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Projective embeddings and Lagrangian fibrations
of Kummer varieties |
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1 Introduction

Let (X,w) be a compact Kihler manifold and (L,h) — X a Hermitian line
bundle with ¢;(M,h) = w. Then for sufficiently large integer k, X can be
embedded into a projective space by basis so, ... ,sn, of H(X,Lk):

i : X o CPNe = PHO(X, L*)*.

Set wy = kLkas, where wpg is the Fubini-Study metric on CPY*, Then Tian
[10] and Zelditch [12] proved that wy converge to w under appropnate choices
of basis of H°(X, L*). More precisely,

Theorem 1.1 (Zelditch [12]). Suppose that the basis so, . . ., sy, € HO(X,L¥)
are orthonormal orthonormal with respect to the L%-inner product for each k >>
1. Then there exist constants Cq > 0 independent of k such that

o~ wnllcs < 2.

In this article, we study asymptotic behavior of projective embeddings and
the amoebas of abelian varieties and Kummer varieties. We can think of this as
a Lagrangian fibration version of the above theorem.

We consider a natural torus action on CP™*. Then we have a moment map

pi : CPY — A Lie(TV+)*

of the TNk-action. Note that py, is a Lagrangian fibration of CP* with respect
to the Fubini-Study metric wps. We denote By = u(tx(X)). By is called
a compactified amoeba. We are interested in the asymptotic behavior of the
restriction 7 : X — By of the moment map ux. Amoebas heavily depend on
the choice of projective embeddings. Thus the choice of basis of holomorphic
sections is an important problem. Of course, there is not a natural choice of
basis in general. However, we have some natural choice of basis in special cases
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such as the case of toric varieties and abelian varieties. In these cases, the basis
are related to Lagrangian fibrations 7 : (X,w) — B of X. We compare 7 and
Tk

First we consider the simplest case, i.e. the case of toric varieties. Let (X, L)
be a polarized toric variety. In this case, H(X, L*) is spanned by (Laurent)
monomials 27 = 2}* -+ zin, Let 7 : X — A be a moment map of a natural torus
action, where A is the moment polytope of X. Then each monomial corresponds

to a lattice point in A:
I="(i1,...,in) EKANZ™ > 2! € HY(X,LF).

We consider the projective embedding ¢ : X — CPM* defined by the monomi-

als. Then nx : X — Ay is invariant under the T™-action. Hence we have the

following commutative diagram

X —5 P

A — Ak

In particular, By is the image of the n-dimensional polytope A.
Remark 1.2. Note that dimg By = 2n = dimg X in general.

The case of abelian varieties is less trivial. Let A = C*/QZ™ + Z" be
an abelian variety and L — A a principally polarization. Then holomorphic
sections of L* are essentially given by the theta functions. There are some
natural choices of basis of theta functions. For example,

9| Y 0,2, belznze
-b A
give a basis of H(4, L*), where

9 {ZJ Q,2) = Z exp (W\/:Tt(l + a)Q(l + a) + 2mv/=1*(l + a)(z + b)) .
leZn
In particular, we have the following isomorphism
H(A M) = @ cC-b.
be}zn/2n
This isomorphism can be given by the Lagrangian fibration
7 A—T", 2=Qz+y+—y,

and this is interpreted in terms of geometric quantization ([11]) or mirror sym-
metry ([7], [4]). We consider the projective embeddings defined by the above
basis:

Lk:A""’CPku"l, 2 (19[ %J(k—lﬂ’z);.--:’ﬁ[ bo J(kwlﬂ,z)> .
-1 —Ugn |
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In this case, the restriction
Tk = Uk Otk + A — By

is not the same as the Lagrangian fibration 7. However, we can easily see that
T is invariant under the translations

Qr+y—Qz+a)+y, ac %Z”/Z”.

Therefore, 7 looks “close” to = for large k. In fact, this can be justified by
using the notion of Gromov-Hausdorff distance.

- We discuss this more precisely in the next section. The case of Kummer
varieties is discussed in Section 3.

2 The case of abelian varieties

Let A = C*/QZ"™ + Z" be an n-dimensional abelian variety as in the previous
section. We take a principal polarization L — A defined by

L=(C"xC)/~,

where t o .
(2,¢) ~ (z 4 A, e AU T 2+ F A(Im Q) A¢)

for A € QZ™ + Z™. Then L is symmetric, i.e.
(_1)311.’ = L’

where
(-)a:A— A, 2+ —2
is the inverse morphism.

Remark 2.1. The choice of L is not essential. In fact, any other principal
- polarization can be obtained as a pull-back of L by some translation. The
symmetricity condition is important when we deal with the case of Kummer
varieties.

Let wq be the flat Kéhler metric in the class ¢; (L) and fix a Hermitian metric
ho of L such that ¢;(L, hg) = wp.
Let T/ and T® be n-dimensional tori R"/Z" and identify

Angbe, Qz +y > (z,y).
Then the natural projection
Tt A— T Qr+yr—y

is a Lagrangian fibration with respect to wo.
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We denote the subgi‘oups of T? of k-torsion points by
1
T} = 72" /2" = {bi}i=t,..en C .

Then

0

_ —_n Tt .
8y, = Ck™ 4 exp (2 k z(ImQ)z) ﬂ[—bi

}(k‘lﬂ,z), i=1,...,k"

give a basis of H9(A, L*), where C is a constant determined by Q and hg. It is
known that sp, has a peak along the fiber 7~(b;). An important property for
our purpose is the following:

Proposition 2.2. si,...,8kn are orthonormal basis of HO(X, L") with respect
to the L2-inner product.

We consider the projective embedding defined by these theta functions

](kfln,z):-.-:ﬂ[ 0 }(k—ln,z))

—bjen

0

Lk :A°—+C]P’kn"1, zZ (19[
by

The moment map of CPF" ! s given by

n 1 n
N B 112 k™ |2
e (201 277 — = (12',....125"P)
where (Z1:--.: Z¥") is the homogeneous coordinate of CP*" ~!. We set

By := p(1e(X)),
Tk '= Wk o Lk : A — By

as before. We also denote the restriction of the Fubini-Study metric to X by

1,
Wg 1= El‘kaS’

here we normalize the Fubini-Study metric in order to wy represents c1(L).

We compare 7 : (A,wp) — T® and 7, : (A,wx) — By as maps between metric
spaces. For that purpose, we need to define distances on 7% and By. We define
a metric on T? in such a way that 7 : (4,wp) — T is a Riemannian submersion.
The distance on By is induced from a metric on the moment polytope Ag. The
metric on Ay is also defined in such a way that

Bk (CIP’N", %WFS) — Ag

is a Riemannian submersion in the interior of Ag.

Theorem 2.3 ([5]). 7 : (A,wx) — B converge to 7 : (A,w) — T? in the
Sfollowing sense.
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(1) wi converge to w in C® as k — 00. In particular, the sequence {(A,wx)}
of Riemannian manifolds converges to (A,wq) with respect to the Gromov-
Hausdorff distance.

(2) By converge to T® as k — oo with respect to the Gromov-Hausdorff dis-
tance.

(3) {mk} converges to m as maps between metric spaces.

Before the proof, we recall the notion of Gromov-Hausdorff convergence and

convergence of maps.

First we recall the definition of Hausdorff distance. Let Z be a metric space
and X,Y C Z be two subsets. We denote the e-neighborhood of X in Z by
B(X,¢e). Then the Hausdorff distance between X and Y is given by

d4(X,Y)=inf{e >0|X c B(Y,e), Y C B(X,e)}.
For metric spaces X and Y, the Gromov-Hausdorff distance is defined by
dou(X,Y) = inf{d4(X,Y) | X,Y < Z are isometric embeddings.}.

Next we recall the notion of convergence of maps (see also [6]). Let fi :
Xk — Y, f : X > Y be maps between metric spaces. Suppose that X; and
Y. converge to X and Y respectively with respect to the Gromov-Hausdorff
distance. Then by definition, there exist isometric embeddings X, Xy — Z and
Y, Yi — W into some metric spaces such that X; (resp. Yj) converge to X
(resp. Y) with respect to the Hausdorff topology in Z (resp. W). We say that
{f:} converges to f if for every sequence =y € Xi converging to € X, fi(zk)
converges to f(z) in W.

Outline of the proof

(1) is a direct consequence of Theorem 1.1 and Proposition 2.2.
(2) Decompose TCPM* into horizontal and vertical parts:

TpClP’N" = Tepvijap © (TCPNk/Ak,p)_L
3 = &+ ¢

where Tepny /a, , = ker duy is the tangent space to the fiber of ux and (Tepmn g AM,)*L

is the orthogonal complement with respect to the Fubini-Study metric. Similarly
we decompose the tangent space of A:

T,A=Taspe, ® (Tajroz)"

where (T4/7e, .)* is the orthogonal complement of T4/rv , = kerdr with re-
spect to the flat metric wy. Then the metrics on Ay and T? are given by the
restriction of wx and wp on the horizontal subspaces respectively. Therefore we
need to compare two horizontal and vertical spaces. We can prove that these
two decompositions are close in the following sense:

125



Lemma 2.4. (1) If £ € Ty;r¢ ,, then
)| < k).

(2) If n € (Taj7s,2)*, | o
ldck(n)"l < -——lnl-

This lemma follows from the asymptotic behavior of the theta functlons By
using the above estimates, we have

denu(T®, Bk) <

C

\/_

In fact, we can show that the composition
cpk=7rkooo:Tb——+Bk

of the zero section oo : T? — A and 7y is “almost isometric” (a %—Hausdorff
approximation (see [3] for the definition)).

3 The case of Kummer varieties

Let (A, L) be a polarized abelian variety as in the previous section. The Kummer

variety of A is defined by
X =A/(-1)a

We take a line bundle M — X satisfying
ML,

where p : A — X is the natural projection. From the fact that p* : Pic(X) —
Pic(A) is injective, we have
* Mk ~ L2k

It is easy to see that p* : HO(X, M*) — H%(A, L?) is injective and the 1mage

is spanned by
Sb, +8-b,, bi€TH

(see [1] and [8]). Note that
Ni +1 = dim HO(X, M*) = 2"~ 1 (k™ + 1).

Let w be the orbifold Kahler metric induced from the flat metric 2wo on A.
Then [w] = ¢1(M). We also have a Lagrangian fibration

7 (X,w) — B=T°%(-1)
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induced by m: A — T®. We set
1 .
_ ————ﬁ(sbi + 5_p;), if b; € Tgk\Tg,

t; = 1
_Qn_——lsb"' s if b@ € T2b

Then {t;} is an orthonormal basis of H%(X, M*).

We denote by ¢ : X — CPM* the projective embeddmg defined by {¢:},
7k : X — By the restriction of the moment map, and wx = %tiwrs as before.
Then the same theorem holds for X as well.

Theorem 3.1. (1) {(X,wk)} converges to (X,w) with respect to the Gromov-
Hausdorff distance.
(2) By converge to B with respect to the Gromov-Hausdorff distance.

(3) {mx} converges to ® as maps between metric spaces.

Outline of the proof | |
(1) follows from the fact that {t;} are orthonormal and an orbifold version of
Theorem 1.1:

Theorem 3.2 (Song [9], Dai-Liu-Ma [2]). Let (X,w) be a compact Kéhler
orbifold of dimension n > 2 with only finite isolated singularities Sing(X) =
{ej}fx1 and (M, h) — X be an orbifold Hermitian line bundle with c1(M,h) =

w. For k > 1, we consider the projective embedding iy : X — CP™* defined by
an orthonormal basis. We put wi = %L;wps as before. Then

Hw - UJ]CHC.,’z S Cq (% + k)%e"k&‘(z)z) :

where || - ||cs,» is the C9-norm at z € X and r(z) is the distance between z and
the singular set {e;}.

(2) What we must take care of is the existence of singular fibers. For each

b € Sing(B) = T¢/(~1), we denote the \/%Ekﬁ-neighborhood of the singular
fiber m=1(b) by

Ne k. = {z eX ’ d(z, 7L (b)) < lc;gkk}

and put

Xk)=x\ | DNok-

bESing(B)
Then we can show that 7(Vp k) and 7, (N %) are small for large k (in fact, their
diameters can be bounded by O (\ / l3}?)) Therefore we may “ignore” these

parts. On the other hand, we have the same estimates as in Lemma 2.4 on
X (k). Hence we can apply the same arguments to this situation.
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