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ABSTRACT. Let a Lagrangian function be given in [0,7] x R". We
add a so-called source term z - J(t) to the Lagrangian function, where
J(@) = (Ji(t),...,Jn(t)) is an R™—valued continuous function in the in-
terval [0,7]. Then the Feynman path integral with this new Lagrangian
function can be defined rigorously by the time-slicing method through bro-
ken line paths. This path integral is a functional of J(t) into weighted
Sobolev spaces and called the generating functional. In the present paper
it is rigorously proved that the generating functional is some times con-
tinuously differentiable in the Fréchet sense correspondingly to a weighted
Sobolev space and its deivatives give correlation funtions. This result has

been well known in physics roughly.
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1. INTRODUCTION.

This paper is a continuation of [4, 5, 6]. We consider some charged non-
relativistic particles in an electromagnetic field. For the sake of simplicity we
suppose the charge and the mass of every particle to be one and m > 0, respec-
tively. Let 0 < T' < oo be arbitrary. We consider z € R™ and ¢t € [0,T]. Let
E(t,z) = (Ey,...,E,) € R" and (Bjk(t, z))1<j<k<n € R™n=1)/2 denote electric
strength and magnetic strength tensor, respectively and (V (¢,z), A(t,z)) =
(V,As, ..., Ap) € R™! an electromagnetic potential, i.e.

A 0oV
B=—% "o
d(z A,-da:j) = Z Bjkdil)j A da:k on Rn, (11)
j=1 1<j<k<n

where 8V/8z = (8V/Ox1,...,0V/0z,). Then the Lagrangian function L(t, z, T)
(z € R™) is given by

L(t,z,&) = ’-’23|¢|2+¢-A— v (1.2)
and the Hamiltonian operator H(t) is defined by
1318 )
- _— A 1.3
HO) = 523G~ A +V (13)

where we set the Planck constant % = 1 in the present paper. Let U(t, s)f be

the solution to the Schodinger equation

i2u(t) = Htyu(t), uls) = f. (14)

We define the multiplication operator £; (j = 1,...,n) by (&;f)(z) =

z;f(z) and &;(t) by U(t,0)-12;U(¢,0). Let (R™)*¥ be the space of all paths

g=(q1,...,qn) : [5,t] 28 — g(f) € R". Then the classical action S(t, s; g) for
some g € (R™)!*Y is given by

S(t,5:0) = || £6,a(6),d6)d8, 4(6) = F5(6). (1.5)
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We denote the Banach space of all continuous paths ¢ : [s,t] 2 8 — ¢(6) €
R™ with the norm |[|gllec := 3}_; maxs<p<: |g;(0)| by C([s,t]; R*). Let J €
C([s,t]; R™). We add a so-called source term z - J(t) to L(t,z,%). We write

the classical action for this new Lagrangian function

St 50)= | (£(6,4(6),4(6)) + - J(6)) . (1.6)

For the sake of simplicity let n = 1. In physics |z > is an eigenfunction
of £ with an eignvalue z. We set |z,t >= U(t,0)~!|z > and denote its com-
plex conjugate by < z,t|. Lett <t and ¢t < 6, < ¢ (j =1,...,k). Then
correlation functions < «',¢'|T[2(61) - - - Z(6k)]|z,t > are formally defined by
‘the integration of the product of < Z',t'| and T[£(6,) - - - £(Ok)]|z,t >, where
T[Z(6,)- - - (6x)] is the product of the operators in decreasing time order, re-
gardless of their order as written (cf. page 223 in [9] or page 182 in [10]). Then
we have the path integral formula formally

<2 t|T[2(61) - £(6n)]|z, t >= /eis(t”t;q)Q(el) -+-q(6k)Dg,
(17)
where the path integral is taken over the space {g € (R")t*);q(t) = z,¢(t') =

7'} (cf. (6.13) in [9]). The genefaﬁing functional F(J) of J € O([t,t']; R) is
formally defined by the path integral

F(J) = / &8 60Dy (18)

over the space {g € (R")®*;¢(t) = ,q(t') = =’} (cf. page 223 in [9]). Let’s

take formally its functional derivative. Then we have

< 2, ¢|T[%(6,)--- 2(6k)] |z, t >

S F(J)
8J(61)---6J(6) |J=0 (

= (=)t k=0,1,...) (L.9)

(cf. (6.14) in [9)).
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Our aim in the present paper is to show (1.9) rigorously. We note that we
write (1.8) a slightly different form to obtain the rigorous result. The author
does not know that such a result has been published (cf. [3, 8, 11]). We also
note that (1.7) has been already proved rigorously in [6] in a slightly different

form.

2. THE MAIN RESULT

Let X and Y be Banach spaces with norms ||-||x and ||-||y respectively. We
denote the space of all linear boounded operators from X into Y by B(X;Y).
Let Q be a subset of X and G : Q — Y Fréchet differentiaﬁle on §2. That is,
there exists a Fréchet derivative D,G(z¢) € B(X;Y) of G at any z, € 2 such

that we have
|G (@0 + k) — G(z0) — DzG(2o)hlly = o(1)||hllx

as ||hllx — 0. In the same way a k times (k = 0,1,...) Fréchet deriva-
tive D¥G(zo) € B(X;B(X;+--;B(X;Y))---) at 7o € Q can be defined (cf.
Chapter I in [12]). Let G : Q@ — Y be a k times Fréchet differentiable on
- Q. We write DEG(zo)[hV,..., h®)] = (.- ((DEG(zo)h®))R*-D) ... ) for
hY € X (j =0,...,k). Then we can identify D¥G(x) with a k-linear bounded
operator from X x --- x X into Y (cf. Chapter I in [12]). Let zo € Q,h € X
and h' € X. Then we can easily have

|D=G(zo + h') = DaG(z0) — DZG(z0) || 3xiv) = o(DIF [l x
and so
1D2G(zo + h')h — D;G(mo)h — (D2G(zo)R)hlly = o(1)||H||x-
Consequently we have

(Dz(D2G(z)h))h

., = (D3G(z0)k)h = D3G (o) [h, 1)

r=
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In the same way we obtain

D;G(zo)[h®,..., A
= (Dz(D:v( e (Dm(DmG(x)h(l))h(Z)) e )h(k)’ . (2'1)

r=1x0

For an z = (23,...,%,) € R" and a multi-index a = (ay,...,0,) we write
lo| = i a5, 2% = 2§ -+ 2% and 8% = (8/0x,)* - - - (0/0z,)*. Hereafter
we write X = C([0,T;R"). Let A: 0=m <7 <...<7, =Thea
subdivision of the interval [0, T]. We set |A| = max;<j<, (1j — 7j-1). Let 2 €
R* (j=0,...,v—1) and z in R". We denote by ga(8;2©,...,z*"1 z) €
(R™)®T) the broken line path joining points z) (5 = 0,...,1,2® = z) at 7;

in order. We set

qz5(0) =

+ (2 -y) e (R, (2:2)

For J € X we write

Vm/ (@it —3)) " [(expis’(t,5;53)) o
€t 9)f)(z) = x f(y)dy, " (2.3)
f(z), s=1

for f € C§°(R™), where C°(R™) denotes the space of all infinitely differentiable
functions in R™ with compact support. Let x € Cg°I(R“) such that x(0) =1
and € > 0. Then we have

(H W-_TT)) [+ (it 5 ga))x(eat ) x
x(ez?) - x(ez) £ (ga(0))dz® - - - gt~
= C(T, 701)x(€)C (Tumt, 2) -+ - x(€)C7 (1, T0)x(€°) f (2.4)

for f € C°(R™).
We have from Lemma 6.1 in [5]
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Lemma 2.1. Let 02E;(t,z) (j =1,...,n),02Bj(t,z) and 8;Bjx(t,z) (1 <

J < k < n) be continuous in [0,T] x R* for all a. We assume
|0°E;(t,z)| < Cy, e 21, j=1,...,n (2.5)

and
|02Bji(t,z)| < Ca <2 >0 Ja|>1, 1<j<k<n (2.6)

in [0,T] x R", where < £ >= (/1+|z|? and 6§ > 0 are constants that may
depend on a. Then there exists a continuous potential (V,A) in [0,T] x R®
such that

0%4;(t,2)| < Cay o] 21, j=1,...,n 2.7)

and

zV(tz)| <Ca<z >, lo| 21 (2.8)

in [0, T} x R™.
We note that two of the Maxwell equations

n
d(}_Ejdz;)=—- Y. 8Bjidz; Adzy on R",
=1

1<j<k<n

d ( Z Bjkdib'j A d.’L’k) =0 onR"

1<i<k<n

are used in the proof of Lemma 2.1. The lemma below follows from Lemma
2.1 in [5].

Lemma 2.2. Suppose the assumptions of Lemma 2.1 and take a potential
(V, A) satisfying (2.7) and (2.8). Let f € CP(R™). Then 82(C’(t,s)f)(x)

exist for all o and are continuous in0< s<t<T and z € R".



Let L? = L?(R™) be the space of all square integrable functions in R" with
inner product (-,-) and norm || - ||. We introduce weighted Sobolev spaces
B*:={f € L? ||fllpe == Il + Djaj=alllz®fl| + 11055]) < 20} (@ =1,2,...).
We set B® = L2,

Lemma 2.3. Suppose the assumptions of Lemma 2.1 and take a potential
(V, A) satisfying (2.7) and (2.8). Then there exist a p* > 0, which is de-
termined from the constants C, of (2.5)-(2.7), and constants K, > 0 (a =
0,1,...) independent of J € X such that we have

IC7(t,8)flle < ¥t~ f||pe, 0<t—s<p* (2.9)

forall J € X.

Proof. Lemma 2.3 follows from the proofs of Theorem 3.3 in [5] and Proposition
3.4in [6]. Q.E.D.

Let |A| < p*. Suppose the assumptions of Lemma 2.1 and take a potential
(V, A) satisfying (2.7) and (2.8). The multiplication operator x(e-) is a bounded
operator from B (a = 0,1, ...) into B®. So it follows from Lemma 2.3 that the
operator on C{°(R") defined by (2.4) can be extended to a bounded operator

from B° into B®. Moreover we have for f € B®

CH(T, Ty-1)x(e-)C7 (Tymr, Tu—2)x(€) - - - x(€-)C7 (71, 0)x(e-)
- CJ(Ta TU—I)CJ(TV—].) TV—2) e CJ(Tla O)f

= uf C7(T, ro-1)x(&) -+ x(€)C (i1, 73) (x (&) — 1)C7 (75, 750) -

j=0
CJ(TJ'._]_, Tj..z) v CJ(T;[, O)f
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Consequently we get from the Lebesgue dominated convergence theorem

P_E%CJ(Ta Tu—l)X(e')CJ(TV—l’ TV—2)X(E') T X(E')CJ(TM O)X(E')f
= CJ(T’ TV—I)CJ(TV—la TV—2) e CJ(TI) O)f ‘ (210)

in B®. We write the operator defined by (2.10) as Ga(J)f or / (exp iS7(T, 0;
4a)) £(aa(0))Dga.

Proposition 2.4. Let J € X and f € B® (a = 0,1,...). Suppose the
assumptions of Lemma 2.1 and take a potential (V, A) satisfying (2.7) and
(2.8). Then there ezists a limit G(J)f of Ga(J)f in B® as |A| — 0.

Proof. This proposition follows from Theorem 1 in [6]. We note that G(J)f
gives the solution to the Schrodinger equation (1.4) where V is replaced by
V-Jt)-z. QED.

Remark 2.1. Suppose the assumptions of Lemma 2.1 and take a potential
(V', A') satisfying (2.7) and (2.8). Let (V, A) be an arbitrary potential such
that V,0V/0x;,0A;/0t and 8A;/0zx (j,k = 1,2,---,n) are continuous in
[0,T] x R™. Then it follows from the proof of Theorem in [5] that there exists
a continuously differentiable function (¢, z) in [0,T] x R" satisfying

(-Vdt+A.dz) — (-V'dt + A - dz) = dip.
This gives the gauge invariance of (2.4) and so Ga(J)f, i.e.
Ga(J)f = ¥ TG, (J)e W), (2.11)

Hence we get the same assertion as in Proposition 2.4 for a = 0.

We sometimes write

[ (expis”(T,0,)) £(a(0))Da = G(J). (2.12)
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Let 0 <t €t £...<t4 <T (k=0,1,...),e > 0 a constant and
|A| < p*. We consider for f € C§°(R™)

(f[ ——i’L——)) [+ [(expis’ t, 55 0a)x(ea® P)x(e?) -

k
x(ez®) (H(QA)lj (tj)) F(ga(0))dz® - - - dz~D. (2.13)
=1 :
Proposition 2.5. Suppose the assumptions of Lemma 2.1 and take a po-
tential (V, A) satisfying (2.7) and (2.8). Then the operator (2.18) for f €
C(R™) can be extended to a bounded operator from B*** (a = 0,1,...)

into B®. For f € B°‘* there exists its limit in B* as ¢ — 0, which we

k
write / (expiS"(T,O;qA))( (qA)lj(t,-)) f(ga(0))Dga. Moreover, for f €
j=1

k
Bo** there exists its limit / (expz'SJ (T, 0; q)) () (tj)) f(q(0))Dq in B
j=1
as |A| — 0, which is equal to U?(T, )2, U7 (tk, te—1) - - - £,U7 (£1,0) f.

Proof. This proposition follows from Theorem 2 in [6]. Q.E.D.

Let | be an non-negative integer and f € B*H (a = 0,1,...). We can

consider
G()f: X - B* (S B**)

from Proposition 2.4. Let k = 0,1,...,,AY) € X (j = 1,2,...,k) and 0 <
01,...,0; < T. We know from Proposition 2.5 in the present paper and Theo-

k
rem 1 in [6] that the path integral / (exp iS87(T, 0; q)) (H R (6;) - q(Oj)) X
j=1
f(g(0))Dyg of variables 6; € [0,T] (j = 1,2,...,k) is continuous in B®. Then

we have the following as the main theorem in the present paper.

Theorem 2.6. Suppose the assumptions of Lemma 2.1 and take a potential
(V, A) satisfying (2.7) and (2.8). Then for k=0,1,...,1 the functional G(-)f
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from X into B® has a k-times Fréchet derwative DEG(J) f[hY, ..., h®], which

is equdl to

T LI
i* /0 46, /0 T 6y /0 " i, / &is7 (T00) (1_11 h0)(6;) -q(0j>) £(q(0))Dq.
= (2.14)

Remark 2.2. Suppose the assumptions of Remark 2.1. Then we have the
gauge invariance (2.11) of Ga(J)f. Hence, taking the appropriate spaces in
place of B® (a = 0,1,...), the same assertions as in Proposition 2.5 and
Theorem 2.6 hold.

We write the integrand of (2.14) with respect to the integration variables
9_7' (] = 1,2,...,k) as

8*G(J)

570 s P (2.15)

which is called the functional derivative of G with respect to variation of the
function J(t) at 6,,... ,0_1 and 6 (cf. §7-2 in [2]). Then we get the result
corresponding to (1.9) from Theorem 2.6 in the present paper and Corollary
in [6]. |

Corollary 2.7. Suppose the assumptions of Lemma 2.1 and take a poten-
tial (V, A) satisfying (2.7) and (2.8). Let | be a non-negative integer and f €
B (a=0,1,...). Then there exist (2.15) in B® for k =0,1,...,1. Setting
J =0, these (2.15) are equal to i* /(expz’S(T,O; q)) (l_k]; hY)(8;) - q(BJ-)) X

=

f(@(0))Dg = U(T, 0)-T[hM(61) - §(61), - .., k™ (Bk) - 4(6x)] -

Let C’(t,s) be the operator defined by (2.3) and C(t,s) = C°(t,s). The

following is the key lemma for the proof of Theorem 2.6.
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Lemma 2.8. Suppose the assumptions of Lemma 2.1 and take a potential
(V, A) satisfying (2.7) and (2.8). Then we have for f € B®*? (a =0,1,...)

¢t 8)f =Ct.o)f +i [ dby [ — [ (expistt,siats)
(J6) - ¢23,(0)) fW)dy + R (¢, 5)f (2.16)

and

IR (2, 8)fllze < Calt — )| I3 1 flimota, (217)

where Cy > 0 are constants.
Proof. We can easily have

e —1—ir=— /01(1 — 6)e*"dgr?,
where |

t—0

Tj—-/:J(G)-qi’;(())wz/:J(g).(x____t_:_s_w)de, e E2Y

t—s

We can prove Lemma 2.8 from the above by means of Theorem 4.4in [5]. Q.E.D.

The detailed proof of Theorem 2.6 will be given in [7].
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