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1 Introduction

Recently, many geometric and dynamical properties of fractal sets have been
studied. In this note, we study dynamical properties of maps on regular curves
and Menger maniforlds, which are contained in the class of fractal sets. It is
well known that in the dynamics of a piecewise strictly monotone (= piecewise
embedding) map f on an interval, the topological entropy can be expressed in
terms of the growth of the number (= the lap number) of strictly monotone
intervals for f* (see the papers of M. Misiurewicz, W. Szlenko [11] and L. S.
Young [16], and also see [10, Theorem 7.1]). We generalize the theorem of M.
Misiurewicz, W. Szlenko and L. S. Young to the cases of regular curves and
dendrites.

All spaces considered in this note are assumed to be separable metric spaces.
Maps are continuous functions. For a space X, let Comp(X) be the set of all
components of X. By a compactum X we mean a compact metric space. A
continuum is a nonempty connected compactum. For a set A, |A| denotes the
cardinarity of the set A. A map f: X — Y of compacta is an embedding map if
f: X = f(X) is a homeomorphism. A map f : X = Y of compacta is monotone
if for each y € f(X), f~(y) is connected.

A continuum X is a regular continuum (=regular curve) if for each z € X and
each open neighborhood V of z in X, there is an open neighborhood U of z in X
such that U C V and the boundary set Bd(U) of U is a finite set. Clearly, each
regular curve is a Peano curve (= 1-dimensional locally connected continuum).
For each p € X, we define the cardinal number Isx(p) of p as follows: Isx(p) <
(o is a cardinal number) if and only if for any neighborhood V' of p there is a
neighborhood U € V of p in X such that |Comp(U — {p})| < @, and lsx(p) = a
if and only if Isx(p) < o and the inequality Isx(p) < B for 8 < a does not hold.
We define Is(X) < oo if Isx(p) < oo for each p € X.

A continuum X is a dendrite (= 1-dimensional compact AR) if X is a locally
connected continuum which contains no simple closed curve. It is well known



that each local dendrite (= 1-dimensional compact ANR) is a regular curve.
Note that each graph (= 1-dimensional finite polyhedron) is a local dendrite.
There are many regular curves which are not local dendrites. Many fractal sets
(see [2] and [4]) are regular curves which are not local dendrites. For example,
the Sierpinski triangle S is a well-known regular curve with Isg(p) < 2 for each
p € S. The Menger curve and the Sierpinski carpet are not regular curves.

2 Depth of Birkhoff centers of dendrites

We say that a point z € X is a nonwandering point of a map f : X —- X
if for each neighborhood U of z in X, there exists a natural number n > 1
such that f*(U) NU # ¢. The set of nonwandering points of f is denoted by
Q(f). To introduce the notion of Birkhoff center, we put fi = fla) : Qu(f) =
Qf) = Qf) and Q(f) = Qf1) = Qfla(r)). We continue this process. Then
X = 0(f) D U D Uf) D s Qeni(F) = Afa) = Af|ugs)) and
O (f) = Nacafe(f), where X is a limit ordinal number. We say that Q4(f) is
the Birkhoff center of f if Qu(f) = Qat1(f), and put depth(f) =min{a | Q,(f) =
Qa+1(f)}. Note that depth(f) < w;, where w; is the first uncountable ordinal
number. It is well known that for any map f: I = [0,1] — I, depth(f) < 2 and
for any map f : G — G of any graph G, depth(f) < 3. For dendrites, we have
the following.

Theorem 2.1. There is a dendrite D such that for any countable ordinal number
a there is a map f : D — D such that depth(f) = a. In particular, there ts a map
f : I? = I? such that depth(f) = a, and there is a homeomorphism f : I® — I3
such that depth(f) = o, where I = [0,1].

3 Topological Entropy of Piecewise Embedding
Maps on Regular Curves

Let f : X — X be a map of a compactum X and let K C X be a closed
subset of X. We define the topological entropy h(f, K) of f with respect to K
as follows (see [1, 10 and 15]). Let n be a natural number and € > 0. A subset F'
of K is an (n,€)-spanning set for f with respect to K if for each z € K, there is
y € F such that

max{d(f'(z), f'(y))| 0Si<n-1}<e
A subset E of K is an (n,¢)-separated set for f with respect to K if for each
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z,y € E with z # y, there is 0 < j < n — 1 such that

d(f(z), F(y)) > e.

Let r,(¢, K) be the smallest cardinality of all (n,¢)-spanning sets for f with
respect to K. Also, let s,(¢, K) be the maximal cardinality of all (n, €)-separated
sets for f with respect to K. Put

r(e, K) = limsup (1/n)logray(e, K)

and
s(e, K) =limsup (1/n)logs.(e, K).
n—ro0

Also, put
h(f, K) =£i_1£r(e,K).

Then it is well known that A(f, K) = lim,_,o 8(¢, K). Finally, put

h(f) = (£, X).

. It is well known that h(f) is equal to the topological entropy which was defined
by Adler, Konheim and McAndrew (see [1}).

Let X be a regular continuum. A finite closed covering A of a regular curve
X is a regular partition of X provided that if 4,4’ € A and A # A', then
Int(A) # ¢, AN A' = Bd(A) N Bd(A'), and Bd(A) is a finit set. We can easily
see that if X is a regular curve and e > 0, then there is a regular partition A of
X such that mesh A < ¢, that is, diam A < € for each A € A.

For a regular partition A of X, moreover, A is called a strongly regular parti-
tion if lsx(a) < oo for each a € | J{Bd(A4)| A € A}.

A map f: X — X is a piecewise embedding map with respect to a regular
partition A if the restriction f|A : A — X is an embedding (= injective) map for
each A € A. Amap f: X — X is a piecewise monotone map with respect to A
if the restriction f|A: A — f(A) is a monotone map for each 4 € A.
 The following theorem of M. Misiurewicz, W. Szlenko [11] and L. S. Young
[16] is well known.

Theorem 3.1. (Misiurewicz-Szlenko and Young) If f : I = [0,1] = I is a
piecewise embedding map (i.e., there is a finite sequence ¢y, ¢, ..., Ck of I such
thatcg =0 < ¢; < ¢ < ... < ¢, = 1, each restriction fl[cs,cit1] : [y Cia] = 1
is an embedding (=strictly monotone) map and each ¢; (i = 1,2,.,k—1) is a
turning point of f, then

B(f) = Jim (1/n) log ("),

where I(f™) denotes the lap number of f™.
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Let f : X — X be a map of a regular curve X and let A = {4;, A, ..., A}
be a regular partition of X. For each n > 0, consider the itinerary set It(f,n;.A)
for f and n defined by .

n-1

It(f,m; A) = {(0, T1, ey Ta=1) | @ € {1,2,...,m} and (] F~(Int(4s,)) # 6}.
i=0
Put I(f,n; A) = |It(f,n; A)|. Note that I(f,n+ m;A) < I(f,n; A) - I(f,m; A).
Hence we see that the limit lim,,_,.(1/n) log I(f, n; A) exists. Note that if f : I —
I is a piecewise embedding map of the unit interval I, then I(f*1) = I(f,n; A),
where A = {[¢;,¢ci+1] |1 =0,1,...,k — 1}
We can generalize the theorem of Misiurewicz-Szlenko and Young to the case

of piecewise embedding maps with respect to strongly regular partitions of regular
curves.

Theorem 3.2. Let X be a regular curve. If a map f : X — X is a piecewise
embedding map with respect to a strongly regular partition A of X, then

h(f) = lim (1/n) log I(f,m; A).
For the proof of the above theorem, we need the following Bowen'’s result.

Proposition 3.3. (Bowen) Let X and Y be compacta, andlet f: X =+ X, g: Y
=Y bemaps. If m: X =Y is an onto map such that w- f =g m, then

h(g) < h(f) < h(g) + sup h(f, 7 (y)).

Theorem 3.4. Let X be a reqular curve. If a map f : X — X is a piecewise
embedding map with respect to a regular partition A of X, then

A(f) < lim (1/n) log I(f, s A).

Let f : X = X be a piecewise embedding map of a regular curve X with
respect to a regular partition A = {4, A,,..., A} of X. Note that m = |A|.
Define an m x m matrix M; = (a;;) by the following; a;; = 1 if f(Int(4s)) D
Int(A;), and a;; = 0 otherwise. Also, define an m x m matrix Ny = (b;;) by the
following; b;; = 1 if f(Int(A;)) NInt(A;) # ¢, and by; = 0 otherwise. Let A(Mj)
be the real eigenvalue of M; such that A(My) > || for all the other eigenvalue A
of M;. Then we have the following corollary.

Corollary 3.5. Let X be a regular curve. If a map f : X — X is a piecewise
embedding map with respect to a strongly reqular partition A of X, then

A(My) < B(f) < A(Ny)-
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Remark. (1) The assertion of Theorem 3.2 is not true for piecewise embed-
ding maps on Peano curves. Let X = pu! be the Menger curve. We can choose
a homeomorphism f : X — X such that h(f) # 0. Then f is also a piecewise
embedding map with respect to A = {X} and

h(f) > 0= lim (1/n)log I(f,n; A).

(2) There is a piecewise embedding map f : X — X of a dendrite X with respect
to a regular partition A of X such that '

(f) < lim (1/n) log I(f, ;. A).

The assertion of Theorem 3.2 is not true for piecewise embedding maps with
respect to regular partitions of regular curves.
(3) Moreover, there is a homeomorphism f : X — X of a dendrite X such that

h(f) < lim (1/n)log I(f,n; A)
for some regular partition A of X.

For a map f : X — X of a regular curve X and a regular partition A =
{4i| i=1,2,..,m} of X, we put

S A) = {(2:)20] Az, € Aand () F7(Int(4,,)) # ¢ for alln = 0,1,2,..}.
=0
Also, let o(5,.4y : Y(f,A) = 3_(f, A) be the shift map defined by
05,4 ((2:)i20) = (Ti41)Z0-
Then we have

Theorem 3.6. Let X be a dendrite. If a map f : X — X is a piecewise mono-
tone map with respect to a strongly regular partition A of X, then

h(f) = Mos,4))-
For each map f : X — X of a compactum X and a natural number n, put
¢(f,n) = sup{|Comp(f"(¥))| | y € X}.
Then we have the following theorem.

Theorem 3.7. If f : X = X is a map of a regular curve X, then
h(f) < limsup (1/n)log o(f,n)-
n—roo



4 Mesures and topological dynamics on Menger
manifolds

The theory of Menger manifolds was founded by Anderson and Bestvina (see
[17] and [18]) and has been studied by many authors. We study Menger mani-
folds from the viewpoint of dynamical systems. Anderson and Bestvina gave a
characterization of Menger manifolds as follows. For a compactum M, M is a
n-dimensional Menger manifold if and only if (1) dim M = n, (2) M is locally
(n — 1)-connected, (3) M has disjoint n-cell property, i.e., for any € > 0 and any
maps f,g : I" — M, there are maps f’,g' : I — M such that d(f, ) < ¢,
d(g,9') < eand f'(I")Ng'(I") = ¢.

Note that 0-dimensional Menger manifold = Cantor set, and 1-dimensional
Menger manifold = Menger curve.

A homeomorphism f : X — X of a compactum X with a measure p is
ergodic if f is p-measure-preserving, and for any measurable set E of X such
that f~}(E) = E, we have either u(E) = 0 or u(E) = 1. Let H(X, ) be the
set of all y-measure preserving homeomorphisms of X and E(X, u) the set of all
ergodic homeomorphisms of H(X, u).

Then we have the following results ([9]).

Theorem 4.1. Let uy, py be nonatomic locally positive Lebesgue-Stieltjes mea-
sures on Menger n-manifolds M (n > 1). Then there is a homeomorphism
h: M — M such that p; = h*pu,.

Theorem 4.2. Let u be nonatomic locally positive Lebesgue-Stieltjes measure on
Menger n-manifolds M (n > 1). Then E(M, p) is a dense Gg-subset of H(M, p).

Corollary 4.3. There are many chaotic homeomorphisms of Devaney and Li-
Yorke on each Menger manifold.

5 Problems

Finally, we have the following problems.

Problem 5.1. Is it true that for any countable ordinal number a, there is a
homeomorphism f : I — I? such that depth(f) =a ?

Problem 5.2. In the statement of Theorem 3.6, is the following equality true
h(o(s.0) = lim (1/n)log I(f,n; A) ?

Problem 5.3. Let X be a regular‘curve. Isittrue thatifamap f: X > X isa
piecewise monotone map with respect to a strongly regular partition A of X, then
B(f) = limnsoo(1/n) log 1(f, ;. A) #
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In particular, the next problems are interesting.

Problem 5.4. Does there ezist a minimal homeomorphism of an n-dimensional
Menger manifold (n > 1) ¢

Problem 5.5. Does there exist an expansive homeomorphism of an n-dimensional
Menger manifold (n > 1) ¢
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