On the continuity of positive definite functions on conelike semigroups

Torben Maack Bisgaard (デンマーク)
Nandrupsvej 7 st. th., DK-2000 Frederiksberg C, Denmark
E-mail: torben.bisgaard@get2net.dk

Nobuhisa Sakakibara (榊原暢久 (茨城大学・工学部))

Faculty of Engineering, Ibaraki University, Hitachi 316-8511, Japan

E-mail: sakaki@mx.ibaraki.ac.jp

Dedicated to the memory of Knud Maack Bisgaard

2000 Mathematics Subject Classification. Primary: 43A35; Secondary: 44A60 Keywards and phrases. continuity, positive definite, moment, conelike semigroup

Abstract

Let S be a conelike semigroup in \mathbb{Q}^k . In [5], P. Ressel showed an integral representation of bounded positive definite functions on S which is continuous at 0. In this paper, we will analyze some integral representations of unbounded positive definite functions on S which is continuous at 0.

1 Introduction

Let S be an abelian semigroup with the identity 0. A function $\varphi:S\to\mathbb{R}$ is called *positive definite* if

$$\sum_{j,k=1}^{n} c_j \overline{c_k} \varphi(s_j + s_k) \ge 0$$

for all $n \in \mathbb{N}$, $s_1, \dots, s_n \in S$, $c_1, \dots, c_n \in \mathbb{R}$.

A function $\sigma:S\to\mathbb{R}$ is called a *character* if it is multiplicative and not identically zero. In particular, if $0\notin\sigma(S)$, σ is called *zerofree*. The set of characters on S is denoted by S^* . Denote by $\mathcal{A}(S^*)$ the least σ -ring of subsets of S^* rendering the mapping $S^*\ni\sigma\mapsto\sigma(s)\in\mathbb{R}$ measurable for each $s\in S$. A function $\varphi:S\to\mathbb{R}$ is called a *moment function* if there is a measure μ defined on $\mathcal{A}(S^*)$ such that

$$arphi(s) = \int_{S^*} \sigma(s) d\mu(\sigma)$$

for all $s \in S$. Note that every moment function is positive definite and every bounded positive definite function on S is a moment function whose representing

measure is unique (see [1], Theorem 4.2.8). But a positive definite function is not necessarily a moment function (see [1], Theorem 6.3.5), and a representing measure is not necessarily unique if any (see [1], Example 6.4.3).

An abelian *-semigroup S is called determinate if whenever μ and ν are measures on $\mathcal{A}(S^*)$ such that

$$\int_{S^*} \sigma(s) d\mu(\sigma) = \int_{S^*} \sigma(s) d\nu(\sigma), \quad s \in S$$

then $\mu = \nu$. The semigroup S is called *semiperfect* if every positive definite function $\varphi: S \to \mathbb{R}$ is a moment function, and *perfect* if S is semiperfect and determinate.

A subset M of a vector space over the scalar field \mathbb{K} ($\mathbb{K} = \mathbb{Q}$ or \mathbb{R}) is called *conelike* if for each $s \in M$ there is some $a \in \mathbb{K}$ such that $\alpha s \in M$ for all $\alpha \in \mathbb{K}$ satisfying $\alpha > a$.

P. Ressel has proved the following theorem (see [5], Theorem 2):

Ressel's Theorem Let S be a conclike semigroup in the real vector space \mathbb{R}^k , $k \geq 1$, with $S \neq \emptyset$ and $0 \in \overline{S}$, where $S := \{s \in S \mid (\mathbb{R}_+ s) \cap S \neq \emptyset\}$. For a bounded positive definite function $\varphi : S \to \mathbb{R}$ the following properties are equivalent:

- (i) φ is uniformly continuous.
- (ii) φ is continuous at 0.
- (iii) $\exists \{s_n\} \subset \widetilde{S} \text{ with } s_n \to 0 \text{ and } \varphi(s_n) \to \varphi(0).$
- (iv) There is a bounded nonnegative measure μ on S^{\square} such that $\varphi(s) = \int_{S^{\square}} e^{-\langle v,s \rangle} d\mu(v), \ s \in S, \ \text{where } S^{\square} := \{v \in \mathbb{R}^k \mid \langle v,s \rangle \geq 0 \text{ for all } s \in S\}.$

It is natural to consider this theorem for unbounded positive definite functions. In general, every unbounded positive definite function is not a moment function. But every conclike semigroup in the rational vector space \mathbb{Q}^k , $k \geq 1$, is perfect (see [4], Theorem 3.3, [2], Theorem 6). In section 3, we will prove a Ressel-type theorem for unbounded positive definite functions on conclike semigroups in \mathbb{Q} . In section 4, we will show that such a Ressel-type theorem in $(\mathbb{Q}_+ \setminus \{0\})^2 \cup \{(0,0)\}$ does not hold. In section 5, for some conclike semigroups in \mathbb{Q}^k , we will prove that the implication (ii) \Rightarrow (iv) holds.

Throughout this paper, an abelian semigoup S in \mathbb{Q}^k (or \mathbb{R}^k) is conelike, and the composition on S is the ordinary addition. See [1] for other details on positive definite and moment functions, and see [3] on positive definite functions on conelike semigroups.

2 Pleliminaries

In this section, we will determine explicitly the zerofree characters on S with $\mathring{S}_{\mathbb{Q}} \neq \emptyset$, where $\mathring{S}_{\mathbb{Q}}$ is the interior of S in the rational vector space \mathbb{Q}^k with the relative topology. This argument is similar to P. Ressel's (cf. [5]).

Proposition 1 Let S be a conelike subsemigroup of \mathbb{Q}^k with $S_{\mathbb{Q}} \neq \emptyset$. Then every zerofree character $\sigma \in S^*$ is of the form

$$\sigma(s) = \exp\langle v, s \rangle$$

for some $v \in \mathbb{R}^k$.

Put $\widetilde{S_{\mathbf{Q}}} := \{s \in S \mid (\mathbb{Q}_{+}s) \cap \overset{\circ}{S_{\mathbf{Q}}} \neq \emptyset\}$. The set $\widetilde{S_{\mathbf{Q}}}$ contains $\overset{\circ}{S_{\mathbf{Q}}}$. By the similar proof of [5], Lemma 3, we have the following.

Lemma 2 Let S be a conclike subsemigroup of \mathbb{Q}^k with $\mathring{S}_{\mathbb{Q}} \neq \emptyset$, and $\sigma \in S^*$ is not zerofree. Then $\sigma \equiv 0$ on $\widetilde{S}_{\mathbb{Q}}$, in particular on $\mathring{S}_{\mathbb{Q}}$.

Define the sets

$$W := \{ \sigma \in S^* \mid \sigma : \text{ zerofree} \},$$

$$N := \{ \sigma \in S^* \mid \sigma : \text{ not zerofree} \}.$$

If $S_{\mathbf{Q}} \neq \emptyset$, by Propositon 1, W is topological semigroup isomorphic to \mathbb{R}^k by the correspondence

$$f:(s\mapsto \exp\langle v,s\rangle)\mapsto v.$$

Since S is perfect, every positive definite function φ on S has the following integral representation with the unique measure μ on S^* :

$$\varphi(s) = \int_{S^*} \sigma(s) d\mu(\sigma), \quad s \in S.$$

Since every character $\sigma \in N$ is identically zero on $\overset{\circ}{S_{\mathbb{Q}}}$ by Lemma 2, then

$$arphi(s) = \int_{\mathbb{R}^k} \exp \langle v, s \rangle d
u(v), \quad s \in \overset{\circ}{S_{\mathbb{Q}}},$$

where ν is the image measure defined by $\nu := \mu^f$.

3 In the Case of S in \mathbb{O}

In the case of $S \subseteq \mathbb{Q}$ with $\stackrel{\circ}{S_{\mathbb{Q}}} \neq \emptyset$, it is easily obtained that $S^* = W \cup N = W \cup \{\mathbf{1}_{\{0\}}\}$, where $\mathbf{1}_{\{0\}}$ is the indicator function of $\{0\}$. We have the following:

Theorem 3 Let S be a conclike semigroup in the rational vector space \mathbb{Q} with $S_{\mathbb{Q}} \neq \emptyset$ and $0 \in \overline{S_{\mathbb{Q}}}$. For a positive definite function $\varphi : S \to \mathbb{R}$ the following properties are equivalent:

- (i) φ is continuous.
- (ii) φ is continuous at 0.
- (iii) $\exists \{s_n\} \subset \widetilde{S_Q} \text{ with } s_n \to 0 \text{ and } \varphi(s_n) \to \varphi(0).$

(iv) There is a nonnegative measure ν on $\mathbb R$ such that $\varphi(s)=\int_{\mathbb R}e^{vs}d\nu(v),$ $s\in S.$

Corollary 4 Let S be a conclike semigroup in the real vector space $\mathbb R$ and define $S_{\mathbb Q}:=S\cap\mathbb Q$. Suppose that $\overset{\circ}{S}\neq\emptyset$, $0\in\overline{\widetilde{S_{\mathbb Q}}}$ and $S=\overline{S_{\mathbb Q}}$. Then a function $\varphi:S\to\mathbb R$ is continuous and positive definite if and only if there exists a nonnegative measure ν on $\mathbb R$ such that

$$arphi(s) = \int_{\mathbb{R}} e^{vs} d
u(v), \quad s \in S.$$

4 In the Case of S in \mathbb{Q}^2

In the case of S in \mathbb{Q} , we proved a Ressel-type theorem for unbounded positive definite functions. But, in the case of S in \mathbb{Q}^2 , a Ressel-type theorem such as Theorem 3 does not hold. In this section, we will show some counterexamples. Throughout this section, let S be the abelian semigroup $(\mathbb{Q}_+ \setminus \{0\})^2 \cup \{(0,0)\}$.

Example 1 (Counterexample of (iv) \Rightarrow (ii)) For each $k \in \mathbb{N}$, define $v_k \in \mathbb{R}^2$ by $v_k = (k, -k^2)$. Let m be the measure $\sum_{k=1}^{\infty} \frac{1}{k^2} \varepsilon_{v_k}$ on \mathbb{R}^2 , where ε_{v_k} is the Dirac measure supported by $\{v_k\}$. Define

$$\varphi(x,y) := \int_{\mathbb{R}^2} e^{\langle v,(x,y)\rangle} dm(v) = \sum_{k=1}^{\infty} k^{-2} e^{kx-k^2y} < \infty, \quad (x,y) \in S.$$

Now φ is not continuous at (0,0). In fact, let $\{x_n\}$ be any sequence of positive numbers tending to 0. For each n, since $\varphi(x_n,y) \to \infty$ as $y \to 0$, we can choose y_n such that $0 < y_n < \frac{1}{n}$ and $\varphi(x_n,y_n) > n$. Then $(x_n,y_n) \to (0,0)$ but $\varphi(x_n,y_n) \to \infty$.

Example 2 (Counterexample of (iii) + (iv) \Rightarrow (ii)) Let φ be the function as above. We only have to show that there is a sequence $\{s_n\}$ in $S_{\mathbb{Q}}$ such that $s_n \to 0$ and $\varphi(s_n) \to \varphi(0)$ as $n \to \infty$. For each $n \in \mathbb{N}$, define a continuous mapping γ_n on (-1,1) by $\gamma_n(-t) = \left(\frac{1-t}{n},\frac{1}{n}\right)$ and $\gamma_n(t) = \left(\frac{1}{n},\frac{1-t}{n}\right)$ for

 $0 \le t < 1$. We can easily prove that $\varphi(\gamma_n(-t)) \downarrow \sum_{k=1}^{\infty} \frac{1}{k^2} e^{\frac{k-k^2}{n}} < \varphi(0)$ and $\varphi(\gamma_n(t)) \to \infty$ as $0 \le t \uparrow 1$. By continuity, we can choose $t_n \in (-1,1) \cap \mathbb{Q}$ such that $\varphi(\gamma_n(t_n)) = \varphi(0)$. Putting $s_n = \gamma_n(t_n) \in \mathring{S}_{\mathbb{Q}}$, we have that $s_n = \gamma_n(t_n) \to 0$ and $\varphi(s_n) = \varphi(\gamma_n(t_n)) = \varphi(0)$. Then we can obtain the result.

Example 3 (Counterexample of (iii) \Rightarrow (iv)) Let φ and $\{s_n\}$ be as above, and let μ be the representing measure of φ on S^* . Choose a number α such that $\sum_{k=1}^{\infty} \frac{1}{k^2} e^{\frac{k-k^2}{n}} < \alpha < \varphi(0)$. Define the function ψ as follows:

$$\psi(x,y) = egin{cases} arphi(x,y) & ((x,y) \in S \setminus \{(0,0)\}) \ lpha & ((x,y) = (0,0)) \end{cases}$$

Then ψ is positive definite on S. By the similar argument to take $\{t_n\}$, we can choose $\widetilde{t}_n \in (-1,1) \cap \mathbb{Q}$ such that $\psi(\gamma_n(\widetilde{t}_n)) = \alpha$. Putting $\widetilde{s}_n = \gamma_n(\widetilde{t}_n) \in S_{\mathbb{Q}}$, we have that $\widetilde{s}_n = \gamma_n(\widetilde{t}_n) \to 0$ and $\psi(\widetilde{s}_n) = \psi(\gamma_n(\widetilde{t}_n)) = \psi(0)$. But the support of the representing measure of ψ contains $\{\mathbf{1}_{\{0\}}\}$. In fact, Since ψ is a moment function on S, there exists the measure μ_0 on S^* such that

$$\psi(s) = \int_{S^*} \sigma(s) d\mu_0(\rho), \quad s \in S.$$

Put $H:=S\setminus\{(0,0)\}$. By [6], Lemma 2.2, the mapping $f:\sigma\mapsto\sigma|_H$ is a one-to-one correspondence between $S^*\setminus\{\mathbf{1}_{\{0\}}\}$ and H^* . Let $\widetilde{\mu}$ and $\widetilde{\mu_0}$ be the images of μ and μ_0 , respectively, i.e., $\widetilde{\mu}=\mu^f$ and $\widetilde{\mu_0}=\mu_0^f$. For $s\in H$,

$$\int_{H^*} \sigma(s) d\widetilde{\mu_0}(\sigma) = \int_{S^*} \sigma(s) d\mu_0(\sigma) = \psi(s)$$
$$= \varphi(s) = \int_{S^*} \sigma(s) d\mu(\sigma) = \int_{H^*} \sigma(s) d\widetilde{\mu}(\sigma).$$

By [6], Theorem 3.2, H is perfect (see [6] for the definition of perfectness of H). By [6], Proposition 3.1, $\widetilde{\mu} = \widetilde{\mu_0}$ on H^* . Suppose $\mu_0(\{1_{\{0\}}\}) = 0$, then $\mu = \mu_0$ on S^* , hence $\varphi = \psi$ on S. This contradicts to $\varphi \neq \psi$. Therefore $\mu_0(\{1_{\{0\}}\}) \neq 0$.

5 In the case of S in \mathbb{Q}^k

In the case of S in \mathbb{Q}^2 , a Ressel-type theorem such as Theorem 3 does not hold. But, under an assumption of S, we will show the implication (ii) \Rightarrow (iv).

Proposition 5 Let S be a conclike semigroup in the rational vector space \mathbb{Q}^k , $k \geq 2$, such that $S_{\mathbb{Q}} \neq \emptyset$ and there exists a sequence $\{s_n\}$ of $\widetilde{S_{\mathbb{Q}}}$ satisfying $\lim_{n \to \infty} s_n = 0$ and $\dim(\limsup \{s_n\}) = 1$. For a continuous and positive definite function φ on S there exists the nonnegative measure ν on \mathbb{R}^k such that

$$\varphi(s) = \int_{\mathbb{R}^k} e^{\langle v, s \rangle} d\nu(v), \quad s \in S.$$

Acknowledgements. The second-mentioned author was partly supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science.

References

- [1] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups. Theory of positive definite and related functions, Graduate Texts in Mathematics Vol. 100, Springer-Verlag, New York - Berlin - Heidelberg - Tokyo, 1984.
- [2] T. M. Bisgaard and N. Sakakibara, Stieltjes perfect semigroups are perfect, Czech. Math. J. 55(2005), 729-753.

- [3] H. Glöckner, Positive definite functions on infinite-dimensional convex cones, Memoirs Amer. Math. Soc. no. 789, Amer. Math. Soc., Providence R.I., 2003.
- [4] K. Nishio and N. Sakakibara, Perfectness of conelike *-semigroups in \mathbb{Q}^k , Math. Nachr. **216** (2000), 155-167.
- [5] P. Ressel, Bochner's theorem for finite-dimensional conelike semigroups, Math. Ann. **296** (1993), 431–440.
- [6] N. Sakakibara, Perfectness and semiperfectness of abelian *- semigroups without zero, Hokkaido Math. J. 24 (1995), 113–125.