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Abstract

Following [1], we review the level-k representation of the elliptic algebra Um‘p(s'i}). We
stress that U ,(slz)-modules have a natural direct sum decomposition into the irreducible
coset-Virasoro-modules associated with (sly); @ (sl2)r—k—2/(5l2)r-%-

1 Introduction

The elliptic algebra Uq,,(?lg) was first introduced in {2] as an elliptic deformation of the
quantum affine algebra U, (s[z) in the Drinfeld realization. From the beginning it was recog-
nized that the level-1 elhptlc algebra U, ,(sly) contains the algebra of the screening currents
of the deformed Virasoro algebra[3] as a subalgebra, and it was conjectured that the level-
k (> 1) elliptic algebra provides the screening currents for the deformation of the Virasoro
algebra associated with the coset (sly)x @ (sly)r—k—2/ (512)r—k

On the other hand, we conjectured that the level-k elliptic algebra U, ,(sl;) provides the
symmetry to formulate the fusion of the restricted Andrew-Baxter-Forrester model (RSOS
model) in the sense of Jimbo-Miwa in [6]. This conjecture was based on the work by
Lukyanov-Pugai[4] on the boson formulation of the RSOS model. There it was shown that
the screening currents determining the vertex operators coincide with those of the deformed
Virasoro algebra. :

The latter conjecture was verified in (7] by establishing the connection between U, (st2)
and the face type elliptic quantum group B, A(S[z) Roughly speaking, the elliptic algebra
Uy»(sl2) provides the Drinfeld realization of B, (slz). The coalgebra structure of By, (sl) is
enough strong to determine the vertex operators and the full spectrum of the fusion RSOS
models. There, we also extended U, ,(sl) to those associated with an arbitrary affine Lie
algebra g. We then conjectured that U, ,(g) plays the same role in the face model associated
with g. See [8, 9] for the higher rank cases.

The purpose of this paper is to review the level-k representatmn of U,, p(slz) stressing the
fact that the level-k U, ,(slz)-module has a natural direct sum decomposition into the coset
Virasoro-modules associated with (sl)x @ (slz),_k 2/(sl2)r_i. Here we take a g-parafermion
formulation, which makes the structure of modules more clear than the free field formulation
given in [2].



1.1 Notations

—zmi , )
Let % = ¢ 7 and 2 = 2. We define the symbols [u]*®) by

2

[u.](") = x%'_“(-)x-zs(:uh) = C% (%l T(s)) , C= r~ie % T(S)l/z.

with
Op(2) = (2;P)oo(P/ 2 P)o(P; P) oo
' oo
(zPupy Pl =[] (- zpPpg?---plm).

nyng, - nAm=0

We also set [[n]]; = =, For the other notations, we follows [1].

2 The Elliptic Algebra U, ()

Definition 2.1. (2] The elliptic algebra U, ,(skz) is an associative algebra of the currents
E(v), F(v), K(v) and the central element ¢ sat7sfyzng the following relations:

(0 \ F _ —w 1
E(u)E(v) = -————-*-——{Ui - 1]*E(v2)E(v1)
F(v))F(v) = ————Eji — ZZ ; H F(v2)F(vy)

K(u)K(v2) = pvy —va2)K (v2) K (1)
, [’Ul - Uy + 1_;']*
I\(UI)E('UZ) = Tor — _M*E(UQ)I((W)
V1 — V2 2 ]
— gy — 1ET
K)F() = 2%~ Flpo k),

[’Ul - vy + _1__-;_1']

(B), Fo)] = —— (5( 02)H+( 4)_5(3,02_) - (vz-{;‘-)),
o = eefon -9 -9 )

Here §(z) = Y. cz2™, zi =2 (i=1,2), 7" =r—c, p= 2% and p* = 2%, and we set
[u] = [u]"), [u]* = [u]"). The constant k is given by

—2. % 2 4 N2 e 4
§(a™5%p 2) £(sip,z) = EBPT )ooPZi P, T oo

§(xz~2%p,x)’ (242, , ) 0o (P23 1 2o
and the scalar function p(v) is given by
e 2 2=l 2% (i)l p pd
ov) = p+(v)7 v)-—zzr 1 (pa? alaki )% (4 ,zo,ﬂl;)m(r2 _l,p,a;);o,
pt(v) (p2; 9, %) oo (P242; P, T4) oo (22271, p, 292,

where pt*(v) = pt(v)|,—pe .

The elliptic algebra U, ,(sl;) is realized by tensoring the quantum affine algebra U, (sk) and
a Heisenberg algebra [7]. For this realization, it is convenient to introduce the Drinfeld
realization of Uy (sl;).
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3 Quantum Affine Algebra U,(s)

3.1 Definition

Definition 3.1.  (The Drinfeld Realization of U.(sl2)) The quantum affine algebra
U.(slz) is an associative algebra generated by h, am, TE(m € Zyg,n € Z),d and the central
element ¢ satisfying the relations

[h,d] = 0, [d, an] = nan, [d,2] = naf,
[h’7an] = 01 [h’v wi(z)] = i2$i(z)7
[[274]‘;[6”}]”’1?"“‘"‘ 5

[an_, am] = n+m,0»

fan 2 ()] = Elgmanizng o),

(@) = M“” #a(:),
(z — z*2w)z* (2 )Bi(w) (222 — w)a®(w)zE (w),
(6 (2), 2~ ()] = —— (a2 wp(a*) - bzt w)e(e™w))

where x(2),¥(2) and p(z) denote the Drinfeld currents defined by

r*(z) = zEm,
nez
Y(x?z) = zhexp ((:v -z anz—") )
n>0
o(z™¢?2) = zhexp (—(:r —z7) Za_nzn) .
n>0

3.2 Parafermion Realization of the Level-k U,(sl)

It is standard to realize the level-k (¢ = k) U, (?12) in terms of a g-deformed Z-parafermion
(through this paper we take z as q) and the Drinfeld boson a,[10, 2] (see also [11] for the
CFT case).

The g-deformed Z,-parafermion algebra is conveniently introduced through the g-deformed
Z-algebra associated with the level-k Drinfeld currents of U, (.?lz). The algebraic structure
of the g-deformed Z-algebra [13] is quite parallel to the classical case[lz] The deformed
Z-algebra is generated by Z4 , (n € Z) whose generating functions Z4(z Enez Zynz
are defined by

ool g o)

n>0 n>0

- {Zﬁhnﬂm“‘"“}”’ ’e"p{ Zi[k L }

n>0
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The Z-algebra commutes with the Drinfeld bosons a,, n # 0. Then the level-k highest-
weight U, (slz)-module V/()¢) with highest weight X, = (k — )Ag + £A; (£ = 0,1, .., k) has
the structure
V(Ae) = F* @ Q, (3.1)
where F* = Cla_, (n > 0)]. The space € is called the vacuum space defined by
Ql={’UEV(/\e) ] anv=0(n>0)}.

The space €, is spanned by the vectors ve(e1, .., €5, .y 1) (8 2 0,25 € {£},n, < 0,ny; +
ns <0,..,n 4+ - +n, <0) given by

-2,k "_'*'_‘ik ok
ii(x + 3 %) o0
1<i<j<s

PERLasr
2 7$2k)oo

€i&y

Zo(21) - 2, (2) - 1@ €5

(z2x

— r . —ny P
= E Ul(ely'wfasn'la'-vns)zl ey °,
N1, NgEL

where « denotes the simple root of sl,. The e* are the formal symbols satisfying e*e# = e*+#,
We define the action of k on e* by h-e* = (h, A)e* with (, ) being an invarinat symmetric
bilinear form. The action of 2. ,, is defined as follows.

Ziof@e7 n<0
Zin- (f®f ) {[Zi"’f:l@(ae n>1

for f € C[Z4,0,Z-1n (n < 0)]. The weight of ve(e1, .., €571, -, 0s) I8 Ag + 37, €50 and its
degree is —4—(&;22)- +ng+ -+ 0,
Now let us cons1der the g-deformed Z,-parafermion. Define the basic Zy-parafermion

currents ¥(z) and ¥'(z) through the following relations.
Z.(2) = U(2) @ e*2k,
Z(2)=V(2)® e“"‘z‘%,
[¥(2), o] = [¥(2), h] = [¥(2), 0] = [¥'(2), h] =
To make this expression well-defined, ¥(z) and ¥'(z) should have their mode expansions

depending on the weight of vectors on which they act. Namely, on the vector with weight
A such that (h,A) = m, we have

U(z) =TH(2) =) Uy m_pz 5071
neZ

V() =0 (2) = Y U_m_pz¥tt,
nezZ

The g-deformed Z-parafermion algebra is generated by Vi m_p, V_m_, (n € Z). Its
relations can be expressed as follows.

) Gl arerw - (£) Sl v wee)

w/ (2w /z; 27%) (22426 2 fwy; 2%) o,

% ‘2+k z; 2% o . % 2+k .,
(2)" e - (9 SR e v

= (0(%) -5 (%)),
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By construction, we have

Theorem 3.1. The following currents x*(z) and operator d with h give a level-k represen-
tation of U, (slz) .

a(z) = ¥(2) : exp{— Z E;lﬁ—]]—anz'"} L e®zkh, (3.2)
n#0 .
klnl 1
27(z) = V(2 E‘{p{z [ a2 "} ce"opT vk (3.3)
d = dF 4+ d°, (3.4)
where
2 km h2
—mOm — = 3.5
m2>:0 [2m].[km]. Emlkm. ™" T 4k (3:5)
and d°F is an operator such that
PF Lo _ _ [’(k - e) Lo
S e LA

PF ., ___,,2 . PF gt ___‘9_1
(@7, ¥(2)] = ~25-0(2), 1477, W) = —25-W'(2).

We define the Zy; charge of Uy m_, and 1Q® % to be +2 and £ mod 2k respectively.
For example, the Zy, charge of the vector

Lo
lpsl,*‘*’-k—-—-—‘wz(e +m+")-—n111162“—(’3‘—“"‘”2 £ :mﬁ_’)—nz T lpEnE‘": @ ez (36)

is £+ 237 ¢;. Let us denote by Hf; the irreducible parafermion module of the Zg
charge M defined by the relation

2k-1 :
Mi2k
Qe = @ HEM®6-2_Q = @ @ Hen . (3.7
Mee+22 nez M=0

mod2k

Here Hy 5y = {0} for M # ¢ mod 2and H]§; = HjAr,0,- We also assume the symmetry[11]
Hfﬁr = Hffe,zmk = Hf,’fM'
The basic parafermion currents act on the space Ht 1 as the following linear operators.
U(2) © Moy Hc M+2)
U(2) : Hen = HZM 2
The character of the g-Zy-parafermion space H{ 7 is known to be[11]

PF

()" T trygpr 274 = n(F) ), (7) (38)
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where ¢cF¥ = 3%551—) cg\‘fw(*l") denotes the level-k string function and n(7) denotes Dedekind’s
n-function given by
- i
0(7) = (2%)% (2% 2%)co,
where we set e2™" = x4,

From (3.1) and (3.7), the level-k irreducible highest-weight module V() of U, (sly) with
highest weight A, is realized as follows:

2k—1

V) =F o (P P HIL @ eMHamg, (3.9)

neZ M=0
mod2k

In particular, the highest-weight vector is given by
191@¢'s, (3.10)

From (3.9), the normalized character of V()\;) is evaluated as follows:

—£ - A
Xt y) = () Htry iyt
2k—1
- Z Z 4A(n+—,;)2 k(n+é,§) (3.11)
neZ M=0
mod2k

By setting y = ™2, we reproduce the level-k principally specialized character of V(o).

4 The Level-k Representation of U, ,(si2)
The elliptic algebra U, ,(sl;) is realized by tensoring U, (sl) and a Heisenberg algebra C{H}
generated by P,e? with [e?, P] = 9.

Theorem 4.1. (7] The elliptic algebra U, ,(sly) is realized by tensoring U, (sl) and the
Heisenberg algebra C{H}. The elliptic currents E(u), F(u), K (u) and d are given by

K(u) = (z)eQ( b ar e CEn
E(w) = u'(z,p)at(2)e9z7C P“),
F(u) = z~(2)u(z,p)zr 1),

d = d—-4i*(P—1)(P+1)+ 1(P+h—1)(P+h+1),

Il

where k(z) and u*(z,p) are given by

= ex il a_n(z%2)" | ex ] an2™"
= p(z Rl ) p( LT )

n>0

= ex -—l—a " z)" “(z,p) =exp | — 1 )™
ut(z,p) = P(Z = —n(T72) ), u(z,p) P( > {(rn]],a"(z ) )

n>0
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The following commutation relations are important.
Proposition 4.2.

1K (w), P] = K(w), [E(w), P] = 2E(w), [F(u), P] =0, (4.1)
[K(u), P+ h] = K(u), [E(u),P+h]=0, [F(u), P+ h] =2F(u). (4.2)

The level-k (c = k) representation of the elliptic algebra U, ,(sl2) is realized by using the

level-k U, (sly) and the Heisenberg algebra C{H}. It can be expressed in a compact form
by using the level-k dressed Drinfeld boson o, (n € Z) defined by

ay, forn >0
" { GOl Mg, forn <0 (4.3)

with 7 = r — k. This satisfies the following commutation relation.

[2ma(em]le [frmlls
m (e

[Ct’m, an] = (44)

From Theorems 3.1 and 4.1, we get the following free field realization of the elliptic algebra
U:r,p(f'%)

Theorem 4.3.  The level-k elliptic algebra Ur,p(;l\g) 15 realized by the following currents.

K(u) = :exp< z—m) e e (C )
,;,[Qm]]x [rm])z
1 —m, p A B 1L
E(u) = ¥(z):exp (~— Z Wamz ) : 2Qta t-Ftdery
m#0 T
[[r*m]] o (o lilnsBolil
F(u) = exp( Uz ):e e A
m#o[Zm [rm]]
d = d- (P 1)(P+1)+ (P+h—1)(P+h+1)

Now let us consider the Uy ,(slz)-modules V(h) = @ V(M) ® e ™. From (3.9), we
€z
have "

2k-1

‘7(’\5) = @@ @ }-M;m,!,n» (45)

meZ neZ M Dk

where we set
fM;m,t,n =F*® Hfﬂ ® €(M+2k")% K e~mQ. (4.6)
Let r be generic and note that

PlfM:m,l,n = m'! P + hl-rh!;m.t.u = A/[ + m + an' | (47)
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From (4.6) and (3.8), the character of the space Famsn is evaluated as follows.

2 e e - 2k *2
(m4)_£¥—4‘ttr}_jl;m,t,nw—4d At ('7-) xmﬂ%ﬂlﬂ

= O )

where ¢y = ﬁf—Q (1 - %‘]—)) One should note that this coincides with the one point

function of the k x & fusion SOS model with the central height a = M + m + 2kn. Hence
one may make the following identification:

the fusion SOS space of states : ’Hﬁ,‘ga — Frmen a=M+m+2kn, M={ mod 2,
1

the corner Hamiltonian : H,(,f?“ — —d- -Q-ch,-,.
Furthermore let us set
2%k—1
fmyl(n) = @ fhf;m,l,n~
M=0

mod 2k

When r is generic, Fp¢(n) is irreducible. The character of the space Fp, ¢(n) is evaluated
as follows.

2k-1 .
_Ctviy _arx _ {mr—(m+M42kn r')"—kq
(z}) = tIz,, (n)T A E c:\\jw('r) z T . (4.8)
M=0
mod 2k

This coincides with the character of the irreducible Virasoro module Virp, (e = £+ m
mod 2) associated with the coset (?Iz)k ) (;[2)1-—&:—2 / (?(2),_2. See §5 for the cases k = 1 and
2.

In addition, when r (> k + 2) is an integer, F,, ¢(n) is reducible. We observed that the
BRST resolution of the complex formed by F, ,(n) yields the irreducible coset Virasoro
minimal module Viry,,, (¢ = £+ m mod 2)[1]. These considerations leads us to the
following conjecture:

Conjecture 4.4. The space Fp, ¢(n) is isomorphic to the irreducible coset (deformed) Vi-
rasoro module Viry, e, (@ = m + £ mod 2) associated with (slp)x ® (s%)p—k~2/(512)r—2

whose central charge and highest weight are cyy = k_’i% (1 - %:—21) and hpy o = %% +
m"—&:&k—z, respectively.

5 The Level-1 and 2 Cases

Here we consider the level-1 and 2 cases explicitely. In this section we assume r is generic.

5.1 The Level-1 Case

. In this case, the parafermion theory is trivial, i.e. 'Hf T: = Cl1 for M = £ mod 2, otherwise
= {0}. Hence the level-1 U, ,(slp)-modules V(\;) with A, = (1 — £)Ag + Ay (£ = 0,1) are
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given by

if}(/\g) = @@f[;m,l,n,

ne€Z n€L
= F° J(£+2n) S
]:l;m,t’,n - ® 6( )z

In this case Fi, ¢(n) = Fpmen. Noting c3(7) = ci(F) = 1/n(7), we have the normalized
character
eys -~ 1 gmr—(m+l,+2n!r‘22—1
4 'Jz%r't, : __‘,'d I e— rr*
(z%) I, o(n)T 7’(7__):1:
for £ = 0,1, where r* = r — 1. This coincides with the character of the irreducible Virasoro
module Virp, (a = £€+m mod 2) with the central charge ¢y = 1 — = and the highest

P
. =2
Welght hm!a = {mr 4::.~) !

5.2 The Level-2 Case
The level-2 U, ,(sl2)-modules V(/\g) with A\ = (2 = )Ap + €Ay (£=0,1,2) are given by

v(Al) = @@ @ }-M;m,l,n- (51)

meZ neZ M=01.23
modd

Note that as other realization, Fasm.en can be realized by using the dressed Drinfeld bo-
son @y, at the level-2 and the fermion operators, Neveu-Schwartz type ¥V¥(z) and Ramond
type ¥%(z). We follows the notations in [14, 15]. We have

Fomom =F* @ }-gfn ® ™ @ e""‘Q,

f?;m‘,o,n =F*Q® fﬁf ® e(2n+1)a ® G_mQ,

Foman=F*® Fag @ ™™ @ e™™9, (5.2)
fZ;m,Z,n =F° &® fgfn ® €(2n+])° ® e‘""Q, ’

Fumin =F* @ (f,f},m ® G) & FE;® (__11)> ® el i g emQ,

and Fargmen = {0} for M # £ mod 2. The both type of fermion field ¥¥(z) and U%(z)
act on Farym.en 88

‘IJNS’R("",‘) : fM’;m,t,n - fM:m,k—l,n- (53)

3
Let us consider the space Fy, ¢(n) = @ Frtman- From (4.8) or an independent calcu-

M=0
mod 4

lation by using the fermion realization (5.2), we have

_SVir -d _ 1 - *\2
(@) W trr, (@)= D oy (7) gm I (5.4)

M=0,1.2,3
mod 2
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Here r* =7 —2, cyyr = & (1- 2.1, and c,\ (7) denotes the level-2 string function

|

() = 2j

]

(‘,\2 l(T) [(—1:2; xd)oo - (Iz; 1,4)00] (e =0, 2)’

)
Ax(;’-.) _ ) (= 3"4;334)00.

“x n(T)"’ T (@50

Setting a = M + m + 4n = £ + m mod 2, we have

e i e () T me (mr=ar)® for £ = 0,2
()R trg, () (zt) T =

This coincides with the character of the irreducible c;uper—Vlraworo module Virp, (@ =

£+ m mod 2) associated with the coset (slz)y @ (sly),_s/(sk),—2 With the central charge
- e *\2

cvir = 3 (1— %) and the highest weight hy,, = é(z t) 4 {mrarl)7-d

8rr*
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