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A generalization of a curvature flow of graphs on R
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1. Introduction. Gauss curvature flow is known as a mathematical model
of the wearing process of a convex stone rolling on a beach and has been
studied by many authors (see [3, 5, 6] and the reference therein). In (5] we
proposed and studied the discrete stochastic approximations of nonconvex
functions which evolve by a convexified Gauss curvature and the PDE which
appears as the continuum limit of discrete stochastic processes (see [6] for
the similar results on the convexified Gauss curvature flow of closed hyper-
surfaces). In this paper we study a class of PDE which gives a generalization
of a curvature flow of graphs on R.

We briefly describe [5] to discuss the results in this paper more precisely.

Alexandrov-Bakelman’s generalized curvature played a crucial role in [5].

Definition 1 (see e.g. [, section 9.6 ]). Let R € L'(R™ : [0, 00),dz) and
u € C(R"). For A € B(R")(:=Borel o-field of R"), put

wRud)= [ R, ®)

Uzea0u(z)
where du(z) := {p € R"|u(y) — u(z) >< p,y—z > forally € R"} and

< +,+ > denotes the inner product in R".



(It is known that w(R,u,-) : B(R™) — [0, 00) is completely additive.)
For R € L}(R™ : [0, ), dz), we showed the existence and the uniqueness
of a solution u € C([0,00) x R™) to the following equation (see [5, Theorem

1}): for any ¢ € C,(R™) and any t > 0,

L. o@uta) ~u0,0)dz = [(ds [ olu(R us,).da). (@)

In [5, Theorem 2], we proved that a continuous solution u to (2) sweeps in
time ¢ > 0 a region with volume given by ¢ - w(R, u(0,-), R*), and that, for
a continuous solution « to (2) with a convex u(0, ), z — u(t, ) is convex for
allt > 0.

We also showed that a continuous solution u to (2) is a viscosity solu‘tion
of the following PDE (see [5, Theorem 3]):

Owu(t,z) = x(u, Du(t,z),t,z)R(Du(t,z)) 3)
x max(Det(D?u(t, z)),0) ((0,00) x R™),

where Du(t, z) := (Qu(t, 2)/0z:)}=y, D*u(t, z) := (8%u(t, z)/Bz:0z;);-, and

1 if p € Ou(t,x),

0 otherwise.

x(u,p,t,z) := {

Here du(t, z) denotes the subdifferential of the function z — wu(t,z). Con-
versely, we discussed under what conditions a viscosity solution to (3) is a
solution to (2).

We briefly discuss what we study in this paper. In (1) we only con-
sidered the measure R(y)dy which is absolutely continuous with réspect to
the Lebesgue measure dy. Otherwise w(R, u, dz) is not generally completely
additive. '
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Suppose that n = 1. In (1), replace R(y)dy by a continuous Borel prob-
ability measure P(dy). Then, using a similar notation, w(P,u, dz) turn out
to be a measure and (2) has a unique continuous solution u (see Theorem 1

in section 2).

Since P(dy) is not generally absolutely continuous with respect to dy, we

can not consider the PDE for u. For (¢,z) € [0,00) x R, put

Ute) = [ (ut,) - u©)dy+ [ u0udy+tF), (@

where

F(z) = P((—o0,z]), a:=inf{Uzer0u(0,z)}.

Then from (2),

U(t,z) - U(0,z) = /Ot F(D, (DU (s, z)))ds. (5)

Here 4 denotes a convex envellope of u and for ¢, D, ¢(t, z) denotes the right
~ derivative of z — ¢(t, z).

When DU(0, z) is convex, we show that U(t,z) is a unique continuous
viscosity solution in (0,00) x R of the following (see Theorems 2 and 3 in

section 2):

8,U(t,z) = F(D*U(t,z)). (6)

Definition 2 (Viscosity solution) (1) Let = (0,00) x R.
(i). A function U € USC(Q) is called a viscosity subsolution of (6) in Q if
whenever p € C**(Q), (s,y) € Q, and U — ¢ attains a local mazimum at

(S,y), then at()p(s’y) S F(Dz(p(say))
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(ii). A function U € LSC(RQY) is called a viscosity supersolution of (6) in Q
z'f wheﬁever 0 € CY(Q), (s,¥) € Q, and U — ¢ attains a local minimum at
(s,9), then 8yp(s,y) > F(D?%p(s,y)).

(iii). A function U € C(Q) is called a viscosity solution of (6) in Q if it is
~ both a viscosity subsolution and a viscosity supersolution of (6) in Q.

(2) Let t; > t; > 0, O be an open subset of R and Q := (t1,t3] x O. A
function U € C(Q) is called a viscosity solution of (6) in Q if (1,3)-(1,3)
with  replaced by Q hold (see [4, p. 66]). Here Q denotes the closure of Q.

2. Main results. We state assumptions under which we can generalize [5]
when n = 1.

(A.1). P is a continuous Borel probability measure on R.

(A.2). h € C(R) and the set Oh(R) has a positive Lesbegue measure.
(A.3). For any p ¢ 6h(R) and C € R,

/;max(pz + C — h(z),0)dz = 0.

Theorem 1 Suppose that (A.1 )-‘(A.3) hold. Then there erists a unique

continuous solution u to (2) with u(0,-) = h.

The following assumption implies (A.2)-(A.3).

(A.2)’. h is convex and is not a constant.

Theorem 2 Suppose that (A.1) and (A.2)’ hold. Then the function U de-
fined, by (4), from u in Theorem 1 is a continuous viscosity solution of (6)

in (0,00) x R.
As a regularity result, we have

Proposition 1 Suppose that (A.1) holds. Then for a continuous viscosity
solution v of (6) in (0,0) X R,
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0<v(t,z)—v(s,2) <t—-s (0<s<tz€eR). (7)

In particular, t — v(t,z) is absolutely continuous for all z € R.

We state an additional assumption and an asymptotic behavior of a vis-
cosity solution of (6).
(A.4). (i) vo : R — R is twice continuously differentiable.

(ii) lim,_,_ o D?vp(z) and lim,_,, D?vy(z) exist and

a:= inf Dvy(z) = lim D?u(z),

b := sup D?vy(z) = lim D?vy(z).
zeR T—0

Proposition 2 Suppose that (A.1) and (A.4,t) hold. Then for a continuous
viscosity solution v of (6) with v(0,:) = vo(-) in (0,00) x R, the following
holds: for anyt >0 andz € R,

F(a)t <v(t,z) —v(0,z) < F(b)t. (8)

Suppose in addition that (A.4,ii) holds. Then for any T > 0,

-"""l'i’x‘n""(oiltlgT lv(t,z) — v(0,z) — F(a)tl) =0, 9)
’12*%(02257‘ [v(t, z) — v(0,z) — F(b)t|) =0. (10)

Since F is nondecreasing, (6) is a degenerate elliptic PDE and we can
use the maximum principle for this equation in a bounded domain (see [4, p.

244, Theorem 8.1] and also [2]). From Prop. 2, we immediately obtain
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Theorem 3 Suppose that (A.1) and (A.4) hold. Then the viscosity solution
v of (6) with v(0, ) = vo(-) is unigue in C([0,00) x R).

From Theorems 2 and 3, we also obtain

Corollary 1 Suppose that (A.1) and (A.2)’ hold and that h is continuously
differentiable. Then U in Theorem 2 is the unique continuous viscosity solu-
tion of (6) with U(0,z) = [§ h(y)dy in (0,00) x R.

In particular, we have

Corollary 2 Suppose that (A.1) and (A.4, i) hold and that Dv, is convez.
Then (6) with v(0,-) = v(-) has the unique viscosity solution in C([0, 00) X
R).

(Proof of Theorem 1). The proof can be done almost in the same way as in
[5, Theorem 1] (In [5, (A.3)], “z € R% should be “(z, h(z)) € R#+). The
only thing we have to prove is the following (i)-(ii):
(i) For a convex u € C(R), w(P,u,dz) is completely additive,
(ii) For u € C(R) for which du(R) # 0, w(P, u,dz) = w(P, 4, dz).

We first prove (i). The set

S(u) := {p € R|{z € R|p € du(z)} contains more than one point}

contains at most countably many points. Indeed, if p € S(u), then for z,
for which p € Ou(z,), the graph of y = u(z) and the straight line y =
p(z — z,) + u(z,) contains a line segment with a positive length and the
interiors of such line segments are disjoint. Hence for each n, m > 1, on the
set S(u)N[D_u(-n), D, u(n)], such line segments with the length > 1/m are

finitely many. Here D_u(z) denotes the left derivative of  ~— u(z). Since
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a continuous measure does not have a point mass, we obtain (i) (see [1, p.
118)).

Next we prove (ii). If u(z) = 4(z), then du(z) = di(z). If u(z) # iU(z),
then Ou(z) = @ and 84(x) = Di(z) € S(@). Since P(S(@4)) = 0 as we
explained above, we obtain (ii). O
(Proof of Theorem 2). (A.2)’ implies that £ — DU(t,z) is convex for all
t > 0 (see [5, Theorem 2]). We first prove that U is a viscosity subsolution to
(6) in (0, 00) x R. Suppose that ¢ € C¥((0,00) x R), (3,9) € (0,00) X R,
and U — ¢ attains a local maximum at (s,y). Then for z and y € R for

which z — y is positive,

antsy) < p(L0RVODDYede—n)
©(s,z) — p(s,y) — Dp(s,y)(z — y)
: F( (z—v)?/2 )

— F(D%*p(s,y)) (zluv)

Indeed, from (5), for t and s > 0 for which s —¢ is positive and is sufficiently
small,

o(5,5) ~ 9(t,9) S U(s,9) = U(t9) = [ F(D+(DU(axv)))der

U(a’ IB) - U(a’ y) - DU(a’y)(x - y)
= / *(DU(a, ) — DU(a, y))dz

> [ D(DU(@v)(e - v)de = DDV W)z - /2.

Since U and DU € C([0,00) x R) from Theorem 1, we obtain the first
ineqaulity in (11). Since DU(s,y) = Dy(s,y) and F is nondecreasing, the
second inequality of (11) holds.



Next we prove that U is a viscosity supersolution to (6) in (0,00) x R.
Suppose that ¢ € C12((0,00) x R), (s,y) € (0,00) xR, and U — ¢ attains a
local minimum at (s,y). Then in the same way as in (11), for z and y € R

for which y — z is positive,

Bup(s,y) > F(U (8,2) —U (ayl ;)Zg’ (3,9)(z — y))
©(s,z) — ¢(s,y) — Do(s,y)(z — )
2 7 ey )

— F(D*¢(s,y)) (z1y).0

(Proof of Proposition 1) Without loss of generality, we can put s = 0. We
first prove the first inequality of (7). Suppose that there exists (to, o) €
(0, 00) x R such that

v(to, Zo) — v(0, zo) < 0. (12)
Put
Co = min{v(t,z) —v(0,z)|0 <t < to, |z — zo| < 1}(< 0), (13)
v(t,z) = v(0,z) + Co(z — 70)*.

Then it is easy to see that v is a viscosity subsolution of (6) in (0, o) % (zo —

1,z0 + 1) since F > 0. By the maximum principle (see [4, p.244, Th. 8.1]),

min{v(t,z) — v(t, z)|0 < t < to, | — 20| < 1} (14)
= min{v(t,z) - v, )0 <t <ty |r—zo| =10rt=0,|z — 20| < 1}

> 0,

from (13). This contradicts (12).
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Next we prove the second inequality of (7). Suppose that there exists
(o, To) € (0,00) x R such that

’U(z(), fo) - ’U(O,?fo) - fo > 0. (15)

Put

Co := max{v(t,z) —v(0,z) —t|0 <t <%, |z — Tp| < 1}(> 0),(16)
O(t,z) = v(0,z) +t+ Colz — Zo)>.

Then it is easy to see that T is a viscosity supersolution of (6) in (0,%o) x

(To — 1,%p + 1) since F < 1. By the maximum principle,

max{v(t, z) — 0(¢,2)|0 < t <o, |z — Fo| < 1} (17)
= max{v(t,z) —(t,z)|0 <t <%, |z —To| =1 or t =0,z —Fo| < 1}

< 0,

from (16). This contradicts (15). O

(Proof of Proposition 2) First of all, we prove the first inequality in (8).
Suppose that there exists (o, Zo) € (0, 00) x R for which F(a)to > v(to, o) —
v(0, zg). Take g9 > 0 so that

v(to, Zo) — (v(0, zo) + F(a)to — €oto) < 0. (18)

For n > 1, put

C, = min{v(t,z) — (v(0,z) + F(a)t)|0 < t < to, |z — zo| < n},(19)

bnlty®) o= olt2) = (0(0,2) + Fl@)t — et + ST %oL).
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Then from (18)-(19),

min{yn(t,2)|0 <t < to, |z — 20| < n}

= min{yn(t,z)|0 <t < to, |z — zo| < n}. (20)

Take (t,zn) € (0,t0] X (zo — n, Zo + n) which attains the minimum in (20).

Since v is a viscosity supersolution of (6) and since |C,| < ¢, from Prop.1,

> F(a + 2:;") ~Fa), (21

F(a)—eo > F(D%(o, Zn) + 20")

n?
as n — 0o, which is a contradiction. v
Next we prove the second inequality in (8). Suppose that there exists

(f0,To) € (0,00) x R for which F(b)¢y < v(%,Zo) — v(0,Z,). Take Z; > 0 so
that |

'U(-'Eo, To) - ('U(O, fo) + F(b)io -+ goio) > 0. (22)

For n > 1, put

Cn max{v(t, z) — (v(0,z) + F(b)t)|0 < ¢t < %y, |z — Tp| < n},(23)

Ualt,2) = v(t,z) - (v(O, z) + F(b)t + Zot + —_C————"(wn; zlc_")2).

Then from (22)-(23),

max {1, (t,2)|0 < t < %o, |z — To| < n}

= max{¥,(t,z)|0 < t <%, |z — To| < n}. (24)

Take (Zn,Zn) € (0,%0] X (To — n, To + n) which attains the maximum in (24).

Since v is a viscosity subsolution of (6) and since |C,| < %, from Prop.1,
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F(b)+7% < F(D%(O,En) + 26") < F(b+ 26") — F(b), (25)

n? n?
as n — 00, which is a contradiction.

Next we prove (9)-(10). From (8), we only have to pfove the following:

lim sup (os<1t1£>T{v(t, z) —v(0,z) — F(a)t}) <0, (26)
lim inf (o inf_{v(t,7) - 0(0,2) - F(b)t}) > 0. (@7)

We first prove (26). Suppose that (26) does not hold. Then there exists
€1 > 0 so that

lim sup (Oixt:th{v(t, z) — v(0, ) — F(a)t — alt}) > 0. (28)

T——00

In particular, there exists (sn,yn) € (0,T] x (—o0, —n?) for which

V(8n, ¥n) —v(0,9s) — F(a)sp, — €18, >0 (n>1). (29)

For n > 1, put

 4n = max{v(t,z) — (v(0,z) + F(a)t)|0 < t < T, |z — ya| < n},(30)
' RRY’
n(t,2) = vt z) - (U(O, z) + F(a)t + &1t + ————7"(xnz Y) )

Then from (29)-(30).

max{¢,(t,2)|0 <t < T, |z — y,| < n}
= max{¢n(t,2)|0 <t <T, |z — yn| < n}. (31)
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Take (Tn, 2n) € (0,T] X (yn — 1, Yn + n) which attains the maximum in (31).
Since v is a viscosity subsolution of (6), z, < —n?+n — —oco as n — oo and

|Yn] £ T from Prop. 1,

F(a)+e& < F(D%(O, Zn) + %’1) — F(a) (n— o0), (32)

which is a contradiction.

Next we prove (27). Suppose that (27) does not hold. Then there exists
g1 > 0 so that

liminf(oértlgT{v(t,w) — (0,2) — F(b)t +€1t}) <0. (33)

—00

In particular, there exists (3,,%,) € (0,T] x (n%, 00) for which

V(3n,Tp) — v(0,7,) — F(b)3, + %13, <0 (n > 1). (34)

Put

¥. = min{v(t,z) — (v(0,2) + F(b)1)|0 < t < T, |z — 7, < n}, (35)

Bulti2) 1= olt,2) - (0(0,2) + P — 2t + 22 vn)2).

Then from (34)-(35),

min{g,(t,2)0 <t < T, |z — 7| < n}
= min{@,(t,2)|0 <t < T, |z —7,| <n}. (36)
Take (Ta,Zn) € (0,T] X (§,, — n, ¥, +n) which attains the minimum in (36).

Since v is a viscosity supersolution of (6), Z, > n? —n — oo as n — oo and

[¥.| £ T from Prop. 1,
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Fb) -7 > F(D%(o, 7.) + ann) SF®) (o),  (37)

which is a contradiction.O
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