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Abstract. Acoustic streaming caused by a large amplitude resonant oscillation of an ideal gas
in a two-dimensional resonator is numerically studied by solving the system of Navier-Stokes
equations with a finite-difference method, without the assumption of symmetry of the flow field.
The sound field including shock waves is precisely determined, and then, the streaming velocity
field is evaluated in terms of a time-averaged mass flux density vector. We shall demonstrate that,
in the case where the amplitude of gas oscillation is moderately large, an asymmetric quasi-steady
streaming is established after more than a thousand of oscillations of sound source.
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INTRODUCTION

Streaming motions induced by acoustic standing waves are classical topics in physics
[1, 2, 3]. Today, the active control of streaming in resonators becomes an important
subject in various applications, in particular in thermoacoustic devices (see, e.g., [4]
and Fig. 1). Some authors have recently carried out accurate measurements for slow
streaming motions [5] in a resonator. However, its behavior in the case of large Reynolds
number remains unresolved.

FIGURE 1. Example of asymmetric acoustic streaming in a standing-wave type thermoacoustic engine.
Photograph courtesy of T. Yazaki.

Recently, the present author has numerically studied the resonant gas oscillation with
a periodic shock wave in a closed tube by solving the system of compressible Navier—
Stokes equations [6]. The result has suggested the occurrence of turbulent acoustic
streaming when a streaming Reynolds number is sufficiently large. This is the first
numerical evidence for the prediction based on the experiment [3]. Numerical studies
of streaming motion with large Reynolds number have also been carried out by Alexeev
and Gutfinger [7], Morris et al. [8], and Aktas and Farouk [9]. Furthermore, detailed gas
motions in a vicinity of a stack plate in the thermoacoustic device have been computed
by Besnoin and Knio [10] and Marx and Blanc-Benon [11]. Nevertheless, the direct
numerical simulation of viscous compressible flow is an extraordinarily hard task if one



FIGURE 2. Schematic of model.

tries to resolve all phenomena from an initial state of uniform and at rest to an almost
steady oscillation state throughout the entire flow field including the boundary layer.
Therefore, our knowledge of streaming with large Reynolds number is still limited.

In previous papers [12, 13, 14], we have adopted a simple model based on the
linear standing wave solution and a boundary layer analysis. This model employs the
incompressible Navier-Stokes equations as the governing equations for the streaming
velocity. As a result, we have numerically demonstrated the bifurcation and multiple
existence of steady state solutions for a region of moderately large Reynolds number in
a two-dimensional rectangular box. In the present paper, we shall investigate the problem
of bifurcation of steady streaming, which is expected to occur before the transition to
turbulent motions, not by utilizing the incompressible model, but by the direct simulation
of compressible Navier—Stokes system. We treat the large Reynolds number acoustic
streaming, but the Reynolds number is not so large that the turbulent streaming occurs.

PROBLEM

We shall consider the streaming motion induced by resonant gas oscillations in a two-
dimensional rectangular box filled with an ideal gas (see Fig. 2). The box, whose length
is L and width is W, is closed at one end by a solid plate and the other by a piston (sound
source) oscillating harmonically with an amplitude a and angular frequency w.

We assume that the sound excitation is moderately weak, the thickness of the bound-
ary layer is sufficiently thin compared with the width of the box, and the wavelength of
the excited sound is comparable with the width of the box,
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where M is the acoustic Mach number at the sound source (co is the speed of sound
in the initial undisturbed state), € is a measure of the ratio of the thickness of acoustic
boundary layer to the wavelength A\ = 27¢y/w, and w is the normalized width of the box.
Furthermore, we assume the second-mode resonance, which is prescribed by

b= 2, 2)

where b = Lw/c, is the normalized box length. The wave motion in the bulk of the gas
can then be a resonant gas oscillation including shock waves [15].
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Governing equations, initial and boundary conditions

We obtain the wave and streaming motions by solving the initial and boundary value
problem for the system of compressible Navier-Stokes equations,
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where ; = z{w/co and ¢t = wt* are the nondimensional space coordinates and time;
p = p*/po and p = p*/(poc?) are the nondimensionalized gas density and pressure;
u; = u? /g is the nondimensional gas velocity; F is the nondimensional total gas energy
per unit volume; o;; and g; are the nondimensional viscous tensor and heat flux vector;
p = p* /1o is the nondimensional viscosity coefficient; v is the ratio of specific heats;
Pr is the Prandtl number. The equation of state for ideal gas yp = pT is used to close
the system.
The initial condition is given as

=0, p=v"1, p=1, T=1 (6)

The boundary conditions on the dscillating piston face are
u=~-Msint, v=0, T=1 at z=M(cost—1) and 0SySw, (7)

and the boundary condition except for the piston face are
u=v=0, T=1, 8)

where z = 1, Y = Za, u = Uy, ¥V = uy, and the isothermal condition is imposed on the
gas temperature on the wall. ‘

The viscosity coefficient is assumed to obey the Sutherland’s law and the Prandtl
number Pr to be a constant (0.7).

The results presented in the following are the cases where the acoustic Mach number
at the sound source M = 0.01 and 0.001, the normalized box width w = 27 /5 and 7 /5,
and the ratio of the boundary layer thickness to the wavelength ¢ = 0.00316, which
corresponds to w/(27) = 12.5 kHz in the air in the standard state.

NUMERICAL METHOD

The initial and boundary value problem (3)—(8) is solved with the high-resolution up-
wind finite-difference TVD scheme [16]. The method has been used for various non-
linear acoustics problems by the present author (e.g., see [6, 17]), and the details are
omitted here.
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We shall remark that in the present computation we don’t assume any symmetry
of flow pattern of acoustic streaming, and therefore we solve the entire field in the
box 0 £z £ band 0 £y £ w. The entire field is subdivided into a boundary-fitted
700 x 300 nonuniform mesh, where the mech points are clustered near the boundary. The
~ minimum grid size is 0.0002 in the vicinity of the wall and this is so small compared
with € = 0.00316 that we can resolve the acoustic boundary layer. The resolution of
boundary layer is crucially important because the acoustic streaming in the bulk of the
gas is mainly induced by the streaming motion in the boundary layer or the so-called
limiting velocity of the inner streaming.

The time step is 27 /50000, and the CFL number is about 0.5. The CPU time for
computation of one oscillation cycle of piston is about 4.4 hours on a state-of-the-art PC
(dual-cpu machine). _

The streaming velocity us is evaluated by the time-averaged mass flux vector,

us " (pu
e = (vs) - /t (W) . ©®)

We shall further remark that we don’t give any artificial seed of asymmetry in the
computation. The numerical code is written symmetrically in the algebraic sense. The
asymmetry inherent in the numerical operations of finite figures spontaneously grows
due to the instability of the system concerned.

RESULTS

Evolution of resonant gas oscillation

At the initial instant ¢ = 0, the gas in the box is uniform and at rest. After the
beginning of oscillation of the piston, the wave amplitude grows in proportion to Mt.
At t = O(1/v/M), the wave amplitude reaches the maximum value of O(v'M), where
two shock waves are formed since the excitation at the sound source is the second mode.
Figure 3 shows the temporal evolution of pressure amplitude at the closed end. At almost
t/(2r) = 15, the wave amplitude reaches its maximum value, and thereafter a quasi-
steady oscillation state continues.
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FIGURE 3. Initial evolution of pressure amplitude at the closed end.
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FIGURE 4. Streaming velocity field at ¢/(27) = 300.

Development of acoustic streaming

Figure 4 shows the streaming velocity fields at ¢/(27) = 300. Except for the case of
M = 0.01 and L/W =5, the streaming patterns are considerably different from that
of the classical Rayleigh streaming, which consists of the regular arrangement of four
vortex pairs and the flow pattern is symmetric with respect to z = b/2 and y = w/2.
Although the flow pattern for M = 0.01 and L/W = 5 is apparently similar to that
of Rayleigh streaming, the flow directions of its major vortexes are opposite to those of
Rayleigh streaming. This has been reported by Alexeev and Gutfinger [7], although their
computation assumes the symmetry of flow field with respect to 4* = /2 and they have
truncated the computations at one hundred cycles.

The streaming velocity fields at ¢/(27) = 500 are shown in Fig. 5. An origin of
asymmetry appears near z = 0 and y = w/2 in the case of M = 0.01 and L/W = 5.
The flow patterns in the other cases constantly change from those shown in Fig. 4. This
clearly means that computations for a few hundreds of cycles are insufficient for the
analysis of high Reynolds number acoustic streaming.

We therefore continue the computations for the two cases of L/W = 5 over a thousand
of cycles. Figure 6 shows the development of asymmetric streaming pattern for the case
of M =0.01 and L/W = 5, and Fig. 7 shows the case of M = 0.001 and L/W = 5. The
time from the beginning of oscillation and the maximum of streaming velocity Up.x are
shown in each plot in Fig. 6. Note that, as can be seen from Figs. 6 and 7, the maximum
velocity Uway is of the order of M, because the maximum wave amplitude is of O(vM)
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FIGURE 5. Streaming velocity field at t/(27) = 500.

and the streaming motion is a second-order nonlinear phenomenon.

The top figure in Fig. 6 shows that the streaming velocity field is fully asymmetnc at
860th cycle. From the comparison of the streaming pattern at 1160th cycle and that at
1260th cycle, we may conclude that an asymmetric streaming almost reaches a quasi-
steady state. On the other hand, the symmetry of streaming velocity field for the case of
M =0.001 and L/W = 5 is hardly destroyed up to 1020th cycle, as shown in the top
figure in Fig. 7. Nevertheless, an origin of asymmetry appears at around the center of the
resonator at 1120th cycle, and then the asymmetry grows and prevails in the entire field
at 1320th cycle. At this stage, however, we cannot conclude that the streaming velocity
field for the case of M = 0.001 and L/W = 5 reaches a quasi-steady state.

Here, we shall comment on the streaming Reynolds number. The streaming Reynolds
number Rs may be defined by
UsLs

Yo )

From the bottom figure in Fig. 6, we take the characteristic speed of streaming Us =
0.007¢o. The characteristic length of streaming Lg may be taken as W = (2wc)/(5w)
(width of box). Consequently, we have Rs = 880 for the case of M =0.01 and L/W = 5.

Rs =

10
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FIGURE 6. Development of asymmetric streaming pattern for M = 0.01 and L/W = 5.

CONCLUSIONS

We have demonstrated that acoustic streaming in a resonator develops into an asymmet-
ric quasi-steady flow. The previous authors [7, 9] assumed the symmetry with respect
to the centerline of resonator in their computations, and therefore, they couldn’t find the
asymmetric solutions. Furthermore, they truncated the computation at 100 or 200 cycles
from the beginning of sound excitation, which is clearly insufficient for the analysis of
streaming motion of moderately large Reynolds number, unless the strong nonlinearity
rapidly excites a turbulent streaming motion as shown in [6].

The existence of the steady asymmetric flow regime prior to the transition to turbu-
lent motions is important for understanding of acoustic streaming with large Reynolds
number in resonators. '

REFERENCES

Lord Rayleigh, The Theory of Sound Dover, New York, 1945.

E. N. da C. Andrade, On the circulations caused by the vibration of air in a tube, Proc. R. Soc. A,
134, 445-470 (1931).

P. Merkli and H. Thomann, Transition to turbulence in oscillating pipe flow, J. Fluid Mech., 68,
567-575 (1975).

G. W. Swift, Thermoacoustic engines and refrigerators, Phys. Today. 48, American Institute of
Physics, New York, 1995, pp.22-28. :

& W b=

138



10.
11.
12.

13.

14.

15.
16.

17.

1020 cycle
Vmax=0.0038

1120 cycle
Vmax =0.0043

1220 cycle
Vmax =0.0044

1320 cycle
Vmax =0.0029

FIGURE 7. Development of asymmetric streaming pattern for M = 0.001 and L/W =5.

M. W. Thompson and A. A. Atchley, Simultaneous measurement of acoustic and streaming velocities
in a standing wave using laser Doppler anemometry, J. Acoust. Soc. Am., 117, 18281838 (2005).

T. Yano, Turbulent acoustic streaming excited by resonant gas oscillation with periodic shock waves
in a closed tube, J. Acoust. Soc. Am., 106, L7-1.12 (1999). ,

A. Alexeev and C. Gutfinger, Resonance gas oscillations in closed tubes: Numerical study and
experiments, Phys. Fluids, 15, 3397-3408 (2003).

P. J. Morris, S. Boluriaan, and C. M. Shieh, Numerical simulation of minor losses due to a sudden
contraction and expansion in high amplitude acoustic resonators, Acta Acust. United Ac., 99, 393-409
(2004). . ’

M. K. Aktas and B. Farouk, Numerical simulation of acoustic streaming generated by finite-
amplitude resonant oscillations in an enclosure, J. Acoust. Soc. Am., 116, 2822-2831 (2004).

E. Besnoin and O. M. Knio, Numerical study of thermoacoustic heat exchangers in the thin plate
limit, Numer. Heat Transf. A-Appl., 40, 445-471 (2001).

D. Marx and P. Blanc-Benon, Computation of the mean velocity field above a stack plate in a
thermoacoustic refrigerator, C. R. Mec., 332, 867874 (2004).

T. Yano, S. Fujikawa, and H. Muranaka, Numerical Study of Rayleigh Type Acoustic Streaming
with Large Reynolds Number, Proceedings of 17th International Congress on Acoustics, 1, 2001,
pp.56-57.

T. Yano, S. Fujikawa, and M. Mizuno, Bifurcation of acoustic streaming induced by a standing wave
in a two-dimensional rectangular box, Nonlinear Acoustics at the Beginning of the 21st Century,
edited by O. V. Rudenko and O.A. Sapozhnikov, Moscow State University, Moscow, 2002, pp.227-
230.

T. Yano, Numerical study of acoustic streaming in a resonator with large Reynolds number, Proceed-
ings of the World Congress of Ultrasonics 2003, 2003, pp.661-664.

W. Chester, Resonant oscillations in closed tubes,” J. Fluid Mech., 18, 44-65 (1965).

S. R. Chakravarthy, Development of upwind schemes for the Eunler equations, NASA contractor
report, 4043 (1987).

T. Yano and Y. Inoue, Strongly nonlinear waves and streaming in the near field of a circular piston,
J. Acoust. Soc. Am., 99, 3353-3372 (1996).

139



