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Random Point Fields for Para-Particles of order 3
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Random point fields which describe gases consist of para-particles of order
three are given by means of the canonical ensemble approach. The analysis for
‘the case of the para-fermion gases is discussed in full detail.

1 Introduction

The purpose of this note is to apply the method which we have developed in [TIa]
to statistical mechanics of gases which consist of para-particles of order 3. We begin
with quantum mechanical thermal systems of finite fixed numbers of para-bosons and /or
para-fermions in the bounded boxes in R?%. Taking the thermodynamic limits, random
point fields on R? are obtained. We will see that the point fields obtained in this way
are those of & = +1/3 given in [ShTa03].

We use the representation theory of the symmetric group. ( cf. e.g. [JK81, S91, Si96]) -
Its basic facts are reviewed briefly, in section 2, along the line on which the quantum
theory of para-particles are formulated. We state the results in section 3. Section
4 devoted to the full detail of the discussion on the thermodynamic limits for para-
fermion’s case.
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2 Brief review on Representation of the symmetric

group

We say that (Mg, Az, ,\;) € N is a Young frame of length n for the symmetric
group Sy if

YXN=N, M2z 2h>0
J=1

We associate the Young frame (Aq, A2, -+, A,) with the diagram of A;-boxes in the first
row, Ay-boxes in the second row,..., and A,-boxes in the n-th row. A Young tableau on
a Young frame is a bijection from the numbers 1,2,---, N to the N boxes of the frame.

Let M) be the set of all the Young frames for Sy which have lengths less than or
equal to p . For each frame in szv , let us choose one tableau from those on the frame.
The choices are arbitrary but fixed. 7;N denotes the set of all the tableaux chosen in
this way. The row stabilizer of tableau T is denoted by R(T') , i.e., the subgroup of
Sn consists of those elements that keep all rows of T invariant, and C(T') the column
stabilizer whose elements preserve all columns of 7.

Let us introduce the three elements

1 1
‘D=grm@y 2. o WD =gegy 2 o)

sER(T) c€C(T)

and

e(T) = % Y > sga(r)or = cra(T)H(T)

" 0€R(T) reC(T)

of the group algebra C[Sy] for each T' € 7;N , where dr is the dimension of the irreducible
representation of Sy corresponding to T' and er = dr#R(T)#C(T)/N!. As is known,

a(T))ob(Ty) = b(Ty)oa(Ty) = 0 (2.1)
hold for any o € Sy if Ty, — T}. The relations
T =o(T), HTP =HT), eIV =e(T), eT)e(T)=0 (L#T) (22)
also hold for T, T3,T, € 7;,N . For later use, let us introduce
d(T) = e(T)a(T) = era(T)HT)a(T) (2.3)
for T € T;V. They satisfy

d(T)2 =d(T), dT)d(Tz)=0 (T1# Tz) (2.4)
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which are shown readily from (2.2) and (2.1). The inner product < -,- > of C[Sy] is
defined by
<0o,7>=06,, for o,7€ SN
and the sesqui-linearity. ' |
The left representation L and the right representation R of Sy on C[Sy] are defined
by
Lo)g=L(o) Y g(r)r=Y_ g(r)or =Y g(o™'r)r

TESN TESN TESN
and
R(c)g = R(0) Z g(r)r = Z g(r)re™t = Z g(ro)r,
TESN TESN TESN

respectively. Here and hereafter we identify g : Sy — C and } 5, g(7)7 € C[Sn].
They are extended to the representation of C[Sx] on C[Sy] as

L(f)g=fg=_ f(o)g(r)or =D (D" flor™M)g(r))o

and

R(fg =9f = Y 9(0)f(r)or™ = 32 (Y alon)f()e,
where f = T, f(r)r = £, f(r™)r = T, f(r)r.

The character of the irreducible representation of Sy corresponding to tableau T' € 7;”
is obtained by

xr(0) = Y _ (r, L(o)R(e(T))7) = Y _ (1,07e(T)).
" TeSN TESN
We introduce a tentative notation

xs(0) = Z (1, L(c)R(g)T) = Z (r,omy g(y) = Z g(t7toT) (2.5)

TESN TvESN TESN

for g =3, g(m)r € C[Sn]. Then x7 = xo(r) holds.

Now let us consider representations of Sy on Hilbert spaces. Let H;, be a certain L2
space which will be specified in the next section and ®VH, its N-fold Hilbert space
tensor product. Let U be the representation of Sy on ®VH, defined by

U(a)cpl ® - QN = Po-1(1) R QR Po-1(N) for P11, PN € ’HL,
or equivalently by

(U(a)f)(wl, T 1$N) = f(%u),'_" ,%(N)) for fe€ ®N’HL.
Obviously, U is unitary: U(o)* = U(o™?) = U(s)"!. We extend U for C[;S'&] by
linearity. Then U(a(T)) is an orthogonal projection because of U(a(T))* = U(a(T)) =
U(a(T)) and (2.2). So are U(b(T))’s, U(d(T))’s and P,p = ETG’I;N U(d(T)). Note that
Ran U(d(T)) =RanU(e(T')) because of d(T)e(T) = e(T') and e(T)d(T) = d(T).



3 Para-statistics and Random point fields

3.1 Para-bosons of order 3

Let us consider a quantum system of N para-bosons of order p in the box Ap =
[-L/2,L/2]* C R% We refer the literatures [MeG64, HaT69, StT70] for quantum
mechanics of para-particles. (See also [OK69].) The arguments of these literatures
indicate that the state space of our system is given by HﬁfN = P,p ®" HL, where
M = L*(AL) with Lebesgue measure is the state space of one particle system in Ar.
We need the heat operator G, = €’»% in Az, where Ay is the Laplacian in Ay with
periodic boundary conditions.

It is obvious that there is a CONS of H’I’ﬁv which consists of the vectors of the form
U (d(T))gog“) ®-® cpg;), which are the eigenfunctions of ®Gy. Then, we define the
point field ,uf? v of N free para-bosons of order p as in section 2 of [T1a] and its generating
functional is given by

_ Tr on [(@N@L)P B]
<f&>gq pB — RVH, 2
/e P’L,N(f) TI'@N‘HL[(@NGL)P;;B]’

where f is a nonnegative continuous function on Ay and G = G},/ 2e~f Gz/ 2,

Lemma 3.1
/e-<f,£>dM;£BN(£) _ Ereﬁ" EUGSN xr(o)Tr ®NHL[(®NéL)U(a)] (3.1)
N T e Sy X1(0) T g, (BNGL)U (@)
_ ETG7;N ng detT{éL(fL‘i,$j)}1<i,jg1vdx1 coodry (3.2)

B ZTG%N fA%’ detr{GL(zi, zj) hijgndey - - - dzy

Remark 1 : %’}ﬁv = P,p @ H_ is determined by the choice of the tableaux T7s. The
spaces corresponding to different choices of tableaux are different subspaces of ®VHy.
However, they are unitarily equivalent and the generating functional given above is not
affected by the choice. In fact, x7(o) depends only on the frame on which the tableau
T is defined.

Remark 2: detrA=3 s x1(0) TI, Ais(s) in (3.2) is called immanant.

Proof : Since @G commutes with U(c) and a(T)e(T) = e(T'), we have
Tr gvu, [(®" GL)U(d(T))] = Tr g, (@Y GL)U (e(T)U (a(T))]

= Tr g3, [U(a(T))(@" GL)U (e(T))] = Tr guye, [(®VGL)U (e(T))]- (3.3)
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On the other hand, we get from (2.5) that
Y Xo(0)Trguy, (®NGL)U(0)] = Y g(r~'o7)Trguy, [(®VGL)U(0)]

oESN T,OESN

= > 9(0)Tremu, (B GL)U(ror™)] = Y 9(0) Trom, (@ GL)U(r)U(0)U(r™")]

T, O

= N3 g(0)Tram, [(®VGLIU(0)] = NITr gung, [(® GL)U(9)], (3.4)

where we have used the cyclicity of the trace and the commutativity of U(r) with
®"NG. Putting g = e(T') and using (3.3) and P, = ETGEN U(d(T)), we obtain the first
equation. The second one is obvious. O

Now, let us consider the thermodynamic limit
L, N o0, N/L*—=p>0. (3.5)

We need the heat operator G = €’® on L%*(R?). In the following, f is a nonnega-
tive continuous function having a compact support. It is supposed to be fixed in the

thermodynamic limit. Its support will be contained in Ay for large enough L.

We get the limiting random point field u%B on R for the low density region.

Theorem 3.2 The finite random point field for para-bosons of order 3 defined above
converge weakly to the random point field whose Laplace transform is given by

/ e~ <> du3B(¢) = Det[l + v/1 — e/ G(1 — r.G) V1 —e-1]°

in the thermodynamic limit, where r. € (0,1) is determined by

dp r*e‘ﬁlplz _
g N / (2m)¢ 1 — r e~Flel? = (nG(1 - n.G) 1)(5”,-’5),

d e_ﬁlPP
8 < pc = / pd — 2
3 R2 (27!') 1 - € ﬁ|Pl

Remark : The high density region p 2> 3p, is related to the Bose-Einstein condensation.
We need a different analysis for the region. See [TIb] for the case of p = 1 and 2.

3.2 Para-fermions of order 3

For Young tableau T', T' denotes the tableau obtained by exchanging the rows and
the columns of T, i.e., T' is the transpose of T'. The transpose A’ of the frame ) can be
defined similarly. Then, T' lives on X if T lives on \. It is obvious that

R(TY=C(T), C(T') = R(T).
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The generating functional of the point field u’l’fN for N para-fermions of order p in the
box Ay, is given by

S rery T gvu [(@VG)U((T))
S rers T o, (@Y G)O(A(T)]

as in the case of para-bosons of order p. And the following expressions also hold.

[ee e =

Lemma 3.3

 Trery Tocsy xr(0)Tr gu, (¥ GL)U (o)
T rery Soesy X1(0) T g (BYGLU ()]

. ZTGT;N fAsz detTr{éL(:I:‘-, zj)}dl'l . de
= ZTEEN fAf detT,{GL(x,-, xj)}d(tl R cle

[ dtie (39)

(3.7)

Theorem 3.4 The finite random point fields for para-fermions of order 3 defined above
converge weakly to the point field yﬁF whose Laplace transform is given by

/ eI 43 (¢) = Det[l — V1= e IrG(l + 1.G) V1= eI’

in the thermodynamic limit (8.5), where r. € (0,00) is determined by

d r,eBlel _
e T = (0 +7.0) (5,9, @9

4 Prdof of Theorem 3.4

In the rest of this paper, we use results in [TIa] frequently. We refer them e.g., Lemma
1.3.2 for Lemma 3.2 of [Tla]. Let 1 be the character of the induced representation
Ind‘fg(’T) (1], where 1 is the one dimensional representation R(T) > ¢ = 1, i.e.,

¥r(0) = ¥ <7, L(@)R(@(D)r >= xa(m (o).

TESN

Since the characters xr and ¥r depend only on the frame on which the tableau T

lives, not on T itself, we use the notation x and ¢, ( A € M;V ) instead of xr and ¥,

respectively.

7



Let § be the frame (p—1,--+,2,1,0) € M,". Generalize , to those st = (1, , 4p) €
ZF which satisfies %, u; = N by

V=0  for peZ?—-17Z%
and
Yp=%r for p€Z, and n€S, suchthat muc MIJ,V,
where Z; = {0} UN. Then the determinantal form [JK81] can be written as
Xx = Z SEOT Yxt5—ms- (4.1)
€Sy '

Let us recall the relations

xr(0) =sgnoxr(s), ¢m(e)=sgnoyr(o),

where

ori(0) =Y < 1,L(@)RB(T"))T >= xyr)(0)

denotes the character of the induced representation Indgf},)[sgn], where sgn is the
representation C(T") = R(T') 3 o + sgno. Then we have a variant of (4.1)

X\ = Z SELT O/ 48! (n5)!+ (4.2)

TESp

Now we consider the denominator of (3.6). Let T € TN live on p = (p1,- - ,pp) €
MY. Thanks to (3.4) for g = b(T"), we have

Z or(o)Tr gy, ((®NG)U(U)) = N!Trgwy, ((@NG)U(b(T')))

ocESN

P
= N! H Tr grin, ((®“"'G)Auj)’

j=1
where A, =3 s sgn(7)U(7)/n! is the anti-symmetrization operator on ®"#y. In the

last step, we have used
2
(T = B
=y =,

j=10€R;

where R; is the symmetric group of ; numbers which lie on the j-th row of the tableau
T. Then (4.2) yields

> xx(0)Trgnu, [(®¥GL)U() = D sgnm) exsar(ray(0) Trons, (@7 GL)U (o))

ogeSN TESp ocESN
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p
= N! Z sgn H Tr gay-itntily, ((®AJ~J+W(J)GL)AAj—j“"’T(j))'

TESp i=1

Here we understand that Tr gny, ((®"G)A,) = 1 if n = 0 and = 0 if n < 0 in the last
expression. Let us recall the defining formula of Fredholm determinant

Det 1+J ZTI'@WH[ ]

n=0

for a trace class operator J. We use it in the form

Tr gru(87G1r) Ay] = f ( dz

5,(0) 2miz™

Det(1 + 2G), (4.3)

where r > 0 can be set arbitrary. Note that the right hand side equals to 1 for n =1
and to 0 for n < 0. Then we have the following expression of the denominator of (3.6)

Yo Y xn(0)Trgnw, [(8VGL)U(o)]

AeM] oceSN

_ N' sgnﬂ’f f Det 1+ 2;Gr) dzJ'
. (0)p

\ MN ES 27r _7 ]+1I'(J)+l
€ K3

i=1

—N'Zf 7{ [H‘<f<jsp(4*f‘j)][ J—lDet(”’"GL)]dz* % (44

remY r(0)? 27”'2’\’-” dh
The similar formula for the numerator also holds.

Now we concentrate on the case of p = 3. To make the thermodynamic limit procedure
explicit, let us take a sequence {Ln}nen Which satisfies N/L% — p as N — oo. In the
followings, r = r € [0, 00) denotes the unique solution of

TrrGr,(L+rGry) ' =k (4.5)

for 0 < k < N. We suppress the N dependence of r;. The existence and the uniqueness
of the solution follow from the fact that the left-hand side of (4.5) is a continuous and
monotone function of r. See Lemma 1.3.2, for details. We put

v = Tr [TkGLN(l + TkGLN)—Z] (4.6)

3 . — —
Dk,l,m = % f f [Hj=1 Det(l + Z]GLN )] (21 22)(7'2 23) d21d22d23,
Sr(0)3

(2mi)3zFH 51zt
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for k,l,m € Z. Note that D, = 0 if at least one of k,[,m is negative. Summing over
A and Az in (4.4) for p = 3, we get

N/3]+1 [N/2}+1
DY xw(0)Trgnw, (@Y GLy)U(0)] "N'( Z Dya-aipi-1+ Y, Diinsa- 2z>
AeMPF c€SN I=[N/3}+2

Since r > 0 of the contour S,(0) is arbitrary, we may change the complex integral
variables z; = r;n; with n; € S1(0) for j = 1,2,3. Thanks to the property of Fredholm
determinant, we have

Det[l + 2;Gr,] = Det[l + r;Gr,] Det[l + (n; — 1)r;Gry(1 + r;Gr, )Y

Now, we can put

3k 5/2
Frim = r0°vo/ Dijpym = szmvo *Iiim
"y Det[l + TOGLN]3 1 ¥ ?
where
R f[ réoDet[l + r;GL,]
k1 ,k2 .k &
vk = AL 5 Det(l + roGry ]
and

Ik1,k2,ks f\f\i o HDet[l + 1)erLN(1 +7‘jGLN)_1])
1

dﬂldnzdﬂ3
X(rym = rafie)(ratia — rafs) (2mi )Py A T Rt T
Here ko = (N + 2)/3 and k1,k2,k3 S Z+ satisfy k1 2 kz } k3 and kl + kz + k3 = 3k0
We use the abbreviation r, and v, for ry, and v, (v = 0,1,2,3), respectively. Here, let
us recall that ro — r, in the thermodynamic limit because of ko/L® — p/3, (3.8) and
Lemma 1.3.5.

Define a sequence {fn}nen of nonnegative functions on R by

4

Friny2-2 for VN+2z€[l-1—(N+2)/3,l—(N+2)/3)
and [ =[N/3]+2,---,[N/2] +1

fn(z) = { Fv4a-api-1  for VN+2z€[l-1—(N+2)/3,l—(N+2)/3)

and [=1,2,.--,[N/3]+1

0 otherwise.

\

Then the denominator of (3.6) becomes

3 o
NN 53 Dot oG] / fu(z) dz

3ko, 5/2
To Vo
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We introduce ﬁk,z,m,j—k,l,m and fN using G’LN instead of G, in Dgym,Frim and fn
and so on, to get the expression

By [e</4>] = Det[1 + FoGr, P ro® vy [0 I ()
LN Det[l + roGr, 3 7 ”3’“° ”5/2f fn(z)

From Lemma 1.3.6, we have 3
%41 _ (4.7)

Vo
in the thermodynamic limit. Similarly, we obtain

1o’ Detll + 7oGlry] oo [1 = V1= e/rnG(1+rG)V1-e7]

~ko Det[l + roGy,]

from the proof of Theorem 1.3.1 (see Eq. (a—c), where we should read N as ko, zx as g
and o = —1). Thus Theorem 3.4 is proved, if we get the following lemma:

Lemma 4.1 Under the thermodynamic limit,

oQ . o0 [ o] dz
—202% [k
[m fn(z) dz, /_oo fr(z)dz — /_ooe p @
dp r*e‘ﬁlplz
r= / (2m)% (1 + rpePPF)2"

Proof: Let k,r,v € [0, 00) satisfy the relations

hold, where

k=Tr[rGry(1+rGry)™Y, v=Tr[rGry(l+rGry)"?. (4.8)

1° There exist positive constants ¢; and c; which depend only on the density p such

that
* k; — ki

ki

ri<e, ri—rnso cokj < v < ki
hold for k;,k; > 0 satisfying k; > k.

We have v € k and r < ry for £ < N. Recall ry converges to the constant r* which

determined by
dp  rre Pl
/ (2m)4 1 + r*e—Blel? P

Then {ry} is bounded from above. Hence we have r < ry < cpand v 2 k/(1+7n) 2
k/(1 + ¢;) since 0 < Gry < 1. Thanks to dk/dr = v/r > k/c,, we get ¢ [ dk/k >
f:k’ dr, which yields the second inequality. ¢
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2° There exist positive constants cg, ¢ and ¢, which depend only on p such that

Agn = f Det[14+(n—1)rGr,(14+rGry)~ 1]( )" d (n=0,1,2, k=0,1,--- ,N)
51(0)

27rzn’°+1
satisfy
Apo= (14+0(1))/V2rv, Ara=(~1+0(1))/V2rv® forlargek < N
and
Aol S G/VITE, |Anl < VITE,
| Ak 2| < c’z/\/l_;-_z3 for all k =0,1,--- ,N.
Put

hk(:z:) = X[_,r\/;,"m(w)e—ikz/ﬁDet[l + (61.3"/\/17 — l)T'GLN(l + 'I'GLN)—I],
as in the proof of Proposition I.A.2. Then, we have
lhi(z)| < 721" € LY(R) (4.9)

and

2/26

hi(t) = X(—rmrve)(T)e” —e®? as N2k—oo (4.10)

where |6 < 4|2%|/9v/3v.
Setting n = exp(iz//v), we have

(eza:/\/__l nhk( )
Ak,n / 27!'\/_ d(l)

Then, |Aro| < ¢/vv < ¢'/Vk for k = 1,2,--- ,N. On the other hand, Cauchy’s
integral formula yields Agp = 1, readily. So we get the bound |Ax | < ¢/ V1+E.

Now the asymptotic behavior of Ago can be derived by the use of dominated conver-
gence theorem and (4.10).

For n = 1, we have

i o0
Ak,l = %[m xhk(m) dz + R,

where

IRl < f M‘jﬁhkm dz = O(1/V9).

The integrand of first term can be written as

ahi(2) = Xi-rym/amyaa)(@)2€7 2 + Xaysjamyasa (@)2(€ — 1)e™=/?
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+X[—7r\/5,—1r\/§'/3]u[1r\/3/3,1r\/ﬂ(x)w\/t_’hk(w)'
The integral of the first term of the right hand side is 0. While the second term is
bounded by |zd|h(z), since e — 1] < |6]e°. For the third term, we use (4.9). Then we
get the bound | [ zhi(z) dz| < ¢”//v for k > 1. Together with Ag; = 0, the bounds
for Ag; are derived. Similarly, we get the formulae for Ay ,. 0

3° Let (kl,kz, k3) S Z+ satisfies
ki 2ke>ks, ki+ki+ks=3ko=N-+2

and
k1=k2 or k2=k3+1

Then the estimates

5/2 kO 5/2 1 (ko—ks)?/ako
lvO Ikl,kz,kal < c 1+ k3 g CE .

hold for all such (ky, kq,k3) and

vy 2(1 + (1))
(2m)/20; 03 o'

5/2
Vo Ik1 k2.ks =

holds for large N and (ki , k,, k3), where ¢, ¢’ are positive constants depending only on p.

In fact, expanding

(rim —ranz)(rany—rans) = (ri(m—1)—ra(me—1)+ry—rs)(ra(nz—1)—ra(na—1)+ra—ra)

in the integrand of Iy, i, x,, we get the first inequality from 1° and 2°. The second
inequality is obvious. Similarly, the asymptotic behavior follows. 0

40

3 )
Rku o ks = € L1 (ko—k;)? [2v;

holds where v} = Tr [r;GLy(1 + T;GLN)‘2] for a certain middle point r; between ro and
r;. Especially, we have the bound

Rkl ka ks g e—(ko—k3)2/2ko.

Recall that G, is a non-negative trace class self-adjoint operator. If we put
¥(t) = log Det[l + €'Gy,,] = Tr [log(1 + €G],
we have

W'(t) = Tr[e'Gry (1 + €Gry) ™", ¥"(t) = Tr[e' Gy (1 + €Gr,y) 7%
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In the equality

$(O) — t0'(0) = wito) +to(t0) = | (s = to)"(s) ds  to(/(t0) — (1),

apply

[emawtous ['o [ wrfid - -LGz0a0

where u. is a middle point of ¢ and 3. Then we obtain

¢V () Det[l + e!G ]
V') Det[l + e Gp, ]

= elo(¥'(t0)—¥' (1) (¥'()-¥'(10))?/2¢" (uc)

= ¥(1)=t¥'()—¥(to)+t0 ¥’ (to)

Set € =r; and €% = ro. Then /() = k;j,¥'(to) = ko, ¥"(t) = v; and ¥"(ty) = vo hold.
Taking the product of those equalities for j = 1,2 and 3, we get the desired expression,
since 3k0 = kl + k2 + k3. O

5°  Recall that the functions go}cL)(a:) = L™ exp(i2nk - z/L) (k € Z%) constitute
a C.O.N.S. of L*(Ar), where Grol®) = e=Am/LP,L) holds for all k € Z¢. Then, we

obtain
|2nk/LP

2T roe P
Ld 27r)d Z ( ) 1 4 roe—Bl2rk/LI? K,

in the thermodynamic limit, since kg /L% = p/3 and ry — r, hold.
From 3° and 4°, we have a bound

| P o s | ™ (Romho)?/2ko (4.11)

and

5 2
o (1 + o(1)) o Tj(ko=k;) /2]

R (12

By o ks =

for large N, ky,k, k3, where v; is a mean value which we have written %"(u.) in 4°.
For | = 1,2,--- ,[N/3]+ 1, VN +2z € [| =1 — (N +2)/3,l — (N + 2)/3) implies
|l—1—(N+2)/3| 2 VN + 2|z|, hence we get the bound

- 2 —2m2
fn(@) = Fypsoagioy < e WVHDe 4k ¢ fo=328/4

We also get fa(z) < ' exp(—3z2/4) for the other cases, similarly.
For fixed z € R, we choose ! € Z such that VN + 2z € [[-1—-(N+2)/3,l—-(N+2)/3).
Then we have v;/vo = 1 (7 =1,2,3) and

Z(—ki;’”)j:%z + o(1).

i=1



Hence, we obtain fy(z) — (27)~%2exp(—2pz?*/k) in the thermodynamic limit. Thus
the dominated convergence theorem yields the desired result for fy. Because of (4.7),
the one for fy can be proved similarly. ‘ O
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