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Abstract

We have much information on the spectrum of the Laplace-Beltrami
operators on non-compact simply connected complete Riemannian man- -
ifolds. In particular the spectrum depends on the sign of the Gaussian
curvature when the dimension of the manifolds is two. In this paper
we are concerned with Dirac operators on the manifolds and show that
the spectrum does not depend on the sign of the Gaussian curvature.

1 Introduction

Let M be a simply connected complete Riemannian manifold with metric
ds® = gijdmidij . |

As usual we use the following standard notation
(9) = (9:5) ™", g = det(gyy)-

Apr denotes the Laplace-Beltrami operator

1 0 . 0
= — v
\/ﬁa:ci‘/_g_g OzJ

Ay

We assume that dim M = 2 and we can endow M with a global system of

geodesic polar coordinates where the metric is given by
ds® = dr? + h%(r,0)d6. r € [0,00), 0 € [0,27).

Thus, it is seen that

Ay 10,0 1813
M= Roror " ho0h o8

Note that when M = H? = R x (0, 00),
2

| , 0
2_ -2 2 2 — 2 _
ds? = y~%(dz? + dy?), AHz—y(am2+ay2)
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and h(r,8) = sinhr.
In what follows we consider the case that h is independent of 6. So
Gaussian curvature K is given by

hll

It is known that

Theorem 1.1 (?]) If K(r) > 0, Vr > 0, then o(—Aps) = [0,00) and —Apy
has no eigenvalues. If K(r) <0, Vr > 0 and lim,_,o, K(r) = —u? < 0, then
o(-Apy) = [ff;, o0) and —Aps has no eigenvalues.

We give two remarks.

(i) If K(r) < 0 near oo and K takes a positive value, then there exists
eigenvalues, in general. For example, it may occur that h(r) ~ exp(—r) as
T — 00.

(ii) If im, 00 K (r) = —00, then 0(—Ap) = 04(—Apr).

Our purpose is to investigate the spectrum of the Dirac operator on M.

2 Main results

Let Hp be the Dirac operator on M. From Chernoff [?], it follows that Hp
is essentially self-adjoint on C§°(M)%. Hp has the following representation
in the geodesic polar coordinates given in the previous section..

. [0 1 . (0 —i s (1 0
”“(10"’“ i 0 ) 7 o -1

It holds that
o'o! ==1o%, (i,5,k) = (1,2,3), (2,3,1), (3,1,2).

Theorem 2.1 Suppose that the following condition holds.
(A-1) K(r) 20 on[0,00) Then, o(Hp) = R and there are no eigenval-
ues.
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Theorem 2.2 Suppose that the following condition holds.
(A-2) K(r) <0 on[0,00) and there exists R > 0 and a > 0 such that

K(r)< —a, Yr>R.
Then, o(Hp) = R and there are no eigenvalues.

Remark

1 o,

73(De — 50 )2 + i)

1

2.1)

3 Proof of Theorem ??

Lemma 3.1 If K(r) > 0 on [0,00), then h' > 0 on [0,00). Hence, h(r) <r
for all r > 0. ‘

Proof: Suppose that there were ry > 0 such that A'(rp) < 0. From that
h" <0, it follows that

R'(r) <K (rg) = -a<0Vr>r.
It holds that if » > rqy.then

h(r) — h(ro) = W' (€)(r — ro) < —a(r — ro).
Therefore, there exists r; such that

h(r1) = 0.

This is a contradiction.
The final part of our statement follows from that

1=H(0)>H(r)>0

and that h(0) = 0. Q.E.D.

Now we are going to prove Theorem ??. First of all we shall show that
0 is not any eigenvalue. We shall use Fourier series expansion. Let

f(r8)= D" fu(r)e*

k=—o00 :
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and

!

k
— gl - 22
HD,k—a (Dr+2hi)+0' 5

Then it is seen that

Hpf= Y e*Hpfi(r).

k=—00

Set fx = fiv/h. Then it is easily seen that
Hp kfr = Afk
is equivalent to
o'Hpife = {D: + i03%}fk = Ao fi.
Let
I~{D’k =D, + z'a3-;-z-.
Suppose that Hpf =0 for f € [L%(M)]?, which implies
Hpifi =0, fr € [L*([0,00) x [0,2m)))%.

Namely

640
T d fk:07
AU

Define fi =* ( f,': , fk‘ ) and suppose that f,: # 0. Then

=i

ff = Crtexp { /1 ' ;—L%ds} e L2([o, oo)).l

" Ifk>0andr>1, then

exp [/1? -;L—(%ds] > rk,

Therefore, Cr.+ =0 for k > 0.
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If k<0 and r <1, then

exp [/; h—?s—)ds} > rk.

Hence, we have Cj, . = 0 for k < 0. Similarly, we can verify that Cy_ =0
for any k. Therefore we can conclude that f = 0 for all k € Z, so that 0 is
not any eigenvalue. . _

We remark that o'Hp is in the limit point case at infinity for each
k € Z and that it is in the limit point case at the origin if and only if
k € Z\{0}. In particular c'Hpj with k # 0 is essentially self-adjoint on
C°((0, 00))2.

For A € R, let

Hpf=\f, fel[LXM)>.

Since Hp is elliptic, it follows that f is smooth on M. Let M,; = [s,t] X
[0,27) with measure hdrdf and 'y = {r} x [0,2r) with measure hdf. We
note that if f and g belong to C§°(M, ), then

0 % h'
<(-6_r+_2—hl-)f79>Ms,t - <f7( 2h)g>Mst
In view of
K 1
_ 1 n 24
HD“‘U (Dr+2’l,h)+a hDg,
we see that
0 h 8
2R€<h(a op)fs Hpfm,,. = 2Re<h( )f o1 Dof))Mst
t
= Re [ / h(f, 0251)9 f)hde]

On thé other hand
t

PRe(h(GE + 32l M)ane =~ AT )as + Re | [ 123712

r=s
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Let II be the projection onto the subspace spanned by e**?, k € Z\{0}.
Thus,

t

MM £, f) [ / Ah| f|2dr,] - Re [ / (f,02Dg f)dFr]

r=8
t

= Re U Ah|f{2drr]t_s —Re [/(f, o?(Dy — %IUB)Hf)dPr] :

r= r=s

(3.1)
where dI’ = hdf. From (?7?) it follows that if f € C3°(M\{0}), then

I1%(De ~ %% f1B, < (HBS, £)aa = (Hpf, Hpflu

Then if Hpf € L?>(M), then it holds that
hl

—(Dg - 50 haf e LE(M).

Since f € [L%(M))?, there exists a sequence {t;} such that

lim t; = oo, hm h|f[2dl:; < _1i)m / r|f|*dTy, =0
j—o0

J—roo r=t; r=t;
and
: 1 V1T £12 : 317 £12
—_—— < — —— —_—
Jm [ 510 Y Ly, < lim /r=t,. T (Do- 2 oy 1fPdr, = 0.
Hence
b |
lm | [ (1,0*(Ds = oA )T,

<l h'
5 hm {h|f|2 --|0'2(Dg - 5—03)Hf|2}dr‘r =0.

Similarly there exists a sequence {s;} such that

lim s; =0, Jim h|f)%dly =0

j—roo r=s;

and

im [ (f,0 (0—%03)nf)dr =

J—00 =s;



Taking the limit of the both sides of (??) with ¢t = ¢; and s;, we can conclude
that if A # 0,

(Wf, f)=0.

This implies that f = 0 on a non-empty open interval I. By virtue of the
unique continuation property, we see that v = 0 on M. This means that
every non-zero real number is not any eigenvalue.

Finally we shall show that the spectrum of Hp coincides R. To prove
this, we consider the case when k = 0.

al(I:I - Nfo= ad’_” —iA ) £ fo =t .
Do — A)fo = N4 fo=0, fo="(f+,f-)
dr

gives

i fe+Xfe=0
d'l"z + + = V.
Therefore, it it not difficult to find a sequence {u;} such that
lwsllzzanye = 1, Jim JI(Hp,o = Aujllz2ayz = 0.

Hence we have o(Hp) = R.

4 Proof of Theorem ?77?

Lemma 4.1 Suppose that K < 0 on [0,00). Then h'(r) > 1 and h(r) > r
forallr € [0,00).

Lemma 4.2 Suppose' that K < 0 on [0,00) and there exists u > 0 such that
im0 K(r) = —p?. Then,

! AN
lim %zu, lim (%) =0.

r—oo r—00

Lemma 4.3 Let u > 0. If f € C? satisfies

T o= P06, 1920
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for all r > s, then
f(r) = ptanh(u(r —s) +ro), if f(s) <u,

f(r) = peoth(u(r — s) +ro), if f(s) > p,
fry=p, if f(s) =u.

Lemma 4.4 Suppose that K < 0 on [0,00) and there exists p > 0 such that
K(r) < —p? for r > R. Then,

/

— > tanh(1)p, forr> 1 +R.
h p
In particular there exist M > 0 and § such that
X ;
h(r) > M exp(dur), v > M + R.

Proof: Let v(r) = h'(r)/h(r) and consider w(r) = v(r) — f(r) with v(R) =
F(R). Then,

w'(r) = K(r) — u® = (r) + f3(r).

Thus w(R) = 0 and w'(R) = —K(R) — p* > 0. We are going to prove
that w(r) > 0 for all » > R. Suppose that there were 7' > R such that
w(r') = 0. Let ro(> R) be the smallest one of such /. Then, we see that
w'(ro) = —K(rg) — 2 > 0. Then w(r) must take both a negative value
and a positive value in (R, 7). This is a contradiction to the choice of ro.
Therefore, we conclude that w(r) > 0 for all »r > R. v(R) = f(R) means
that there exists rg > 0 such that

% > f(r) > ptanh(u(r — R) +ro)

for all » > R. Hence,

!

% > ptanh(l + ) > ptanh(1).

forall 7 > R+ 1. | ~ QED.
Now we are going to prove Theorem 77?. Recall

k2

ﬁD,k - UlDr +
h
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and suppose that for A € R\{0} i € L2((0, 00)) satisfies Hp yiix = A
Let x € C$°(R) be a nonnegative cut-off function supported in [s—1,t+1]
such that

and

sup [x/(r)] < 1.

In addition, ¢ € C3(R4;R) satisfies ¢’ > 0. The vector function wy =
x(r)e¥uy satisfies

2010, ~ 20° ') ~ Mwx = fy, (41)

where

1 -
fx = oty e?ii.
i

In view of 1/h(r) < M exp(—dur), we can use the standard virial theorem
to estimate

t ~
0= 2Re/ (r&‘,wk, (HD,k - )\)wk)dr.

Integration by parts implies that

Lemma 4.5

t+1 k t+1
/ [(Br(r)\wk, wg)) + 2Re(r{ic’ (¢’ + Ea?’)}wk,(')rwk)] dr = / (r fx, Orwi)dr.

-1 -1

Lemma 4.6 Let ) < 0.

t+1

- = —2Re/ (irotp'wy, Opwy ) dr
-1

/3 t+1

1 i, . 2
2 /;_1 {m_)\ ~ 0(1)}||Orwi || 2dr + Tfs_l (r(¢))'||w |Pdr "

t+1 rcp’ \
L TS

t+1
lio* fy 2 — / o) Par
S~



Proof: Multiplying (??) by io! and squaring it, we have
— 2Re((—A)io wy, Brwy)

= ||6T’wk||2+H3ka—-i0'1fx||2——2Re(%03wk, Orwy ) —2Re (' w, Orwy,).

il gy 2 2 g 2
-1, =/ [{”af‘wk” + |8rwy — do fyl1? — llio” £ ll*}
Js ’

-1 (=A
1 (=A) 1 . (4.3)
— 2Re(yp wy, ('),-wk)]dr - 2Re/ (?”90'-’-1-03wk, Or W)
s—1
B _1 [t+l
—2Re/ (¢’ wk,a,.wk} —/ ((r(@") Y wg, wi)dr.
s—1 (_)‘) A s—’l
Q.ED.

Proposition 4.7 Let A < 0. Let
ko = @' (¢’ + 2rp'¢") — o(1)¢'.
Then

t+1 t+1 g 1 |
[ttt + [ B puelPar+ [ - oMo ar

t+1 ,mpl 1 0
< io dr.
< [ slioh

(4.4)

Once these weighted L? estimates are verified, we can repeat the same
argument as in [?] to prove that there exists R > 0 such that 4y = 0 in
(R, 00). Applying unique continuation property, we conclude that u = 0 in
M, so that every non-zero real number is not any elgenvalue

Now we shall show that 0 is not any eigenvalue. H D, kUr = 0 means that

d _k 0 ~ +
dr h Y ) — 0.
0 4 + k ( Uy, )
dr h
It holds that

- "k
iy = Cx exp{i/R -h-(;jdr}'
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Under the our assumption we see that 1/h(r) is integrable over [R,o0).
This implies that C must be zero in order that a;f belong to L%([R, o0)).
Therefore, 0 is not any eigenvalue of Hp. Q.E.D.
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