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Abstract

In this paper, we study stability of direct images by Frobenius
morphisms. First, we compute the first Chern classes of direct images
of vector bundles by Frobenius morphisms up to the numerical equiv-
alence. Next, introducing the canonical filtrations, we prove that if X
is a nonsingular projective surface with semistable % with respect to
an ample line bundle H and KxH > 0, then the direct images of line
bundles on X by Frobenius morphisms are semistable.

1 Introduction

This is a joint work with H. Sumihiro. Please refer (5] for details.

Let k be an algebraically closed field of characteristic p > 0, X a nonsingu-
lar projective variety over k of dimension n, F' = Fx the absolute Frobenius
morphism of X and H be an ample divisor on X. Then one can define the
slope of a torsion free sheaf & on X with respect to H by

_ Cl(é’)H"—l

where rk(&) is the rank of &. Then a torsion free sheaf & on X is called
semistable (respectively, stable) with respect to H if for all nonzero torsion
free subsheaves & of &, u(F) < u(&) (respectively, u(F) < p(£)).

H. Lange and C. Pauly proved the following theorem:

Theorem 1.1 (H. Lange, C. Pauly [7]). Let X be a nonsingular projective
curve over k of genus g(X) > 2 and & a line bundle on X. Then F.Z is
stable.

Hence we can consider a following natural question for higher dimensional
cases:



Problem 1.2. Let X be a nonsingular projective variety of general type over
k of dimensionn > 2, £ a line bundle on X, and H be an ample line bundle
on X. Is F,.¥ semistable with respect to H?

2 A formula for first Chern classes of the di-
rect images by Frobenius morphisms

Let X be a nonsingular projective variety of dimension n over k and let & be
a vector bundle of rank r on X. In this section, we compute the first Chern
class ¢,(Fx.€) to compute its slope.

First we shall prepare the following. Let Y be a nonsingular irreducible
divisor on X and let G be the kernel of the natural surjection Fx,&|y —
Fy.(€y). Then G has the following filtration G*.

Theorem 2.1. Gr*(G®) = Fy,(£ ® Ox(—iY)|ly) 1 <i<p-—-1).

Now we can compute first Chern classes of direct images by Frobenius
morphisms.

Theorem 2.2. Let & be a vector bundle on X of rank r. Then

n—1

a(fé) = 22

5 rKx +p" ci(8),

where = denotes numerical equivalence and Kx is the canonical divisor of
num

By the way, K. Kurano proved a similar formula ring-theoritically:

Theorem 2.3 (K. Kurano[6]). Let k be a perfect field, char(k) = p > 0 and
X be a normal algebraic variety of dimension n over k. Then
pn - mn—1

P=P k.

a(FOx) = —

n An_.]_ (X )Q .
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3 Canonical filtrations

In this section, we introduce a useful filtration on F*F,0x. Let I be the
kernel of the natural surjection F*F,0x — Ox. Since F*F,0x is an Ox-
algebra, we get a descending filtration

I°:=F'F0x>I'":=I>F*>B>...
on F*F,O0x. Here we consider F*F,0x as an d’x-moduie from right.
Definition 3.1. We call this filtration I* the canonical filtration on F*F,0x.
Consider the following commutative diagram:

XXXpX ,

~ . P2

X xp X 7 > X
A
P X P
/ V\
F
X 14

~ Spec k

where ¢ is the structure morphism of X, 9 is the morphism induced from the
map taking p-th root of elements of k and p;, p; are natural projections. Then
there exists the morphism j in the diagram which is a closed immersion.

Let J (resp. I') be the kernel of the natural surjection Oxx.x — Ox
(resp. Oxxypx — Ox). Then there exists the following commutative dia-
gram with exact rows of sheaves on X x; X:

0 > J > Oxx, x — Ox ——0

b

00— jud' — juOxxxox —> juOx —> 0.

and we have I = p,I' because F*F,O0x = p,,Oxx,,x and py = p; 0 j is an
affine morphism. Hence the morphism J¢/J*! = $H(Q)) —» j. (I"/I"*1) =
I‘/I**! is surjective on X, where Q% is the vector bundle of regular differential
forms of degree 1.
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Let U = Spec A C X be a nonempty affine open subset. Then the exact
sequence
0—1—FF0x—0x—0

is locally expressed in the following way:
02 >AQpA—A—0

and ] = (a®1—-1Q®a | a € A)A. We consider A®4» A as an A-module from
right. Let {z1,...,z,} be a regular system of parameters. For any element
a € A, write a = Zoql, vin<p—1 %0, inZ1 - Tir, where ayy,.i, € A. Then
we have

a®l-1Q®a = a; .. ,nz‘f x‘"®1—1®2a,1’ inZ RRRY
= Z(zl eap @l i —1®af JIE e T)
= E(m} T @l-1Q®zy---zir)al .
Therefore, I = (28! 2 @ 1 — 1@z} - -z | 0 < dp,...,in < p—1)A
locally.
Next, we will ca.lculate the filtration for curve and surface cases.

3.1 Curve case

Assume that X is a curve. Let z be a regular parameter. Then I = (2* ®
1-1®z°|1<i<p—1)Abythe above. Let usput w:=2z®1-1Qz.
Then I is a free A-module with basis {w?,...,w?'}.

Lemma 3.2. I = @, , w'A.

Thus, we observe I*/I**! = WA locally, which implies I*/I**! is a line
bundle on X. Therefore the surjection J?/Ji*! = K& — I'/I**! is an
isomorphism (0 < ¢ < p —1). Hence we obtain

Proposition 3.3. Let X be a nonsingular projective curve over k and I® the
canonical filtration on F*F,Ox. Then it follows that

F*F.Ox>ID>IE>.-..DIF1>IP=(0)

and /I = K¢ (0<i<p-1).
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3.2 Surface case

Assume X is a surface. Let {z,y} be a regular system of parameters. Then
I=(z'yY®1-1®z'yY |0<ij<p-1)A Letw:=2®1-1Qz and
n:=y®1—1®y. Similarly to the curve case, we can see that I = (wkp! | 0 <
kl<p-DA@WP=1P=0), I'= (| k+1>i,0< kI <p-1)Aand

F*F,0x DID>I*D>.-- D125 1 =(0),
Ii/Ii+1 = @ w"nlA.
k=i, 0<k,I<p—1
Lemma 3.4. (°7') = (—1)" in positive characteristic p.
Lemma 3.5. I?7-2 = K¢,

If i < p—1, then J*/J**! and I*/I**! are vector bundles on X of the
same rank and so it follows that I'/I**! = Ji/Ji*1 = §3(Q%). On the other
hand, there exists the following perfect pairing:

Ii / Is‘+1 ® Ox I2p—2—i / I2p—1—i —y I2p-2 / I2p—1 — I2p—2 o w?&(?-l)'
w W
w"n‘ ® wk’ nl' } > wk+k’ nl+l'

Thus combining the above, we obtain

Proposition 3.6. Let X bea nonsingular projective surface over k and I°
the canonical filtration on F*F,0x. Then it follows that

F*F.6x>I>I>...oI* 251 =(0)
and
I+ = SHY%) (0<i<p-1),
T KB @ g-2-i(QL)  (p<i < 2p—2).
4 Canonical connections

Let & be a quasi-coherent sheaf on X. Then there exists a connection V :
F*¢ — F*& @ QY, which is called the canonical connection([4]). This is
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locally written as

M@srA — MQuy AQ4 Q}q/k = MQuw Q}i/k
W w
me f — mQ df

where A = I'(U, Ox) and M =T'(U, &) for an affine open subset U of X. In
particular, we get a connection on F*F,0x

V:F*F,0x — F*F.0x ® Q%.

4.1 Curve case

Here, we compute V for curve case. Let = be a regular parameter. Again,
put w = ®1 —1Q® z. Straightforwardly computing, we get

V(w*f) = (—kwk‘1f+w’° f) ®dz (f € A).

4.2 Surface case

Here, we shall compute V for surface case. Let {z,y} be a regular system of
parameters. Again, puttingw =z®1-1®zandn=y®1-1Q®y and
taking f € A, we get by computing straightforwardly

V(wk’r)lf) — ( kwk lﬂlf-l—wkl f)@d.’t
+( Wy f 4 whnf = f)@dy.

5 Main results

Using the canonical filtrations (Theorem 3.6), we can prove the following
theorem, which is a generalization of Theorem 1.1 to surface case.

Theorem 5.1. Let X be a nonsingular projective surface over k and H an
ample line bundle on X. Assume that KxH > 0 and Q% is semistable with
respect to H. Then F,.¥ is semistable with respect to H for any line bundle
£ on X.



Using the canonical filtrations, we can also prove a similar result in the
case that Kx is numerically trivial.

Theorem 5.2. Let X be a nonsingular projective surface over k and H an
ample line bundle on X. Assume that Kx = 0 and Q% is semistable with

num
respect to H. Then F..Z is semistable with respect to H for any line bundle
£ on X.

Example 5.3. If X C P2 is a general surface of degree d > 4, we can prove
QL is strongly stable, i.e., (F¥)*Q) is stable for every k € N, with respect
to any ample divisor H. So X satisfies the conditions of above theorems.

Remark 5.4. We can give another simple proof of the Lange and Pauly’s
Theorem (Theorem 1.1) using the canonical filtrations in the curve case.
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