0000000000
1485 0 2006 0 22-32 : 22

Dynamics of type 3 polynomial
self maps of degree 2 of C?
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Abstract
We study the dynamics of endomorphisms  f.(z,y) = (2% + cy,3* + cz) of
C?. The author studied the dynamics of non-holomorphic maps g.(z) = 2 + cz.
The endomorphism f.(z,y) is a kind of extension of g.(2).
Let I, and K(f.) be the critical set and the set of points with bounded orbits of
f-(z,y). We show the followings :

(A) e>2+2v20r c<—2 then K(f)NT. =9,
and K(f.) is a Cantor set which lies on the real plane (z = ).
If —-2<c¢<4 then K(f,)NT.#¢.

(B) If cis a complex number near 2, then K(f)NT. consists of three points and
the forward orbits of three points approach to three saddles. All periodic points other
than these three saddles are repelling. These give affirmative answers to Hubbard’s
conjectures.

(C) When c¢= -2, thedynamicsof f_5(z,y) areanaloguous tothose of a typical
quadratic polynomial map (Chebyshev map) p_s(z) = 22—2. The invariant measure
p of f_2(z,y) can be written exactly as it can be written for p_(z). External rays
and foliations of f_»(z,) defined by Bedford and Jonsson have the similar properties
as the typical external rays of p_,(z).

1 Introduction
Uchimura [Ucl, Uc2, Uc3] studied the dynamics of the maps

9(2)=2*+cz:C—>C.
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The dynamics of the maps are analogous to those of quadratic maps
ge(2) = 2* + cz.

Uchimura [Uc3] shows the following:

(1) K(g.) is connected with the simply connected complement in € if and only if
—2<c¢<4. ‘

(2) I ¢ < -2, K(g.) is a Cantor set. g, restricted to K(g.) is topological conjugate
to the shift on 4 symbols.
Ueda[Ue] shows that any holomorphic map on P? of degre 2 is equivalent to one
of the following maps:
(1) (z:y:2)— (22 : 92 : 2?)
@ (@:y:2)— (22 +yz:9y%: 2?)
B)(z:y:2)— (2% +cyz:y*+czz:2?)
4) (x:y:2)— (P2 +czy+1y?: 2 +ay: y2).

f is equivalent to g <= There exist linear maps L; and L; suchthat L;'ofoL; =g.
The type (3) on C? is written as |
fe(z,y) = (2 + ey, y* + c2).

The function f, restricted on the plane {z = 7} is
g(2) =2 +cz when ceR.
The map
fe(@,y) = (2* + ey, " +ca).

admits an invariant line {z = y} on which it acts as the quadratic polynomial

f:(2) = 22 +cz.
Forness and Sibony [FS] defined analogy with Mandelbrot set

M = {c € C: K(f.) N Crit(f.) # ¢}

In our case,

Y

the critical set Crit(f,) is writtenas zy=

We parametrize the critical set as follows :
z=-—£t, y=-—, teC-{0}.

We have
if max{]z|,|y|}>lc|+1, then f*(z,y)— oo
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Re c<1 1< Re c
C? dynamics? C2dynamics?
There exist attractive Hyperbolic periodic points
periodic points of period of period k < 2 are
k<2 saddles or repelling.
¢ is near 0 c is near 2
K(fo)NCrit(fe) O K(f.) NCrit(f.)
a topological disk centered at t =1 = 3 points
Jp~ St x 8t Jy is real
(Denker and Heinemann [DH]) | 1-dimensional and connected.

2 Critical sets and K sets.

We show the properties of the sets K(f,) of points with bounded orbits and ctitical
set Crit(f.)

Theorem 2.1 If ¢>2+2v2 or c¢< -2, then
(1) K(fo)NnCrit(fe) = ¢,

(2)  K(fc) = K(gc) = support p C {z =g},
(3) K(f.) is a Cantor set.

Proposition 2.2 If -2<c¢<4, then

K(fe) N Crit(fe) # ¢.

Sketch of the proof of Theorem 2.1 (1)
We show
f2(Crit(f.)) > 00 (n— ).

Indeed. Let  (Un(t),Va(t)) := f:(—»-z‘ft, -%).

Then we have the followings :

(1) U,(¢) is holomorphic and has no zero in D — {0}, and so | U,(t) | has a minimum
value on the unit circle.

(2) By [Uc3], we have

if c¢<=2 then Up(e¥) 2 o00. O

Sketch of the proof of Theorem 2.1 (2) and (3)



Fornaess and Sibony [FS] show that
if  K(f)NnCrit(f)=¢, then

repelling periodic points are dense in K(f) and K(f) = supp u.
We show that #{periodic points of period n of g.}=4"
By [Uc3], it follows that K(g.) is a Cantor set. Combining these results, Theorem
2.1 (2) and (3) follow. o
For the details of the proofs, see [Uc4].

3 Hubbard’s conjectures

We consider J. Hubbard’s conjectures concerning the dynamics of f.(z,y) ;
(1) In the case ¢ = 2, the saddle (-1, —1) is isolated.
(2)Let U:={ceC: theset K(f.)NCrit(f.) consists of three points.}. Then,
U is a nonempty set containing 2 in its interior.

We give affirmative answers to these conjectures. Let

D(z,7r)={2€C:|l2z—2z|<T}

Theorem 3.1  There exists a small positive number § such that for any
c € D(2,9), a saddle (—c+ 1,—c+ 1) is isolated in the
non-wondering set of f,.

Theorem 3.2  There exists a small positive number 4 such that if
c=2+¢e€ D(2,4), then
, € €
K(f)NCrit(f) = {(-1- 5,1 - 2), (-1 = 3)w, (-1 = 5)?),
1=Sy2 (-1
(1= ), (1= D},

where w is a cubic root of unity.

From these theorems, we have the following theorem.

Theorem 3.3  There exists a small positive number 4 such that if
c € D(2,6), then any periodic point other than

(=c+1,—c+1), (w(=c+1),0*(—c+1)) and (W*(—c+1),w(~c+1))

25
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is repelling .

We consider the typical case ¢ = 2. Theorem 3.2 says that points.
K(f;) NCrit(f,) is equal to the set of 3 points.

Since fy(z,y) is symmetric with a rotation (w,w?), the intersection is essentially one
point.

Sketch of the proof of Theorem 3.1
Let |

£\ _ __1__ 1 1\/z+1+e€

n)  V2\1 ~1/\g+1+¢)
Then we have the followings. Let (£,7) be an element in B((0,0),0.1).

If n#0, then f*(z,y)— oo.
If =0, then f*(z,y) = (~c+1,—c+1). a

Sketch of the proof of Theorem 3.2

We show that only the orbit of the point at £ = 1 is bounded.
case 1 t € B(1,0.068).

We have (—=t,—~) € B((~1,~1),0.1).
27 2
For any point p in the set
{(-——;—t, —%) € B((~c+1,—c+1):t £1},

we have  f*(p) > 00 (n — o0).

case 2 t is in the set

{teC: 211 <lt|<1, 0<argt< —g-'n} — D(1,0.068) — D(w,0.068).

We have c c
f"(-at, —2—t) — 00
Indeed. Let c .
. 3¢ ¢, €
(Us(0),Va()) = £(~5t,~2).
Then

| Us(®) P + | Va(t) P2 19 2 2(1 ¢ | +1)*. C
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Sketch of the proof of Theorem 3.3
We consider the post critical set

o0

P(fe) = U f2(Crit(fe))-

n=1

If c € D(2,J) then we have the followings;

(1) P(fINf7%(G)=¢, where G :=D(0,|c|+1)xD(0,|¢|+1)\W.
Here W is a certain closed set.

(2) £7*(6)ccg,

(3) any component of f~%(G) is Kobayashi hyperbolic.

Combining (1), (2) and (3), we have that any periodic point other than 3 saddles
are repelling. ]
For the details of the proofs, see [Uc4].

4 External rays and foliations of f_y(z,y)

The map f_(z,y) admits an invariant plane {z = 7} on which it acts as g(2) =
22 — 2z. 2? — 27 is a Chebyshev polynomial in two variables. (See [K]). Uchimura
[Ucl] studied the dynamics of g(z). It shows that K(g) is the closed domain S
bounded by Steiner’ hypocycloid, and g is invariant and chaotic on a Sierpinsky
gasket in K(g). Ueda [Ue] showed the followings for

f-.2(-’l?,y) = (332 - 2y1y2 - 2“")

11 1
(1) \Il(u,v).—(u+v+&70-,;‘-+;+uv)-(a:,y)

flu,v) = (u?,v?).
Then foo¥=Wof.
@) k(f2)=8 c{z=gp}
Koornwinder [K] showed that there exists a diffeomorphism ¢ from int(S) to int(T?/Ss),

where T is a torus and S; is the symmetric group. Let (¢, ) be a point in T?. The
symmetric group Sg is represented as follows.

SS . 7-0(¢) 0) = (¢’ 0)) Tl(¢1 0) - (¢1 ¢ - 0)’ T2(¢3 0) = (_¢+ 0, 0);



T3(¢, 0) = (-9, "0)’ T4(¢) 0) = (—0a¢ - 0)’ T5(¢’ 0) = (0 - ¢, —¢)

Bedford and Jonsson [BJ] studied external rays of regular polynomial endomor-
phisms of C*¥. We use their definitions and results, in our setting.

foa(z,y) = (2* - 29,4 — 23).
F(x:y:z)=(x2—2yz:y2—2xz:z2)
IT := P? — C2.(the line at infinity)
Flp(z:y:0)— (2?:4*:0)
Jn={(z:y:2):z|=lyl}
The stable set of Jy for f is defined by
W*(Ju, f) .= {z € P?: d(f"z, Jz) — 0}.

Bedford and Jonsson show the followings.
(1) There exists a Boettcher coordinate ® such that

% W’(JH, f—-2) - WG(JH) fh)
conjugating f_, to fi, where
fh(xi y) = ($21y2)‘

(2) W?(J, f-2) is foliated by stable disks W.
(3) The restriction ®, of ® to the stable disk W, is biholomorphism onto a unit dlsk
D, for all a € Jj.

External ray R(a,0) is defined by

R(a,0) = {®7}(re®) : r > 1}.
(4) There exists an endpoint map e

e: |J Wa— Jo suchthat ew=upu.

a€Jn

Nakane [N] observed that the map ¥ defined by Ueda is essentially the inverse of
Béttcher coordinate ®. On W,,

®(u,v) = &(t,at), |t|>1.

He shows the followings :
(1) The stable disk W, is written as

‘ 1 . .
z=re " 4 ;e”z’“(”"") + "¢,



y = re?ie=0) | % 2 | o= (15 1),
where a = ™. We denote the above point by R(r, ¢,8). Then,
J=8c{z=4g}

(2) Each point z € J, is the landing point of exactly 1, 3, or 6 external rays, if z is
a cusp point on 88, z is a non-cusp point on dS or z € intS, respectively.

Using these results, we study the structure of foliations. The stable set W*(Jn, f_2)
is foliated by stable disks W,. We now show the structure of foliations. Metaphori-
cally speaking, the structure is described as ”three mouths eat a sandwich”. Since
the stable disk W, is a topological disk, we may consider W, as a mouth. The J,
set may be considered as a sandwich.

Theorem 4.1 For any point z in int(S), there exist three stable disks W, such
~ that boundaries of three disks intersect at z. At the point, two ezternal rays on each
W, land from opposite directions.

Proof.

Since external rays land on S, W, lies on S. The intersection 0W, and S is
a geodesic 7. That is, by a diffeomorphism ¢ from int(S) to in (12/Ss), ()
becomes a segment in 72. By considering reflections on 7%, we see that W, is
a 2-fold covering on 7. For each point z of 8W,, two external rays R(r,¢,6) and
R(r,71(¢,0)) in W, (a = €*™) land at z. We consider two point R(r,¢,6) and
R(r,¢,¢ — 0). We see that these two points are "symmetric” about the real plane
{z = 7}. Indeed.
(1) The midpoint of R(r,¢,6) and R(r,, ¢ — ) lies on the plane {z = 7}.
(2) The segment connecting the two points is perpendicular to {z = 7}.

This shows a relationship between two external rays R(¢, §) and R(71(¢,8)) in W,.
Also for each of two couples (R(73(¢,6)), R(74(¢, 9))) and (R(72(¢,9)), R(15(¢,9))),
we have the same relation. . o

We compare external rays of f_s(z,y) with those of P_(z) = 22 — 2. The map

P_y(2) is a typical quadratic polynomial map and is called as a Chebyshev map.
External rays of P_,(z) are written as

1,
R(r,¢) : u = re*™ + ;62’"("’)

R(T, —¢) = :,-321“'(—4’) + _:':621&4;’ r>1.

29
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Since v = @, R(r,¢) and R(r, —¢) are "symmetrical” about the resl axis.

Hence we can say that external rays of f_,(z,y) have the similar properties as
those of P_5(z). The symmetric groups 9, acts on external rays of P_y(z). On the
other hand, the symmetric group Ss acts on external rays of f_s(z,y).

On the plane {z = 3}, we have the following result.

Corollary 4.2. (Wa N {z = §}) UOW, is a line on the real plane {z = F}.
Wa N {z = g} lies in the ezterior of the hypocycloid 8Sand OW, lies in the interior
and the boundary. ‘

Lastly, we show the exact form of the maximal entropy measure y
1 1

We know that supp £ is equal to the closed domains S bounded by hypocycloid in
{z =7}

Theorem 4.3 On the plane {z = §j}, the mazimal entropy measure y is written
as

d$1d$2
vV —z2z% + 4x3 + 473 — 180T + 27

2 .
n= (;)2 (:c =1+ 1Ly, T1,T3 € R)

This is an extension of the invariant measure
p== &
™z +1)(3 - z)

for gaz)=2-2c on [-1,3]

Sketch of the proof.
Briend and Duval [BD] shows that the repelling periodic points are equidistributed
in supp u i.e.
1 . .
pni= 5D 0, where f"(y)=y, eand y isrepelling,
converges weakly to p.

We can show the following properties:

(1) Any periodic point of f_s(z,y) lies on the domain S and is repelling.



(2) We consider periodic points in S.
There is a diffeomorphism ¢ from int(S) to int(7?/S;). We transform the space
(T?/8;) by the linear transformation T :

()=7(5) s-w+on t=vis-0n @oerys.

The image of (12/S;) under T is a domain bounded by a equilateral triangle. We
can show that the periodic points are equidistributed in the triangle on the (s, )
plane.

By [BJ] , we deduce that the invariant measure on the triangle in the (s, %) plane
is Lebesgue measure. Pullback of Labesgue measure under ¢ o T yields

7' /—x%Z% 4 4a3 + 428 — 18z% + 27

7’ a.
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