
+ AllAul| o0 07) | H guva (V) | e (ar)
< A{ll(ao, 11, 0)logpg)s

which completes the proof.
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Here we note that we assume that € > 0 in all the lemmas of this section.
The non-negativity of 6 is assured for the sufficiently smooth solution (u, ) such
as (u,8) € W}*(Qr) x L¥L?. Hence, we can not proceed the above arguments,
directly. One of the solvents for this problem is the following. We first consider the
truncated problem (TE)%:

wy + A%u — vAu, =Ty, (v [G(8)H yu(Vu) + F,Vu(vu)]), (3.17)
8, — A = 0G"(6)0, H(Vu) + 0G'(0)0,H(Vu) + v|Vu,f* in Qp, (3.18)
u=Au=V8-n=9 on St,
u(0,)) =ug, w(0,)=wy, 60, )=6,>0 in 0,
where ‘ f '
T if lz| < L,
Li(o) = {Lﬁ if ix: > I

We construct the solution (ug,d;) for L > 0. Then the solution satisfies also the
original system (1.1)-(1.4) for sufficiently large truncation size L because a priori
estimates obtained in this section are independent of L. More precisely, we refer to
[12].
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