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1 Introduction
Recent years have seen renewed interest in the six and eight-vertex model at rational coupling
values, that is when the crossing parameter is evaluated at roots of unity. Deguchi, Fabricius
and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$ pointed out that the extra degeneracies in the spectrum of the six-vertex transfer
matrix can be understood in terms of an affine symmetry algebra in certain commensurate
spin-sectors [1]. This raised the question of how the representation theory of this algebra
manifests itself in the Bethe ansatz and determines the level of the degeneracies [1, 2, 3]. The
analogous investigation for the eight-vertex model [4, 5, 6, 7] has led to new developments
and a better understanding of Baxter’s celebrated $TQ$ equation [8, 9, 10]. Here $T$ denotes
the transfer matrix and $Q$ stands for the auxiliary matrix. In the trigonometric hmit some of
the zeroes of the auxiliary matrix correspond to the solutions of the six-vertex Bethe ansatz
equations first derived in $[11, 12]$ .

The significance of a better understanding of the six as $\mathrm{w}\mathrm{e}\mathrm{U}$ as the eight-vertex model at
roots of unity has been further highlighted by results when the order of the root of unity is
three. Then Baxter’s $TQ$ equation can be explicitly solved for the groundstate eigenvalue
provided the square lattice has an odd number of columns; see $[13, 14]$ for the six and $[6, 15]$

for the eight-vertex case. One finds two linearly independent solutions. These arise because
the $TQ$ equation is a second order difference equation, see the discussion in [16] and [17].
However, both linearly independent solutions do not always exist at roots of unity. An
additional aspect which motivated ither investigation is the connection wdth $\infty \mathrm{m}\mathrm{b}$-matorial
aspects such as the enumeration of alternating-sign matrices or plane partitions, see e.g.
[18, 19, 20].

1.1 Auxiliary matrices for the six-vertex model

The described developments prompted the series of papers [21, 22, 23, 24, 25] on a repre
sentation theoretic construction of $Q$-operators for the six-vertex model at roots of unity.
See also [26] for an earlier, but different construction and $[27, 28]$ for a discussion away ffom
roots of unity. The idea to use representation theory of quantum groups to solve Baxter’s $TQ$

equation (or generalizations thereof) on the level of operators parallels the approach [29] put
forward in the context of the Liouville model. However, there are subtle differences between
the continuum theory and the model on the finite lattice and the root of unity case is only
marginally discussed in [29].

In particular, at roots of unity the auxiliary space used in the construction of $Q$ can be kept
finitfflimensional (this will be explained in more detail below) which simplifies calculations
drastically and prevents any problems with convergence; see the discussions in [28] and [23].
For numerical calculations this is of great practical importance.

But why using Baxter’s $TQ$ equation for the six-vertex model at $\mathrm{a}\mathrm{U}$ instesd of the Bethe
ansatz? From the brief outline given above it should be clear that we are interested in an
approach which applies to both the six and the eight-vertex model. This rules out the Bethe
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ansatz which rests on the conservation of the total spin or the existence of a pseudovacuum.
But there are additional equally significant reasons:

$\bullet$ To see the full symmetry present at roots of unity one should not choose a basis of
eigenvectors which diagonalizes the total spin-operator even for the six-vertex model.
By dropping this requirement a much wider set of solutions to a generalization of
Baxter’s TQ equation can be obtained which do not preserve the total spin and reveal
a rich geometric structure. This provides a new, different perspective on the symmetries
at roots of unity; see [21] and the discussion in Section 4.2 of this article.. The other aspect is the existence of a second linearly independent solution to the $TQ$

equation $[16, 17]$ . One solution gives the Bethe roots above the equator, the second
solution, which is related to the first by spin-reversal, yields the Bethe roots below the
equator. The explicit construction of $Q$-operators provides the platform to rigorously
prove existence of these solutions and discuss the question of completeness; see [25].
This discussion is closely related to the aforementioned explicit ground state solutions
[14, 6, 15] and the connection between the $TQ$ equation in conformal field theory and
ordinary differential equations [30].

1.2 The construction procedure
Having made the case of using the concept of auxiliary matrices for the six-vertex model
let us briefly comment on the choice of the construction procedure. There are a number of
technical difficulties with the construction described in [10] which can be overcome by the
use of representation theory of quantum groups. The advantages are:

1. A simple algebraic form of the auxiliary matrix which drastically simplifies calculations
and rests on the Yang-Baxter equation with its underlying algebraic ffamework. It
applies to lattices with an even as well as an odd number of columns.

2. A representation theoretic derivation of functional equations. In particular, there is no
need for an “a priori” knowledge of the form of the $TQ$ equation.

3. It enables a generalization to a wider class of models associated with quantum groups
of higher rank and is independent of the choice of the representation chosen for the
quantum space.

1.3 Outline of the article
As the title already indicates this article is intended to provide an $\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{y}- \mathrm{t}\infty \mathrm{d}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{e}\mathrm{t}$ overview of
the construction of auxiliary matrices and their relation to the special symmetries at roots
of unity. We will therefore omit any technical computations and proofs referring the inter-
ested reader to the original manuscripts [21, 22, 23, 24, 25]. Instead we will emphasize that
solving the $TQ$ equation is simple step-by-step procedure which we illustrate with numerous
diagrams.

Section 2 briefly reviews the definition of the six-vertex model and its underlying quantum
group structure. Section 3 explains in general and simple terms how the $Q$-operator is
constructed and the $TQ$ equation is derived for “generic” $q$ . Section 4 makes contact with
the affine symmetry algebra at roots of unity and a geometric picture of the auxiliary matrices.
For a particular subvariety of solutions to the $TQ$ equation the spectrum is analyzed. Section
5 states some concluding remarks.

2 Preliminaries on the six-vertex model
In order to keep this article self-contained we repeat some $\mathrm{w}\mathrm{d}\mathrm{i}$-known facts from the definition
of the six-vertex model and its associated quantum group structure.
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2.1 Definition
Consider an $M\cross M’$ square lattice where one assigns to each vertex one of the six config-
urations depicted in Figure 1. Each configuration occurs with a probability determined by
the Boltzmann weights $a,$ $b,$ $c,$ $c’$ .

$+_{O}+_{O}+_{b}+_{b}+_{C^{r}}+_{C}$

Figure 1. The six allowed vertex configurations and their Boltzmann weights.

The partition function $Z=\mathrm{R}_{\mathcal{H}}T^{M’}\mathrm{o}\mathrm{f}$ the associated statistical six-vertex model can be
written in terms of the transfer matrix,

$T=\mathrm{b}R_{0M}R_{0M-1}\cdots R_{01}V_{\mathrm{O}}\in$ End $\mathcal{H}$ , $\mathcal{H}=(\mathbb{C}^{2})^{\otimes M}$ (1)

Here $\mathcal{H}$ is known as “quantum space”, $V_{0}\cong \mathbb{C}^{2}$ is called “auxiliary space”. The matrix $R$

is defined over $\mathbb{C}^{2}\otimes \mathbb{C}^{2}$ and contains the Boltzmann weights associated with the different
vertex configurations,

$R= \frac{a+b}{2}1\otimes 1+\frac{a-b}{2}\sigma^{z}$ Cb $\sigma^{z}+c\sigma^{+}\otimes\sigma^{-}+c’\sigma^{-}\otimes\sigma^{+}=(a$ $cb$, $bc$

a

$\backslash$

) (2)

The symbols $\{\sigma^{x}, \sigma^{y},\sigma^{z}\}$ denote the Pauli matrices with $\sigma^{\pm}=(\sigma^{x}\pm i\sigma^{y})/2$ and the lower
indices in (1) indicate on which pair of spaces the $R$-matrix acts in the $(M+1)$-fold tensor
product of $\mathbb{C}^{2}$ . Two transfer matrices commute with each other provided their Boltzmann
weights leave the quantity $\Delta=(a^{2}+b^{2}-cc’)/2ab$ invariant. The well-known symmetries
of the model are expressed in terms of the following commutators

$[T(z),T(w)]=[T(z), S^{z}]=[T(z), \Re]=[T(z), 0^{\vee}]=0$ , (3)

where the respective operators are defined as

$S^{z}= \frac{1}{2}\sum_{m=\mathrm{t}}^{M}\sigma_{m}^{z}$ , $\Re=\sigma^{x}\otimes\cdots\otimes\sigma^{x}=\prod_{m=1}^{M}\sigma_{m}^{x}$ , $0^{\vee}= \sigma^{z}\otimes\cdots\otimes\sigma^{z}=\prod_{m\Leftarrow 1}^{M}\sigma_{m}^{l}$ . (4)

These symmetries held for spin-chains of even as well as odd length. We now review the
connection of this model with the affne quantum group $U_{q}(sl_{2})\wedge$ . This will set the stage for
the representation theoretic construction of the auxiliary matrices.

2.2 The quantum group $U_{q}(sl_{2})\wedge$

There is a quasi-triangular Hopf algebra $U_{q}(sl_{2})\wedge$ which is generated by the six elements
$\{e:, f_{1}, q^{\pm h:}\}_{i=0,1}$ obeying the relations

$q^{h}q^{h_{g}}$: $=$ $q^{h_{j}}q^{h}\cdot$ , $q^{h}\cdot q^{-h}\cdot=q^{-h}\cdot q^{h_{*}}=1$ , (5)
$q^{h_{i}}e_{jq^{-h}}$ . $=$ $q^{A:_{\dot{f}}}e_{j}$ , $q^{h}‘ f_{jq^{-h}}\cdot=q^{-A:j}f_{j}$ , (6)

$[e:, f_{j}]$ $=$ $\delta_{:j}\frac{q^{h:}-q^{-h}}{q-q^{-1}}.$ , $i,j=0,1$ , $A_{j}=(-1)^{*+j}.2$ . (7)

In addition, for $i\neq j$ the $q$-deformed Chevalley-Serre relations hold,

$x^{3}.\cdot x_{j}-[3]_{q}x_{1}^{2}.x_{j}x_{1}+[3]_{q}x:x_{j}x_{1}^{2}$. $-x_{j}x_{1}^{3}$. $=0$ , $x=e,$ $f$ . (8)
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Further defining relations can be found in e.g. [31]. For our present purposes only one more
structure is important, the coproduct of $U_{q}(sl_{2})\wedge$ which is given $\mathrm{b}\mathrm{y}^{1}$

$\Delta(e_{i})=1\otimes e_{i}+q^{h_{i}}\otimes e_{\mathfrak{i}}$ , $\Delta(f_{i})=f_{i}\otimes q^{-h}$ . $+1\otimes f_{i}$ , $\Delta(q^{h}\cdot)=q^{h}$. $\otimes q^{h}$: (9)

There is an opposite coproduct $\Delta^{\mathrm{o}_{\mathrm{I}})}$ which is obtained by permuting the two factors. More-
over, there exists an abstract universal $R$-matrix intertwining these two coproduct structures

$\mathrm{R}\Delta(x)=\Delta^{\mathrm{o}\mathrm{p}}(x)\mathrm{R}$ , $x\in U_{q}(sl_{2})\wedge$ , $\mathrm{R}\in U_{q}(b_{+})\otimes U_{q}(b$
-

$)$ . (10)

Here $U_{q}(b_{\pm})$ denote the upper and lower Borel subalgebra generated by $\{e_{i},q^{h}:,q^{-h_{\mathrm{t}}}\}$ and
$\{f_{*}, q^{h}\cdot, q^{-h:}\}$ , respectively. In a particular representation of the quantum group the inter-
twiner can now be identified with the building blocks of the transfer matrix, i.e. the R-matrix
(2).

2.3 Evaluation representation of spin $\frac{1}{2}$

Let $z\in \mathbb{C}$ be nonzero then the mapping

$e_{0}arrow zf,$ $f_{0}arrow z^{-1}e,$ $q^{h_{0}}arrow q^{-h},$ $e_{1}arrow e,$ $f_{1}arrow f,$ $q^{h_{1}}arrow q^{h}$ (11)

defines an algebra homomorphism $\mathrm{e}\mathrm{v}_{z}$ : $U_{q}(sl_{2})\wedgearrow U_{q}(sl_{2})$ . Here $U_{q}(sl_{2})$ is isomorphic to
the Hopf algebra generated by either $\{e_{1}, f_{1},q^{h_{1}}\}$ or $\{e_{0}, f\mathrm{o}, q^{\hslash_{0}}\}$ . Denote by $\pi_{z}=\pi\circ ev_{z}$ :
$U_{q}(sl_{2})\simarrow$ End $\mathbb{C}^{2}$ the spin 1/2 evaluation representation of the quantum group defined by
the relations

$\pi(e)=\sigma^{+}$ , $\pi(f)=\sigma-$ , $\pi(q^{h})=q^{\sigma^{z}}$ (12)

With respect to this representation one can now consider the intertwiner of the tensor product
$\pi_{z}\otimes\pi_{1}$ , i.e.

$R(z)(\pi_{z}\otimes\pi_{1})\Delta(x)=[(\pi_{z}\otimes\pi_{1})\Delta^{\mathrm{o}_{1}}’(x)]R(z)$, $x\in U_{q}(sl_{2})\wedge$ . (13)

The matrix elements of the intertwiner can be explicitly computed using and one finds up to
an arbitrary overall normalization factor that it coincides with the six-vertex $R$-matrix with
the following parametrization of the Boltzmann weights,

$a=zq^{F}-q^{-\frac{1}{2}}$ , $b=zq^{1}\mathrm{z}-q^{1}\pi$ , $c=(q-q^{-1})q^{8}$ , $c’=(q-q^{-1})zq^{\frac{1}{2}}$ , $\Delta=\frac{q+q^{-1}}{2}$ .

We could have chosen a different parametrization but this one ensures that the eigenvalues
of $T$ are polynomials in $z$ and that the functional equations we are going to derive look more
symmetric.

3 The construction of $Q$ for “generic” $q$

We will now solve the eigenvalue problem of the six-vertex transfer matrix by introducing
an additional matrix $Q^{p}$ which commutes with $T$ and satisfies a functional equation of the
following type

$T(z\rangle$ $Q^{p}(z)=Q^{\mathrm{p}}(z)T(z)=\phi_{1}^{M}(z)Q^{\mathrm{p}’}(zq^{2})+\phi_{2}^{M}(z)Q^{\mathrm{p}’’}(zq^{-2})$ . (14)

Here $\phi_{1},$ $\phi_{2}$ are scalar functions depending on $z,q$ and the upper index of the auxiliary matrix
$Q^{\mathrm{p}}$ denotes the possible dependence on additional free parameters which we collectively
denote by $p$. Note that these parameters are allowed to shift in the functional equation. This
is one of the main differences with Baxter’s procedure [10]. Although it appears marginal
at first sight this modification is crucial to maintain a simple algebraic form of the auxiliary
matrix. The free parameters are also needed to break the symmetries of the transfer matrix
such as spin-reversal symmetry, spin-conservation and, when $q$ is a root of unity, the affine
symmetry [1]; vee [21] for details.
$\overline{\mathrm{l}\mathrm{T}\mathrm{h}\mathrm{i}\epsilon \mathrm{c}\lambda \mathrm{l}\mathrm{o}\mathrm{i}\mathrm{c}j\mathrm{e}}$of Hopf $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}1\supset \mathrm{r}\mathrm{a}\mathrm{i}_{8}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t}$ from the one which often is used in the physics literattire involving
a symmetric coproduct. Scc the comments in [21], Section 2.1, pages 5237-8. We comment on this further in
Section 4.1 of this article.
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3.1 The Yang-Baxter equation
In contrast to Baxter $‘ \mathrm{s}$ approach described in Chapter 9 of his book [10] we now first ensure
that the auxiliary matrix commutes with the transfer matrix and then afterwards derive the
functional equation. Also our algebraic form of the auxiliary matrix differs from the one in
[10]. Namely, to ensure the greatest possible compatibility with the definition of the transfer
matrix we choose the auxiliary matrix to be of the form

$Q^{p}(w)=\mathrm{T}\mathrm{r}L_{0M}^{p}(w)L_{0(M-1)}^{p}(w)\cdots L_{01}^{\mathrm{p}}(w)V_{()}=\pi_{w}^{p}$
(15)

with $IP$ being a solution of the Yang-Baxter equation,

$L_{12}^{p}(w/z)L_{13}^{\mathrm{P}}(w)R_{23}(z)=R_{23}(z)L_{13}^{p}(w)L_{12}^{p}(w/z)$ . (16)

Obviously, this is sufficient to guarantee that $T$ and $Q$ commute. Contrary, to Baxter [10] we
do not at the moment require the commutation relation $[Q^{p}(w), Q^{p}(z)]=0$ . We will come
back to this point later.

The major achievement of Drinfel’d [32] and Jimbo [33] was to show that the solutions of
(16) naturally arise $k\mathrm{o}\mathrm{m}$ quantum groups. Instead of solving the Yang-Baxter equation one
solves the simpler intertwining relation

$L^{\mathrm{p}}(w)(\pi_{w}^{p}\otimes\pi_{1})\Delta(x)=[(\pi_{w}^{p}\otimes\pi_{1})\Delta^{\mathrm{o}\mathrm{p}}(x)]L^{p}(w)$, $x\in U_{q}(b_{+})$ . (17)

Here $\pi_{w}^{p}$ denotes a suitably chosen representation. Its precise form is for the moment not
important, it will be specified explicitly below (Section 4.2) when $q$ is a primitive root of
unity. What matters at the moment is that it depends on additional free parameters and
that it is similar to an evaluation representation. Both properties hold true for “generic” $q$ ,
the difference lies in the fact that $\pi^{p}$ is finite-dimensional when $q$ is a root of unity but infinite-
dimensional otherwise. In both cases the intertwiner $L^{p}$ has been explicitly constructed, see
[28] and [21]. However, when $q^{N}\neq 1$ then one has to specify how a meaningful definition of
the trace over an infinite-dimensional space in (15) can be given. This can be achieved by
introducing quasi-periodic boundary conditions or for $|q|^{\pm 1}<1$ through the restriction to
positive (negative) spin-sectors; see [23] for details.

3.2 The derivation of the $TQ$ equation
Having fixed our object $Q^{\mathrm{p}}$ we now need to verify whether it actuaUy satisfies a functional
equation with the transfer matrix which enables us to express the eigenvalues of $T$ in terms
of $Q^{\mathrm{p}}$ . Since by construction $T$ and $Q$ are built out of intertwiners the same applies to their
operator product, namely we have

$Q^{p}(w)T(z)=_{V_{\mathrm{O}}\Phi V_{\mathrm{O}’}=\pi_{w}^{p}\otimes\pi_{z}}\mathrm{b}\prime L_{0M}^{p}(w)R_{0’M}(z)\cdots L_{01}^{p}(w\rangle$
$R_{0’1}(z\rangle$ (18)

with $L_{0m}^{p}(w)R_{0’m}(z)$ being the intertwiner with respect to the three-fold tensor product
$[\pi_{w}^{p}\otimes\pi_{z}]\otimes\pi_{1}$ . In Figure 3 below the product of $Q^{p}$ and $T$ is diagrammatically presented by
the object to the utmost left. There are two horizontal lines one representing the aurihary
space $V_{0}=\pi_{w}^{p}$ of the $Q$-operator and one $V_{0’}=\pi_{z}$ the auxiliary space of the transfer
matrix. This interpretation now motivates to investigate the properties of the tensor product
representation $\pi_{w}^{p}\otimes\pi_{z}$ .

So far the parameter $w$ has been assumed to be free, we now fix it to a value (depending
on $z$ and the parameters $p$) such that the tensor product $\pi_{w}^{p}\otimes\pi_{z}$ becomes a reducible
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representation. That is, it contains a proper subrepresentation of the quantum group which
turns out be similar to $\pi_{w}^{p}$ up to a possible shift in the parameters, $parrow p’$ and $warrow w’$ .
We explain momentarily how the value $w$ and the subrepresentation $\pi_{w}^{\mathrm{p}’}$ , can be explicitly
computed. Since we are dealing with a non semi-simple algebra we can not expect that its
reducible representations decompose always into a direct sum of irreducible representations.
Instead we have to take the quotient space $\pi_{w}^{p}\otimes\pi_{z}/\pi_{w}^{p’}$, which once more turns out to be
another representation $\pi_{w}^{p’’},,$ . This decomposition of the joint auxiliary space of $Q^{p}$ and $T$ is
conveniently summarized in the following non-split exact sequence,

$0arrow\pi_{w}^{p’\tau},$$arrow\pi_{w}^{p}\otimes\pi_{z}arrow\pi_{w’’}^{p’’}|arrow 0$ . (19)

Here $\iota$ denote the inclusion map which identifies $\pi_{w}^{p’}$, and $\tau$ the projection map which sends
$\pi_{w}^{\mathrm{p}’}$, to zero and determines $\pi_{w}^{p’’},,$ . Both maps need to be explicitly constructed. Once this is
done, the $TQ$ equation depicted in Figure 3 can be derived.

Figure 3. Graphical depiction of the $TQ$ equation.

Before we describe this derivation and the computation of the scalar coefficients $\phi_{1,2}$ let
us point out how one finds the value of $w$ and the subrepresentation $\pi_{w}^{p’}$, which provide the
starting point. This information is extracted from the intertwiner of the tensor product
$\pi_{w}^{p}\otimes\pi_{z}$ which is simply $L^{\mathrm{p}}(w/z)$ , i.e. our building block of the auxiliary matrix. The tensor
product $\pi_{w}^{p}\otimes\pi_{z}$ is reducible if and only if $L^{p}(w/z)$ has a non-trivial kernel which coincides
with the image of $\pi_{w}^{p’}$, under the inclusion map, i.e. we must have

$\det L^{p}(w/z)=0$ and $\mathrm{k}\mathrm{e}\mathrm{r}L^{\mathrm{p}}(w/z)=\iota(\pi_{w}^{p’},)$ (20)

under an appropriate choice of $w$ . This also determines the representation space $\pi_{w}^{p’’},$ , by
taking the quotient $\pi_{w}^{p}\otimes\pi_{z}/\pi_{w}^{\mathrm{p}’}$ , as pointed out before. In order to fully specify the inclusion
and projection map we now need to pick a suitable basis in the respective representation
spaces.

3.2.1 The inclusion

The inclusion $\iota:\pi_{w}^{p’},$
$arrow\pi_{w}^{p}\otimes\pi_{z}$ has so far only been characterized by $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}6^{r}\mathrm{i}\mathrm{n}\mathrm{g}$ its image.

For the actual calculations and the derivation of the coefficient $\phi_{1}$ in the TQ equation one
needs a concrete identification on the level of basis vectors. This is particularly simple if
$\pi_{w}^{p}\otimes\pi_{z},$

$\pi_{w}^{p’}$, are highest or lowest weight representations. For instance, let us assume that
we have lowest weight representations and denote the respective vectors by $|0\rangle$ and $|0\rangle’$ then
we must have $\pi_{w}^{\mathrm{p}}(e_{1})|0\rangle=\iota[\pi_{w}^{p’},(e_{1})|0\rangle’]=0$ . The representation $\pi_{w}^{p’}$, can then be generated
by the quantum group action via the identification

$t[\pi_{w’}^{p’}(x)|0\rangle’]=(\pi_{w}^{p}\otimes\pi_{z})\Delta(x)|0\rangle$ , $x\in U_{q}(_{S\iota_{2}}^{\wedge})$ . (21)

This relation is also used to determine the parameters $p’,w’$ . As the quantum group action
also fixes the intertwiner via (10) up to a possible normalization constant, the intertwiner of
the three-fold tensor product $\pi_{w}^{p}\otimes\pi_{z}\otimes\pi_{1}$ must coincide on the subspace $\iota(\pi_{w}^{p’},)\otimes\pi_{1}$ with
the intertwiner of $\pi_{w}^{p’},$

$\otimes\pi_{1}$ up to a scalar multiple. That is, we have the identity

$L_{13}^{\mathrm{p}}(w)R_{23}(z)(\iota\otimes 1)=\phi_{1}(\iota\otimes 1)L^{p’}(w’)$ , (22)
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which is graphically depicted in Figure 4. The right-pointing fork represents the inclusion
map and each intersection on the various lines stands for the respective intertwiners. (Note
the similarity with the bootstrap equation in factorizable scattering theories of QFT.)

Figure 4. Graphical depiction of the equations (22) and (24).

The scalar multiple occurring fixes the coefficient of the first term in the TQ equation and
must be explicitly calculated.

3.2.2 The projection

In the case of the projection map $\tau:\pi_{w}^{\mathrm{p}}\otimes\pi_{z}arrow\pi_{w}^{\mathrm{p}’’},$, we proceed analogously. The only minor
complication is that we have now to identiq all the vectors in the image of the inclusion map
with the null vector in $\pi_{w}^{p’’},,$ , i.e. the composition $\iota \mathit{0}\tau$ vanishes. If $\tau$ is presented as a
left-pointing fork then its composition with $\mathrm{z}$ yields the bubble diagram shown in Figure 5.

Figure 5. The comDlnatlon or lIlClUSlOn ana $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{j}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ vanishes.

Again, the construction of the map $\tau$ is simplified when we are dealing with highest or lowest
weight representations and the counterpart of equation (21) is then

$\tau[(\pi_{w}^{\mathrm{p}}\otimes\pi_{z})\Delta(x)|0\rangle]=\pi_{w}^{p’’},,(x)|0\rangle’’$ $x\in U_{q}(sl_{2})\wedge$ . (23)

By the same argument as before we must have the following identity for the respective
intertwiners

$(\tau\otimes 1)L_{13}^{\mathrm{p}}(w)R_{23}(z)=\phi_{2}L^{p’’}(w’’)(\tau\otimes 1)$ . (24)

The diagram corresponding to this equation is shown in Figure 4. Note that the orientation
matters as the coefficients $\phi_{1},$ $\phi_{2}$ are in general different.

Our findings can now be briefly summariz\’e as follows. The intertwiner of the three-fold
tensor product $[\pi_{w}^{p}\otimes\pi_{z}]\otimes\pi_{1}$ appearing under the trace in (18) can be written (in a simplified
notation) as the upper-triangular matrix

$L_{1S}^{p}R_{23}=(\phi_{1}L^{p’}0$ $\phi_{2^{*}}L^{p’’})$

from which the $TQ$ equation (14) is now easily deduced. To ensure that the $TQ$ equation also
holds on the level of eigenvalues we need to show that all operators in (14) simultaneously
commute. This has been done in [21] for the $\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}-\mathrm{o}\mathrm{f}$-unity case employing the intertwiners
constructed in [26]. For $q^{N}\neq 1$ this has been indirectly shown using the algebraic Bethe
ansatz [23]. The stronger condition $[Q^{p}(z), Q^{p’}(w)]=0$ which would correspond to Baxter’s
axiom (v) in Chapter 9.5 of [10] is at the moment only rigorously proved for some cases at
roots of unity; see (36) below.

4 Roots of unity
We now make contact with the special symmetries mentioned in the introduction which are
present when we set the deformation parameter $q$ of the quantum group to be a primnitive
root of unity, $q^{N}=1$ . We set $N’=N/2$ when $N$ is even and $N’=N$ when the order
is odd. Crucial for the following discussion is to appreciate that the full enriched algebraic
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structure available can only be seen if one is directly at a root of unity and not by simply
taking the root-of-unity limit in the formulae for “generic” $q$ . This is reflected on the level
of the underlying algebra by the fact that there exist now two alternative, fundamentally
different versions of the quantum group:

(1) The unrestricted quantum group $U_{q}(sl_{2})\wedge[34]$ . This version has an enlarged centre
compared to the case of “generic” $q$ . The additional central elements are generated by
$\{e_{i}^{N}, f_{i}^{N’}, q^{N’h}:\}$ which can take non-zero values in the representation theory at roots
of unity. We will exploit this fact for the construction of the auxiliary matrices.

(2) The restricted quantum group $U_{q}^{\mathrm{r}\mathrm{c}\mathrm{s}}(sl_{2})\wedge[35]$ . The second version of the quantum group
does not have an enlarged centre and can be thought of as an algebra of derivations
acting on $U_{q}(sl_{2})\wedge$ . For instance, one identifies the quantum group generators at generic
$q$ with the derivation

$e!^{n)}.\equiv e_{1}^{n}$. $/[n]_{q}arrow[e_{*}^{(n)}., \cdot]$ , $[n]_{q}= \frac{q^{n}-q^{-n}}{q-q^{-1}}$ , $n\in \mathrm{N}$,

which can be uniquely extended to the case $q^{N}=1$ . In particular, this still holds true
when $n=0$ mod $N’$ and the subalgebra of the restricted quantum group generated by
these elements can be identified with the non-deformed, classical affine algebra $U(sl_{2})\wedge$

via the quantum Frobenius homomorphism,

$F:U_{q}^{\mathrm{r}\mathrm{e}\S}(_{S\downarrow 2}^{\wedge})arrow U(_{S\iota_{2}}^{\wedge})$, $e_{\dot{\mathrm{t}}}^{(n)}arrow\{$

$\overline{e}_{j}^{n/N’}$ , $n=0$ mod $N’$

$0$ , otherwise

This is the symmetry algebra of the six-vertex model at roots of unity discovered by
Deguchi, Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$ in [1].

We now discuss the various aspects of these two versions and their relation to the six-vertex
model at roots of unity separately.

4.1 The afflne symmetry algebra: the restricted quantum group
Let us briefly review the affine symmetry algebra of the six-vertex transfer matrix at roots of
unity discovered in [1]. Therein the symmetry was established based on the Temperly-Lieb
algebra, however, we recall here the simplified proof given in [$3\eta$ based on the intertwining
property of the six-vertex monodromy matrix

$\mathrm{T}=R_{0M}\cdots R_{01}=$ (25)

Namely, because of our earlier choice of the coproduct (9) we now have

$\mathrm{T}(\pi_{z}\otimes\pi_{\mathcal{H}})\Delta(x)=[(\pi_{z}\otimes\pi_{\mathcal{H}})\Delta^{()}\mathrm{p}(x)]\mathrm{T}$ with $\pi_{?l}=\pi_{1}^{\Phi M}$ , $x\in U_{q}(sl_{2})\wedge$ . (26)

From this relation it is straightforward to derive the commutation relations between the
quantum group generators and the matrix elements of T. For instance, we find for the
transfer matrix $T=A+D$ and $x=e_{1}$ ,

$\pi_{\mathcal{H}}(e_{1}^{n})T=(q^{n}A+q^{-n}D)\pi_{\mathcal{H}}(e_{1}^{n})+[n]_{q}(1-q^{2S^{z}})C\pi_{\mathcal{H}}(e_{1}^{n-1})$ . (27)

Analogous relations hold for the remaining quantum group generators; see [37]. As (26), (27)
hold true for “generic” $q$ we infer for roots of unity $q^{N}=1$ and the restricted quantum group
generators with $n=N’$ that

$\pi_{\mathcal{H}}(e_{1}^{(N’)})T=q^{N’}T\pi_{\mathcal{H}}(e_{1}^{(N’)})$ iff $2S^{z}=0\mathrm{m}\mathrm{o}\mathrm{d}$N. (28)

The above condition defines the commensurate spin-sectors of the affine symmetry algebra,
only there the second term on the right hand side of (27) vanishes. This does not mean that
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there are no degeneracies outside these spin-sectors. In fact, it has been shown [1] for the
free fermion case, $q^{4}=1$ , and by a numerical construction for $N=3$ that certain projection
operators have to be introduced to obtain the symmetry algebra in all sectors. The general
case is still open. Notice, however, that for lattices with $M$ odd and even roots of unity there
are no commensurate sectors and, indeed there are no extra degeneracies in the spectrum
of the transfer matrix besides spin-reversal. We will come back to this point below.

In [37] it has been established that for a special choice of quasi-periodic boundary con-
dition the affine symmetry (28) extends to all spin-sectors without the need of projection
operators, although it is broken down to $U_{q}(b_{\pm})$ outside the commensurate sectors.

4.2 Auxiliary matrices: the non-restricted quantum group
The construction of the auxiliary matrices $Q^{\mathrm{p}}$ relies on an appropriate choice of the rep-
resentation $\pi_{w}^{p}$ . We now $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\theta$ this representation as an irreducible representation of the
non-restricted quantum group which has an enlarged centre. We make the (slightly restric-
tive) assumption that $\pi_{w}^{p}$ is an evaluation representation, i.e. similarly as in the case of the
transfer matrix we set $\pi_{w}^{p}=\pi^{\mathrm{p}}\mathrm{o}\mathrm{e}\mathrm{v}_{w}$ with ev being Jimbo’s evaluation homomorphism (11)
and $\pi^{p}$ a representation of the finite quantum group $U_{q}(sl_{2})$ . This allows us to make contact
with the discussion in [34].

The finite-dimensional irreducible representations of $U_{q}(sl_{2})$ at a primitive root of unity
$q^{N}=1$ are determined (up to isomorphism) by the values of the following central elements,

$\mathrm{x}=[(q-q^{-1})e]^{N’}$ , $\mathrm{y}=[(q-q^{-1})f]^{N’}$ , $\mathrm{z}=(q^{h})^{N’}$ (29)

and the Casimir operator $\mathrm{c}=q^{h+1}+q^{-h-1}+(q-q^{-1})^{2}ef$ . Bach representation now
assigns to these central elements four complex numbers which comprise our parameters $p$,
i.e. $(\mathrm{x}, \mathrm{y},\mathrm{z}, \mathrm{c})arrow p=(p_{1},p_{2},p_{3},p_{4})\in \mathbb{C}^{4}$. An example for such a representation $\pi^{p}$ over the
vector space $\mathbb{C}^{N’}$ is given by $[36, 34]$ ,

$\pi^{p}(q^{h})|n\rangle$ $=$ $\lambda q^{-2n}|n\rangle$ , $\pi^{p}(f)|n\rangle=|n+1\rangle$ , $\pi^{p}(f)|N’-1\rangle=\zeta|0\rangle$ ,
$\pi^{p}(e)|n\rangle$ $=$ $\xi_{n}|n-1\rangle$ , $\pi^{p}(e)|0\rangle=\xi|N’-1\rangle$ (30)

where $n=0,1,2,$ $\ldots,$ $N’-1$ and

$\xi_{n}:=\frac{\lambda q+\lambda^{-1}q^{-1}-\lambda q^{-2n+1}-\lambda^{-1}q^{2n-1}}{(q-q^{-1})^{2}}+\xi\zeta$ , $n>0$ . (31)

The values $p=p(\xi,\zeta, \lambda)$ of the central elements (29) are given by

$\pi^{p}(\mathrm{x})=(q-q^{-1})^{N’}\xi\prod_{n=1}^{N’-1}\xi_{n}$ , $\pi^{p}(\mathrm{y})=\zeta(q-q^{-1})^{N’},$ $\pi^{\mathrm{p}}(\mathrm{z})=\lambda^{N’}$

and for the Casimir element one finds $\pi^{p}(\mathrm{c})=q\lambda+q^{-1}\lambda^{-1}+(q-q^{-1})^{2}\xi\zeta$ . Note that the
representation (30) is cyclic when $\xi,$ $\zeta\neq 0$ , i.e. there are no highest or lowest weight vectors.

Having specified the representation $\pi^{p}$ , and therefore also the evaluation representation
$\pi_{w}^{p}$ of the affine quantum group, one can construct the intertwiner $L^{p}$ via (17), which forms
the building block of the auxiliary matrix (15). However, due to the enlarged centre of the
quantum group this intertwiner might only exist for special values of the central elements,
in other words the concept of the universal $\mathrm{R}$-matrix in (10) breaks down; see the discussion
in [21] and references therein. For instance, we find that for even roots of unity we must set
$\xi=\zeta=0$ in order to find a solution of (17).

For odd roots of unity, however, there are no restrictions on $\xi,$ $\zeta$ or A and for $\xi,\zeta\neq 0$ the
resulting $Q$-operators do not preserve the spin. We comment on this case in more detail, as
it provides us with an interesting geometric picture of the solutions to the $TQ$ equation (14).
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4.2.1 A geometric picture for $N$ odd

As the reader might have already noticed from the representation (30) the central elements
(29) and the Casimir operator are not algebraically independent. In fact, their values ought
to lie on a three-dimensional hypersurface $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Z$ specified by the following identity,

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Z$ : $\mathrm{x}\mathrm{y}+\mathrm{z}+\mathrm{z}^{-1}=\prod_{\ell=0}^{N-1}(\mathrm{c}+q^{\ell}+q^{-\ell})-2$ . (32)

Here we now interpret $(\mathrm{x},\mathrm{y},\mathrm{z},\mathrm{c})$ as $\mathbb{C}$-numbers which have to solve (32). To each solution,
i.e. a point on the hypersurface, we can then associate a representation $\pi^{p}$ respectively
$\pi_{w}^{\mathrm{p}}$ giving rise to a solution $Q^{p}$ of the operator functional equation (14). So far we have
not specified the points $p’,p”$ appearing in the $TQ$ equation. To this end recall $\mathrm{h}\mathrm{o}\mathrm{m}[34]$

that $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Z$ has locally the structure of an $N$-fold covering space over the base manifold
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Z_{0}=\{\mathrm{x},\mathrm{y},\mathrm{z}\}=\mathbb{C}^{3}$ . The three points appearing in (14) lie in the same fibre and
decomposing $\mathrm{c}=\mu+\mu^{-1}$ are explicitly given by

$p=(\mathrm{x},\mathrm{y},\mathrm{z}, \mu+\mu^{-1})$, $p’=(\mathrm{x},\mathrm{y},\mathrm{z},\mu q+\mu^{-1}q^{-1})$ , $p”=(\mathrm{x},\mathrm{y},\mathrm{z},\mu q^{-1}+\mu^{-1}q)$ . (33)

See Figure 6 for a simplified graphical depiction. The values for the evaluation parameters
and coefficients $\phi_{1,2}$ are [21]

$w=z/\mu$ , $w’=zq/\mu$ , $w”=zq^{-1}/\mu$ , $\phi_{1}(z)=\phi_{2}(zq^{-2})=z-1$ . (34)

The motivation for making this connection lies in the rich structure of the hypersurface (32)
described in [34]. $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Z$ is endowed with an infinitedimensional group action $G$ , called the
quantum coadjoint action, which induces holomorphic transformations in the coordinates
$(\mathrm{x},\mathrm{y}, \mathrm{z}, \mathrm{c})$ and acts transitively on the hypersurface. This action can be carried over to the
auxiliary matrices (15). However, what is missing at the moment is an implementation on
the lattice, i.e. a map $D$ from the group $G$ of transformations into the matrices acting on
the quantum space $\pi_{\mathcal{H}}$ such that

$D:Garrow \mathrm{E}\mathrm{n}\mathrm{d}\pi_{\mathcal{H}}$ , $D(g)Q^{\mathrm{p}}D(g^{-1})=Q^{g\cdot p}$ , (35)

where $g\cdot p$ is the point on the hypersurface obtained under the coordinate transformation
$g\in G$ .

Figure 6. A simplified picture of the hypersurface (32).

The map (35) might provide the key for the construction of the symmetry algebra (28)
outside the commensurate sectors. It would also simplify the calculation of the spectrum of
the general set of auxiliary matrices $Q^{p}$ . As of yet the spectrum has only been calculated for
representations with $\mathrm{x}=\mathrm{y}=0$, which are called nilpotent and which we discuss next.
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4.3 The spectrum for nilpotent representations
We now lift the temporary restriction to odd roots of unity but, henceforth, shall only consider
representations $\pi^{\mu}\equiv\pi^{p_{\mu}}$ in the set $\{p_{\mu}=(\mathrm{x}=0, \mathrm{y}=0,\mathrm{z}=\mu^{-N’},\mu+\mu^{-1}) : \mu\in \mathbb{C}\}$ . Note
that the relations (33) and (34) remain true in the limit $\mathrm{x},$

$\mathrm{y}arrow \mathrm{O}$ . Denoting the associated
auxiliary matrices by $Q_{\mu}\equiv Q^{p_{\mu}}$ it has been proved in [22] for $N=3$ and in [25] for $N=4,6$
that the following commutation relation holds,

$[Q_{\mu}(z), Q_{\nu}(w)]=0$ , $\forall z,$ $w,$ $\mu,$
$\nu\in \mathbb{C}$ (36)

The proofs given rely on the explicit construction of the quantum group intertwiners with
respect to the tensor product $\pi_{w}^{\mu}\otimes\pi_{1}^{\nu}$ . Although the construction for the general case is an
open problem the necessary condition for the intertwiner to exist are satisfied and numerical
computations for $N=5,7,8$ up to $M=11$ confirm that it is correct also for higher roots of
unity. From (36) one can deduce two cardinal facts $[22, 24]$ :

1. The auxiliary matrix $Q_{\mu}$ is normal and hence diagonalizable.

2. The eigenvalues of $Q_{\mu}(z)$ are polynomials in $z$ which are at most of degree $M$ .
The additional information required to determine the characteristics of the eigenvalues is yet
again derived from another operator functional equation [24],

$Q_{\mu}(z\mu^{2}q^{2})Q_{\nu}(z)=(zq^{2}-1)^{M}Q_{\mu\nu q}(z\mu^{2}q^{2})+Q_{\mu\nu q^{N’+\mathrm{t}}}(z\mu^{2}q^{2})T^{(N’-1)}(zq^{2})$, (37)

which similar as in the case of the $TQ$ equation is deduced from the decomposition of a tensor
product [24],

$0arrow\pi_{w’}^{\mu’}arrowarrow\pi_{w}^{\mu}\otimes\pi_{1}^{\nu}arrow\pi_{w’’}^{\mu’’}\otimes\pi_{z’}^{(N’-2)}l\tauarrow 0$ . (38)

Here $T^{(N’-1)}$ denotes the fusion matrix of degree $N’-1$ , i.e. the analogue of the transfer
matrix for the six-vertex model with spin $(N’-2)/2$. The various parameters appearing in
the representations are not all independent but satisfy the relations

$w=\mu\nu q^{2}$ , $\mu’=\mu\nu q$ , $w’=\mu q$ , $\mu’’=\mu\nu q^{-N’+1}$ , $w”=\mu q^{N’+1}$ , $z’=\nu q^{N’+1}$ (39)

We do not want to go into the details of the derivation as it follows the analogous steps as
detailed in Section 3. However, it provides a more complicated example and underlines the
general nature of the approach which not only applies to the $TQ$ equation. See Figure 7 for
a graphical depiction of the equation.

$\mathrm{r}_{1}’ \mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}7$. Graphical depiction of the functional equation (37).

The result on the structure of the eigenvalues, which we denote by the same symbol as the
corresponding operator, can be summarized as follows. It factorizes into two polynomials,

$Q_{\mu}(z)=Q^{+}(z)Q_{\mu}^{-}(z)$ , (40)

one of which, $Q^{+}$ , does not depend on the free
$\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}_{N}\mu-,$

$\cdot$ The other factor $Q_{\mu}^{-}$ can be
expressed through the first one in the special limit $\muarrow q$ ,

$Q^{-}(z):= \lim_{\muarrow q^{-N’}}Q_{\mu}^{-}(z)=q^{(N’+1)_{\delta}}Q^{+}(z)\sum_{l=1}^{N’}\frac{q^{-2\ell s}(zq^{2\ell}-1)^{M}}{Q^{+}(zq^{2\ell})Q^{+}(zq^{2\ell-2})}$ . (41)
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It is not immediately apparent that the right hand side of this equation defines a polynomial.
This follows from the $TQ$ equation (14) which implies that the zeroes of $Q^{+}$ satisfy the
six-vertex Bethe ansatz equations. The parameter $s$ in (41) can be identified with

$s=2n_{0}+S^{z}$ mod $N’$ (42)

where $n_{0}$ denotes the number of Bethe roots which vanish in the root of unity limit $q^{N}arrow 1$ .
That is, in general we have less Bethe roots than in the case when $q^{N}\neq 1,$ $\deg Q^{+}\leq M/2-S^{z}$

instead of $\deg Q^{+}=M/2-S^{z}$

4.3.1 $\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}-\mathrm{b}\mathrm{y}$-case discussion

In order to further characterize the spectrum and explain how the ffee parameter $\mu$ enters we
have now to distinguish various cases. As we already saw earlier the loop symmetry (28) is
absent for lattices with an number of columns and even roots of unity. This will be reflected
in the spectrum of the auxiliary matrices. It needs to be emphasized that the results of [24]
presented here are in accordance with the findings of Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$ in the eight-vertex
case, see [6] and the corresponding article in this proceedings volume [7]. We will comment
further on this in the conclusion.
$M$ even, $N$ arbitrary. In this case the second factor takes the following form

$Q_{\mu}^{-}(z)=N_{\mu}z^{n_{\infty}}Q^{+}(z\mu^{-2})P_{S}(z^{N’})$ , $P_{S}(z^{N’})=n_{S,\prod(1-z^{N’}a)}:$ . (43)
$:=1$

Here $N_{\mu}$ is a normalization constant which only depends on $\mu$ and $q$ , the power of the
polynomial depends on the number of Bethe roots which have either vanished or gone off to
infinity in the root of unity limit. The last factor $P_{S}$ , which drops out of the $TQ$ equation
(14), determines the degeneracy of the corresponding eigenvalue of the transfer matrix $T$ .
Denote by $V_{T}$ the associate degenerate eigenspace of the transfer matrix then we have

$\dim V_{T}=2^{\deg P_{S}}$ $(u)$

This result follows from the fact that the auxiliary matrix $Q_{\mu}$ lifts the degeneracy of the
transfer matrix. Inside the degenerate eigenspace $V_{T}$ the set of eigenvalues of $Q_{\mu}$ varies only
through the dependence of each zero $a_{i}\mathrm{o}\mathrm{f}P_{S}$ on the parameter $\mu$ . There are only two choices:
either $a_{i}$ depends on $\mu$ through a simple multiplicative factor $\mu^{2N’}$ or it does not depend on it
at all. Hence, the maximal number of eigenvectors of the auxiliary matrix $Q_{\mu}$ in a degenerate
eigenspace $V_{T}$ of the transfer matrix is given by (44).

In addition, it has been shown for several examples with $N=3$ in [22] that the zeroes
$\{a:\}$ coincide with the evaluation parameters of the loop algebra, i.e. $P_{S}$ has been identified
with the Drinfel’d polynomial. To prove this assertion for general $N$ a deeper understanding
of the highest weight vectors of the symmetry algebra (28) is desirable; see [1, 2, 3].
$M$ odd, $N$ odd. For odd chains the just presented picture remains true with the possible
exception that some eigenvalues of the auxiliary matrix may now vanish, i.e. we have the
two possible cases

$N=0$ or $Q_{\mu}^{-}(z)=N_{\mu}z^{n_{\infty}}Q^{+}(z\mu^{-2})P_{S}(z^{N’})$ with Ar $\neq 0$ .

The vanishing of some eigenvalues seems at first to be a serious drawback. However, the
vanishing of the eigenvectors occurs only for singlet states, i.e. non-degenerate eigenvectors
of the transfer matrix. The number of such vectors rapidly decreases as $M$ starts to exceed
the order $N[24]$ . More importantly, since the relation (41) remains true and $Q^{+}$ is non-
vanishing one can derive a set of difference equations which yield constraints on the Bethe
roots, i.e. the zeroes of $Q^{+}[24]$ . These constraints are polynomial equations of order $N-2$
in contrast to the Bethe ansatz equation which are of order $M$. For $N=3$ these can be
explicitly solved and one obtains Stroganov’s result [14]; see [24] and references therein for
further details.
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$M$ odd, $N$ even. For the last case we discuss, the spectrum of the six-vertex transfer matrix
shows no degeneracies except for spin-reversal symmetry. Now $Q_{\mu}^{-}$ does not factorize as in
the previous cases and we have $Q_{\mu}^{-}(z)=Q^{-}(z\mu^{-2})$ up to some normalization factor which is
not important. The second factor $Q^{-}$ now constitutes a second linearly independent solution
to Baxter’s $TQ$ equation on the level of eigenvalues and its zeroes are the solutions to the
Bethe ansatz equations below the equator. This is an explicit construction of the analogous
scenario discussed in [17] away from roots of unity. The two linearly independent solutions
are bound to satisfy a Wronskian equation,

$q^{S^{z}}Q^{+}(zq^{2})Q^{-}(z)-q^{-s^{z}}Q^{+}(z)Q^{-}(z)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . $(zq^{2}-1)^{M}$ , (45)

where the degree of the polynomials now obey

$\deg Q^{\pm}=\frac{M}{2}\mp S^{z}$

Note that the Wronskian equation (45) implies the six-vertex Bethe ansatz equations; see
$[24, 25]$ for details.

While we have discussed here the factorization of the auxiliary matrix $Q_{\mu}$ into the factors
$Q^{\pm}$ only on the level of eigenvalues, there is a simplified construction which assigns to each
of the factors a proper operator; see [25] for details.

5 Concluding Remarks
We would like to stress once more that the representation theoretic construction of Q-
operators and the derivation of the $TQ$ equation presented in Section 3 apply to the case of
“generic” $q$ . Although in this overview the representation $\pi^{\mathrm{p}}$ in Definition (15) has only been
specified for $q^{N}=1$ the case $q^{N}\neq 1$ has been discussed in [28]; see also [23] for a discussion
resolving the convergence problems with an infinite-dimensional representation $\pi^{\mathrm{p}}$ . At the
moment we are still missing the analogue of (36) and (37) when $q^{N}\neq 1$ . The method can
also be extended to more complicated models than the six-vertex one. For instance, those
associated with higher rank algebras. However, one has then to account for the possibility of
a more complicated decomposition of the tensor products, similar to the one we encountered
in the derivation of (37).

The other obvious target for a generalization of this method is the eight-vertex model.
The investigation [4, 5, 6] of Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$ has already extended in great detail our
knowledge of the spectrum of the eight-vertex model and Baxter’s 1972 solution of the $TQ$

equation. Their findings match closely the six-vertex picture summarized in this article; see
also the corresponding article in this proceedings volume [7]. However, because of the intricate
algebraic form of Baxter’s 1972 eight-vertex $Q$-operator [8] it is difficult to take directly the
trigonometric limit and obtain a well-defined six-vertex $Q$-operator. At the moment we can
therefore match the eight and six-vertex results on the level of eigenvalues only. Then the
factor $Q^{+}$ in (40) should be identified as the six-vertex analogue of Baxter’s $Q$-operator in
[8]. The other factor, $Q^{-}$ , corresponds to the same eight-vertex $Q$ but when it is evaluated
in a different regime. Notice that through a recent refined construction presented in [25]
the factorization (40) can also be made on the level of operators for the six-vertex model.
What we are missing at the moment is a feasible elliptic construction of the $Q$-operator which
allows one to carry out the trigonometric limit directly in the definition of the operator and
to derive the $TQ$ equation as well as the eight-vertex analogue of the essential identity (41)
discussed in $[4, 5]$ in a similar manner as presented here.
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