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1. INTRODUCTION

The Alexander polynomial is one of the most fundamental invariants for finitely pre-
sentable groups. It can be easily computed from any finite presentation of a group. By
considering the fundamental group of a manifold, we can regard it as a polynomial invari-
ant of manifolds. Moreover, especially in the cases of low dimensional manifolds, it gives
some kinds of geometrical information.

One method for computing the Alexander polynomial of a finitely presentable group $G$

goes as follows. Take a finite presentation ($x_{1},$ $\ldots,$
$x_{l}|r_{1},$

$\ldots,$
$r_{m}\rangle$ of $G$ . We compute the

Jacobi matrix $(_{x_{1}}^{r} \frac{\partial}{\partial}\lrcorner)_{:,j}$ at $\mathbb{Z}G$ of the presentation by using free differentials. Applying the
natural map $a$ : $Garrow H:=H_{1}(G)/(\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n})$ to each entry of the matrix, we obtain so
called the Alexander matrix of the presentation. Then the Alexander polynomial of $G$ is
the greatest common divisor of all $(l-1)$-minors of the Alexander matrix. It is defined
uniquely up to units of $\mathbb{Z}H$ and does not depend on the finite presentation of $G$ .

In the above $\mathrm{p}\mathrm{r}o$cess of a computation, the map $a:Garrow H$ makes the situation much
easier–From non-commutative algebra to commutative one. It enables us to use the
determinant of matrices and take the greatest common divisor of a set of elements of $\mathbb{Z}H$ .
On the other hand, it is reasonable to ask what informations on $G$ $a$ loses. For that, some
generalizations of the Alexander polynomial have been defined by several people. One of
the most famous ones is the twisted Alexander polynomial. However, in this paper, we
concern the theory of higher-order Alexander invariants defined by using localizations of
some kinds of non-commutative rings located between $\mathbb{Z}G$ and $\mathbb{Z}H$ .

Higher-order Alexander invariants were first defined by Cochran in [1] for knot groups,
and then generalized for arbitrary finitely presentable groups by Harvey in $[7, 8]$ . They are
numerical invariants interpreted as degrees of “non-commutative Alexander polynomials”,
which have some unclear ambiguity except their degrees in difficulties of non-commutative
rings. Using them, Harvey obtained various sharper results than those given by the ordi-
nary Alexander invariants –lower bounds on the Thurston norm, necessary conditions
for realizing a given group as the fundamental group of some 3-manifold, and so on.
Leidy-Maxim [12] studied these invariants for plane algebraic curves.

In this paper, we give an application of higher-order Alexander invariants to homology
cobordisms of surfaces1. The set of homology cobordisms of a fixed surface has a natural

1The word “surface” means a real 2-dimensional manifold.
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monoid structure, and moreover, by considering them up to homology cobordism, we
can construct a group (see Section 3 for details). The aim of this paper is to obtain
some informations on their structures by defining and studying variants of higher-order
Alexander invariants associated to homology cobordisms of surfaces.

2. $\mathrm{H}\mathrm{I}\mathrm{G}\mathrm{H}\mathrm{E}\mathrm{R}-\mathrm{O}\mathrm{R}\mathrm{D}\mathrm{E}\mathrm{R}$ ALEXANDER INVARIANTS AND TORSION-DEGREE FUNCTIONS

We begin by reviewing the theory of higher-order Alexander invariants along the lines
of Harvey’s papers $[7, 8]$ . Then we generalize them to functions of matrices called torsion-
degree functions. A key ingredient of this generalization is the Dieudonn\’e determinant of
skew fields, which enables us to proceed our argument by using non-commutative linear
algebra.

Before starting our discussion, we summarize our notation. For a matrix $A$ with co-
efficients in a ring $R$ , and a homomorphism $\varphi$ : $Rarrow R’$ , we denote by $\varphi A$ the matrix
obtained from $A$ by applying $\varphi$ to each entry. $A^{T}$ denotes the transpose of $A$ . When
$R=\mathbb{Z}G$ for a group $G$ or its right field of fractions (if exists), we denote by $\overline{A}$ the matrix
obtained from $A$ by applying the involution induced from $(xrightarrow x^{-1}, x\in G)$ to each
entry.

For a module $M,$ $\mathrm{A}f^{n}$ (resp. $M_{n}$ ) denotes the module of column (resp. row) vectors with
$n$ entries.

For a finite $\mathrm{C}\mathrm{W}$-complex $X$ and its regular covering $X_{\Gamma}$ with respect to a homomor-
phism $\pi_{1}Xarrow\Gamma,$ $\Gamma$ acts on $X_{\Gamma}$ from the right through its deck transformation group.
Therefore we regard the $\mathbb{Z}\Gamma$-cellular chain complex $C_{*}(X_{\Gamma})$ of $X_{\Gamma}$ as a collection of free
right $\mathbb{Z}\Gamma$-modules consisting of column vectors together with differentials given by left mul-
tiplications of matrices. For each $\mathbb{Z}\Gamma$-bimodule $A$ , the twisted chain complex $C_{*}(X;A)$ is
given by the tensor product of the right $\mathbb{Z}\Gamma$-module $C_{*}(X_{\Gamma})$ and the left $\mathbb{Z}\Gamma$-module $A$,
so that $C_{*}(X;A)$ and $H_{*}(X;A)$ are right ZF-modules.

2.1. Review of Harvey’s higher-order Alexander invariants. Here we review Har-
$\mathrm{v}\mathrm{e}\mathrm{y}’ \mathrm{s}$ setting of higher-order Alexander invariants in $[7, 8]$ . A group $\Gamma$ is poly-torsion-
ffee-abelian (PTFA, for short) if $\Gamma$ has a normal series of finite length whose successive
quotients are all torsion-free abelian. Any subgroup of a PTFA group is also PTFA.

We recall some properties of the group ring ZF of a PTFA group $\Gamma$ from the theory of
non-commutative rings, for which we refer to [2], [3], [14], [17].

A multiplicatively closed set $S$ of a ring $R$ is called a right divisor set of $R$ if it satisfies
(1) $0\not\in S,$ $1\in S$ ,
(2) For any $r\in R,$ $s\in S$ , the set $sR\cap rS$ is not empty.

For each right divisor set $S$ of $R$, we can construct its right quotient ring $RS^{-1}$ . An
integral domain $R$ is called a right Ore domain if $R-\{0\}$ is a right divisor set.

For each PTFA group $\Gamma$ , ZF is known to be an Ore domain, so that it can be embedded
in the right field offfactions $\mathcal{K}_{\Gamma}:=\mathbb{Z}\Gamma(\mathbb{Z}\Gamma-\{0\})^{-1}$ , which is a skew field.
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We will also use the following localizations of $\mathbb{Z}\Gamma$ placed between ZF and $\mathcal{K}_{\Gamma}$ . Let
$\psi\in H^{1}(\Gamma)$ be a primitive element. This means the corresponding homomorphism, which
is denoted by Cb again, under $H^{1}(\Gamma)\cong \mathrm{H}\mathrm{o}\mathrm{m}(\Gamma, \mathbb{Z})$ is onto. We write $\Gamma^{\psi}:=\mathrm{K}\mathrm{e}\mathrm{r}\psi$ . Then
we have an exact sequence

$1arrow\Gamma^{\psi}$ $-\Gammaarrow \mathbb{Z}\psiarrow 1$ .

We take a splitting 4 : $\mathbb{Z}arrow\Gamma$ of this sequence and put $t:=\xi(1)\in\Gamma$ . Since $\Gamma^{\psi}$ is again
a PTFA group, $\mathbb{Z}\Gamma^{\psi}-\{0\}$ is a right divisor set of $\mathbb{Z}\Gamma^{\psi}$ . Hence $\mathbb{Z}\Gamma^{\psi}$ can be embedded in
its right field of fractions $\mathcal{K}_{\Gamma^{\psi}}=\mathbb{Z}\Gamma^{\psi}(\mathbb{Z}\Gamma^{\psi}-\{0\})^{-1}$ . Moreover $\mathbb{Z}\Gamma^{\psi}-\{0\}$ is also a right
divisor set of $\mathbb{Z}\Gamma$ , so that we can construct a right quotient ring $\mathbb{Z}\Gamma(\mathbb{Z}\Gamma^{\psi}-\{0\})^{-1}$ . Then
the splitting 6 gives an isomorphism between $\mathbb{Z}\Gamma(\mathbb{Z}\Gamma^{\psi}-\{0\})^{-1}$ and the skew Laurent
polynomial ring $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ , in which $at=t$ ($t^{-1}$at) holds for each $a\in\Gamma$ . $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ is known
to be a non-commutative right and left principal ideal domain. By definition, we have
inclusions

zr $arrow \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]arrow \mathcal{K}_{\Gamma}$ .

$\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ and $\mathcal{K}_{\Gamma}$ are known to be flat ZF-modules.
On $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ , we have a map $\deg^{\psi}$ : $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]arrow \mathbb{Z}_{\geq 0}\cup\{\infty\}$ assigning to each polynomial its

degree. We put $\deg^{\psi}(\mathrm{O}):=\infty$ . Note that the composite $\mathbb{Z}\Gamma(\mathbb{Z}\Gamma^{\psi}-\{0\})^{-1}arrow \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]\underline{\approx}arrow \mathrm{d}\mathrm{e}_{l^{\psi}}$

$\mathbb{Z}_{\geq 0}\cup\{\infty\}$ does not depend on the choice of the splitting $\xi$ .

Harvey’s higher-order Alexander invariants [8] are defined as follows. Let $G$ be a finitely
presentable group, and let $\varphi$ : $Garrow \mathbb{Z}$ be an epimorphism. For a PTFA group $\Gamma$ and an
epimorphism gr : $Garrow\Gamma,$ $(\varphi \mathrm{r}, \varphi)$ is called an admissible pair for $G$ if there exists an
epimorphism $\psi$ : $\Gammaarrow \mathbb{Z}$ satisfying $\varphi=$ Cb $\circ\varphi_{\Gamma}$ . For each admissible pair $(\varphi \mathrm{r}, \varphi)$ for
$G$ , we regard $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]=\mathbb{Z}\Gamma(\mathbb{Z}\Gamma^{\psi}-\{0\})^{-1}$ as a $\mathbb{Z}G$-module, and we define higher-order
Alexander invariants for $(\varphi_{\Gamma}, \varphi)$ by

$\overline{\delta}_{\Gamma}^{\psi}(G)=\dim_{\mathcal{K}_{\Gamma^{\psi}}}(H_{1}(G;\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]))\in \mathbb{Z}_{\geq 0}\cup\{\infty\}$ ,
$\delta_{\Gamma}^{\psi}(G)=\dim_{\mathcal{K}_{\Gamma^{\psi}}}(T_{\mathcal{K}\mathrm{r}^{\psi[t]}}\pm H_{1}(G;\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]))\in \mathbb{Z}_{\geq 0}$,

where $T_{\mathcal{K}_{\Gamma}\psi[t}\pm_{1^{M}}$ denotes the $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$-torsion part for each $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ -module $M$ . We call
$\overline{\delta}_{\Gamma}^{\psi}(G)$ the $\Gamma- degree^{2}$ , and call $\delta_{\Gamma}^{\psi}(G)$ the refined $\Gamma$ -degree. Note that the right $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]-$

module $H_{1}(G;\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ are decomposed into

$H_{1}(G; \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])=(\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])^{r}\oplus(\bigoplus_{:=1}^{l}\frac{\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]}{p:(t)\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]})$

2Our definition is slightly different from that in [8].
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for some $r\in \mathbb{Z}_{\geq 0}$ and $p_{i}(t)\in \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ , and then

$\overline{\delta}_{\Gamma}^{\psi}(G)=\{$

$\sum_{j=1}^{l}\deg^{\psi}(p_{i}(t))$ $(r=0)$ ,
$\infty$ $(r>0)$ ’

$\delta_{\Gamma}^{\psi}(G)=\sum_{i=1}^{l}\deg^{\psi}(p_{i}(t))$ .

For a space $X$ and an admissible pair for $\pi_{1}X$ , we define $\overline{\delta}_{\Gamma}^{\psi}(X):=\overline{\delta}_{\Gamma}^{\psi}(\pi_{1}X)$ and
$\delta_{\Gamma}^{\psi}(X):=\delta_{\Gamma}^{\psi}(\pi_{1}X)$ .

2.2. Torsion-degree functions. We fix a finitely presentable group $G$ and an admissible
pair $(\varphi_{\Gamma}, \varphi)$ for $G$ . The (refined) $\Gamma$-degree can be computed from a presentation matrix of
the right $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ -module $H_{1}(G;\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ . Therefore we can consider it to be a function
on the set $M(\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ of all matrices with entries in $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ . In this subsection, we
generalize it to a function on $M(\mathcal{K}_{\Gamma})$ .

First, we extend $\deg^{\psi}$ : $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]arrow \mathbb{Z}_{\geq 0}\cup\{\infty\}$ to $\deg^{\psi}$ : $\mathcal{K}_{\Gamma}arrow \mathbb{Z}\cup\{\infty\}$ by setting
$\deg^{\psi}(fg^{-1})=\deg^{\psi}(f)-\deg^{\psi}(g)$ for $f\in \mathbb{Z}\Gamma,$ $g\in \mathbb{Z}\Gamma-\{0\}$ (see Proposition 9.1.1 in [3],
for example). It induces a group homomorphism $\deg^{\psi}$ : $(\mathcal{K}_{\Gamma}^{\mathrm{x}})_{\mathrm{a}\mathrm{b}}arrow \mathbb{Z}$ , where $(\mathcal{K}_{\Gamma}^{\mathrm{x}})_{\mathrm{a}\mathrm{b}}$ is the
abelianization of the multiplicative group $\mathcal{K}_{\Gamma}^{\mathrm{x}}=\mathcal{K}_{\Gamma}-\{0\}$ .

For the skew field $\mathcal{K}_{\Gamma}$ , we have the Dieudonn\’e determinant
$\mathrm{d}\mathrm{e}\mathrm{t}:GL(\mathcal{K}_{\Gamma})arrow(\mathcal{K}_{\Gamma}^{\mathrm{x}})_{\mathrm{a}\mathrm{b}}$,

which is a homomorphism. This map is characterized by the following three properties:
(a) $\det I=1$ ,
(b) If $A’$ is obtained by multiplying a row of a matrix $A\in GL(\mathcal{K}_{\Gamma})$ by $a\in \mathcal{K}_{\Gamma}^{\mathrm{x}}$ from

the left, then $\det A’=a\cdot\det A$ .
(c) If $A’$ is obtained by adding to a row of a matrix $A$ a left $\mathcal{K}_{\Gamma}$ -linear combination of

other rows, then $\det A’=\det A$ .
It is well known that this determinant induces an isomorphism $K_{1}(\mathcal{K}_{\Gamma})arrow\underline{\approx}(\mathcal{K}_{\Gamma}^{\mathrm{x}})_{\mathrm{a}\mathrm{b}}$.

The following lemma will be used in our generalization of Harvey’s invariants. We take
$A\in M(m, n, \mathcal{K}_{\Gamma})$ , where $M(m, n, \mathcal{K}_{\Gamma})$ is the set of all $m\mathrm{x}n$ matrices with entries in $\mathcal{K}_{\Gamma}$ .
Assume that $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathcal{K}_{\Gamma}}A=k$ .

Lemma 2.1 ([15, Lemma 10.1]). Let $U\in M(m-k, m, \mathcal{K}_{\Gamma}),$ $V\in M(n, n-k, \mathcal{K}_{\Gamma})$ be
matrices satisfying

$\{$

$UA=0$, $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathcal{K}_{\Gamma}}U=m-k$,
$AV=0$, $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathcal{K}_{\Gamma}}V=n-k$ .

For each $I\subset\{1,2, \ldots, m\},$ $J\subset\{1,2, \ldots, n\}$ urith $\neq I=m-k,$ $\# J=n-k$ , let $U_{I}$

denote the square matrix defined by taking i-th columns from $U$ for all $i\in I$ , and $V_{J}$

denote the one defined by taking j-th rows from $V$ for all $j\in J$ . We also denote by $A_{I^{\mathrm{C}}J^{\mathrm{c}}}$

the one defined by taking i-th rows from $A$ for all $i\in I^{c}:=\{1,2, \ldots, m\}-I$ and then
taking j-th columns for all $j\in J^{\mathrm{c}}:=\{1,2, \ldots, n\}-J$ .
(1) If $U_{I}$ or $V_{J}$ is not invertible, then $A_{I^{\mathrm{c}}J^{e}}$ is not invertible.
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(2) Otherwise,

$\Delta(A;U, V):=\mathrm{s}\mathrm{g}\mathrm{n}(II^{c})\mathrm{s}\mathrm{g}\mathrm{n}(JJ^{\mathrm{c}})\frac{\det A_{I^{\mathrm{c}}J^{c}}}{\det U_{I}\det V_{J}}\in(\mathcal{K}_{\Gamma}^{\mathrm{x}})_{\mathrm{a}\mathrm{b}}$

is independent of the choice of I and $J$ such that $U_{I},$ $V_{J}$ are invertible, where $\mathrm{s}\mathrm{g}\mathrm{n}(II^{c})\in$

$\{\pm 1\}$ (resp. $\mathrm{s}\mathrm{g}\mathrm{n}(JJ^{c})$) is the signature of the juxtaposition $ofI$ and $I^{\mathrm{c}}$ (resp. $J$ and $J^{c}$),
and we put $\det\emptyset:=1$ .
(3) $ForP_{1}\in GL(m, \mathcal{K}_{\Gamma}),$ $P_{2}\in GL(n, \mathcal{K}_{\Gamma}),$ $Q_{1}\in GL(m-k, \mathcal{K}_{\Gamma})$ and $Q_{2}\in GL(n-k, \mathcal{K}_{\Gamma})$ ,
we have

$\Delta(P_{1}^{-1}AP_{2}^{-1}; Q_{1}UP_{1}, P_{2}VQ_{2})=\frac{\Delta(A;U,V)}{\det P_{1}\det P_{2}\det Q_{1}\det Q_{2}}$ .

As we see in Lemma 2.1 (3), $\Delta(A;U, V)$ does depend on $U$ and $V$ . The following
definition and lemma give particular choices of $U$ and $V$ for our purpose. Recall that
$\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]\subset \mathcal{K}_{\Gamma}$ .

Deflnition 2.2. $(U, V)$ is said to be $\psi- p\dot{n}mitive$ for $A$ if
(1) $U,$ $V$ have entries in $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ .
(2) The row vectors $u_{1},$ $\ldots,$

$\mathrm{u}_{m-k}\in(\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])_{m}$ of $U$ generate $\mathrm{K}\mathrm{e}\mathrm{r}(\cdot A)\cap(\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])_{m}$ in
$(\mathcal{K}_{\Gamma})_{m}$ as a left $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ -module.

(3) $V$ has a property similar to (2) with respect to the column vectors.

Lemma 2.3 ([15, Lemma 10.3]). (1) There exists a pair $(U, V)$ which is $\psi- p\dot{n}mitive$ for
$A$ .
(2) If $(U’, V’)$ is also $\psi$ -primitive for $A$ , then there exist $P_{1}\in GL(m, \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]),$ $P_{2}\in$

$GL(n, \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]),$ $Q_{1}\in GL(m-k, \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ and $Q_{2}\in GL(n-k, \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ such that
$UP_{1}=U’$ , $P_{2}V=V’$ , $Q_{1}U=U’$ , $VQ_{2}=V’$ .

Definition 2.4. Let $G$ be a PTFA group, and let $\psi$ : $\Gammaarrow \mathbb{Z}$ is an epimorphism.
(1) The torsion-degree function $d_{\Gamma}^{\psi}$ : $M(\mathcal{K}_{\Gamma})arrow \mathbb{Z}$ is defined by

$d_{\Gamma}^{\psi}(A):=\deg^{\psi}(\Delta(A;U, V))$

for a pair $(U, V)$ which is $\psi$-primitive for $A$ .
(2) The truncated torsion-degree fimction $\overline{d}_{\Gamma}^{\psi}$ : $M(\mathcal{K}_{\Gamma})arrow \mathbb{Z}\cup\{\infty\}$ is defined by

$\overline{d}_{\Gamma}^{\psi}(A):=\{$

$d_{\Gamma}^{\psi}(A)$ if rankA $\geq m-1$ ,
$\infty$ otherwise

for $A\in M(m, n, \mathcal{K}_{\Gamma})$ .

Lemma 2.3 together with the fact that $\deg^{\psi}(\det P)=0$ for any .P $\in GL(\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ shows
that these functions are well-defined.

Example 2.5. (1) For $A\in GL(\mathcal{K}_{\Gamma})$ , we have $d_{\Gamma}^{\psi}(A)=\overline{d}_{\Gamma}^{\psi}(A)=\deg^{\psi}(\det A)$ .
(2) Let $M$ be a finitely generated right $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ -module, and let $A$ be a presentation ma-
trix of $M$ . Then we have $d_{\Gamma}^{\psi}(A)=\dim_{\kappa_{\mathrm{r}^{\psi}}}(T\kappa_{\mathrm{r}^{\psi[t]}}\pm M)$ . As for $\overline{d}_{\Gamma}^{\psi}(A)$ , we can see that
$\overline{d}_{\Gamma}^{\psi}(A)\in \mathbb{Z}$ if and only if the rank of the $\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$-free part of $M$ is less than 2.
(3) Let $G$ be a finitely presentable group and we take a presentation $\langle x_{1}, \ldots, x_{l}|r_{1}, \ldots, r_{m}\rangle$
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of $G$ . Let $(\varphi_{\Gamma}, \varphi)$ be an admissible pair for $G$ . The Jacobi matrix $A:= \varphi \mathrm{r}(\frac{\partial r_{j}}{\partial x_{i}})_{1\leq j\leq m}1\leq i\leq \mathrm{t}$ at

$\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$ gives a presentation matrix of $H_{1}(G, \{1\};\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])$ . Then Harvey’s invariants are
given by

$\delta_{\Gamma}^{\psi}(G)=\dim_{\mathcal{K}_{\Gamma^{\psi}}}(\tau_{\kappa_{\mathrm{r}^{\psi[t^{\pm}}1^{H_{1}(G\cdot \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]))}}}|=d_{\Gamma}^{\psi}(A)$,
$\overline{\delta}_{\Gamma}^{\psi}(G)=\dim_{\mathcal{K}_{\Gamma^{\psi}}}(H_{1}(G, \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]))=\overline{d}_{\Gamma}^{\psi}(A)$,

where the second equality of each case follows from the direct sum decomposition
$H_{1}(G, \{1\};\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])\cong H_{1}(G;\mathcal{K}_{\Gamma^{\psi}}[t^{\pm}])\oplus \mathcal{K}_{\Gamma^{\psi}}[t^{\pm}]$

shown by Harvey in [7].

Remark 2.6. Friedl [4] gave an interpretation of Harvey’s invariants by Reidemeister
torsions. The definition of our truncated torsion-degree functions has some overlaps with
his description.

3. HOMOLOGY COBORDISMS OF $\mathrm{S}\mathrm{U}\mathrm{R}\mathrm{F}\mathrm{A}\mathrm{C}+\mathrm{S}$

We proceed all our discussion in PL or smooth category.
Let $\Sigma_{g,1}(g\geq 0)$ be a compact connected oriented surface of genus $g$ with one boundary

component. We take a base point $p$ on the boundary of $\Sigma_{g,1}$ , and take $2g$ loops $\gamma_{1},$
$\ldots,$ $\gamma_{2g}$

of $\Sigma_{g,1}$ as shown in Figure 1. We consider them to be an embedded bouquet $R_{2g}$ of 2g-
circles tied at the base point $p\in\partial\Sigma_{g,1}$ . Then $R_{2g}$ and the boundary loop $\zeta$ of $\Sigma_{g,1}$ together
with one 2-cell make up a standard $\mathrm{C}\mathrm{W}$-decomposition of $\Sigma_{g,1}$ . It is well-known that the
fundamental group $\pi_{1}\Sigma_{g,1}$ of $\Sigma_{g,1}$ is isomorphic to the free group $F_{2g}$ of rank $2g$ generated
by $\gamma_{1},$

$\ldots,$ $\gamma_{2g}$ , in which $\zeta=\prod_{i=1}^{g}[\gamma:, \gamma_{g+:}]$ .

Figure 1

A homology cylinder $(M, i_{+}, i_{-})$ over $\Sigma_{g,1}$ , wh$o\mathrm{s}\mathrm{e}$ origin is in Habiro [6], Garoufalidis-
Levine [5] and Levine [11], is a homology cobordism $M$ from $\Sigma_{g,1}$ to itself together with
two markings of boundaries, namely it consists of a compact oriented -manifold $M$ and
two embeddings $i_{+},$ $i_{-}$ : $\Sigma_{g,1}arrow\partial M$ satisfying that

(1) $i_{+}$ is orientation-preserving and $i_{-}$ is orientation-reversing,
(2) $\partial M=i_{+}(\Sigma_{g,1})\cup i_{-}(\Sigma_{g,1})$ and $i_{+}(\Sigma_{g,1})\cap i_{-}(\Sigma_{g,1})=i_{+}(\partial\Sigma_{g,1})=i_{-}(\partial\Sigma_{g,1})$ ,
(3) $i_{+}|_{\theta\Sigma_{g,1}}=i_{-}|_{\partial\Sigma_{g,1}}$ ,
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(4) $i_{+},$ $i_{-}$ : $H_{*}(\Sigma_{g,1})arrow H_{*}(M)$ are isomorphisms.

We denote $i_{+}(p)=i_{-}(p)$ by $p\in\partial M$ again and consider it to be the $\mathrm{b}\mathrm{a}s\mathrm{e}$ point of $M$ . We
write a homology cylinder by $(M, i_{+}, i_{-})$ or simply by $M$ .

Two homology cylinders are said to be isomorphic if there exists an orientation-preserving
diffeomorphism between the underlying 3-manifolds which is compatible with the mark-
ings. We denote the set of isomorphism classes of homology cylinders by $C_{g,1}$ . Given two
homology cylinders $M=(M, i_{+}, i_{-})$ and $N=(N, j_{+},j-)$ , we can define a new homology
cylinder $M\cdot N$ by

$M\cdot N=(M\cup:_{-\mathrm{o}(j)^{-1}}+N, i_{+},j_{-})$ .

Then $C_{g,1}$ becomes a monoid with the identity element $1_{C_{g,1}}:=$ ( $\Sigma_{g,1}\mathrm{x}I$ , id $\mathrm{x}1$ , id $\mathrm{x}0$).
From the monoid $C_{g,1}$ , we can construct the homology cobordism group $\mathcal{H}_{g,1}$ of homology

cylinders as in the following way. Two homology cylinders $M=(M, i_{+}, i_{-})$ and $N=$
$(N,j_{+},j_{-})$ are homology cobordant if there exists a compact oriented -manifold $W$ such
that

(1) $\partial W=M\cup(-N)/(i_{+}(x)=j_{+}(x), i_{-}(x)=j_{-}(x))$ $x\in\Sigma_{g,1}$ ,
(2) the inclusions $Marrow W,$ $Narrow W$ induce isomorphisms on the homology,

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}-N$ is $N$ with opposite orientation. We denote by $\mathcal{H}_{g,1}$ the quotient set of $C_{g,1}$ with
respect to the equivalence relation of homology cobordism. The monoid structure of $C_{g,1}$

induces a group structure of $\mathcal{H}_{g,1}$ . In the group $\mathcal{H}_{g,1}$ , the inverse of $(M, i_{+}, i_{-})$ is given by
$(-M, i_{-}, i_{+})$ .

Example 3.1. For each element $\varphi$ of the mapping class group $\mathcal{M}_{g,1}$ of $\Sigma_{g,1}$ , we can
construct a homology cylinder $M_{\varphi}\in C_{g,1}$ defined by

$M_{\varphi}:=$ ( $\Sigma_{g,1}\mathrm{x}I$ , id $\mathrm{x}1,$ $\varphi \mathrm{x}0$),

where collars of $i_{+}(\Sigma_{g,1})$ and $i_{-}(\Sigma_{g,1})$ are stretched half-way along $\partial\Sigma_{g,1}\mathrm{x}I$ . This gives
an injective monoid homomorphism $\mathcal{M}_{g,1}arrow C_{g,1}$ and also $\mathcal{M}_{g,1}arrow \mathcal{H}_{g,1}$ . We consider
$C_{g,1}$ and $\mathcal{H}_{g,1}$ to be enlargements of $\mathcal{M}_{g,1}$ .

Let $N_{k}(G):=G/(\Gamma^{k}G)$ be the k-th nilpotent quotient of a group $G$ , where we define
$\Gamma^{1}G=G$ and $\Gamma^{1+1}G=[\Gamma^{j}G, G]$ for $i\geq 1$ . For simplicity, we write $N_{k}(X)$ for $N_{k}(\pi_{1}X)$

where $X$ is a $\mathrm{C}\mathrm{W}$-complex, and write $N_{k}$ for $N_{k}(F_{2g})=N_{k}(\Sigma_{g,1})$ . It is known that $N_{k}$ is
a torsion-free nilpotent group for each $k\geq 2$ .

Let $(M, i_{+}, i_{-})$ be a homology cylinder. By definition, $i_{+},$ $i_{-}$ : $\pi_{1}\Sigma_{g,1}arrow\pi_{1}M$ are 2-
connected, namely they induce isomorphisms on $H_{1}$ and epimorphisms on $H_{2}$ . Then, by
Stallings’ theorem [16], $i_{+},$ $i_{-}$ : $N_{k}arrow\underline{\simeq}N_{k}(M)$ are isomorphisms for each $k\geq 2$ . Using
them, we obtain a monoid homomorphism

$\sigma_{k}$ : $C_{g,1}-\mathrm{A}\mathrm{u}\mathrm{t}N_{k}$ $((M, i_{+},i_{-})\vdasharrow(i_{+})^{-1}\circ i_{-})$.

40



It is $\mathrm{e}\mathrm{a}s$ily checked that $\sigma_{k}$ induces a group homomorphism $\sigma_{k}$ : ’) $\mathit{9},1arrow \mathrm{A}\mathrm{u}\mathrm{t}N_{k}$. We define
filtrations of $C_{g,1}$ and $\mathcal{H}_{g,1}$ by

$C_{g,1}[1]:=C_{\mathit{9}_{)}1}$ , $C_{g,1}[k]:=\mathrm{K}\mathrm{e}\mathrm{r}(C_{g,1}arrow \mathrm{A}\mathrm{u}\mathrm{t}N_{k})\sigma_{k}$ for $k\geq 2$ ,
$\mathcal{H}_{g,1}[1]:=\mathcal{H}_{\mathit{9},1}$ , $\mathcal{H}_{g,1}[k]:=\mathrm{K}\mathrm{e}\mathrm{r}(\mathcal{H}_{g,1}arrow \mathrm{A}\mathrm{u}\mathrm{t}N_{k})\sigma_{k}$ for $k\geq 2$ .

4. APPLICATIONS OF TORSION-DEGREE FUNCTIONS TO HOMOLOGY CYLINDERS

In this section, we define and study some invariants of homology cylinders arising from
the Magnus representation, twisted homology groups of related manifolds and (truncated)
torsion-degree functions associated to nilpotent quotients $N_{k}$ of $\pi_{1}\Sigma_{g,1}$ . For each $k\geq 2$ ,
$N_{k}$ is known to be a finitely generated torsion-free nilpotent group. In particular, it is
PTFA. Since $H_{1}(N_{k})=H_{1}(N_{2})=H_{1}(\Sigma_{\mathit{9},1})$ and $H^{1}(N_{k})=H^{1}(N_{2})=H^{1}(\Sigma_{g,1})$ , taking an
epimorphism $N_{k}arrow \mathbb{Z}$ , which is needed in the definition of a torsion-degree function, is
done by choosing a primitive element of $H^{1}(\Sigma_{g,1})$ .

Let $(M, i_{+}, i_{-})\in C_{\mathit{9},1}$ be a homology cylinder. By Stallings’ theorem, $N_{k}$ and $N_{k}(M)$ are
isomorphic. We consider the right quotient field $\mathcal{K}_{N_{k}}$ (resp. $\mathcal{K}_{N_{k}(M)}$ ) of $\mathbb{Z}N_{k}$ (resp. $\mathbb{Z}N_{k}(M)$)
to be a local coefficient system on $\Sigma_{\mathit{9},1}$ (resp. $M$). By a simple argument using covering
spaces, we have the following.

Lemma 4.1. $i\pm:H_{*}(\Sigma_{g,1},p;i_{\pm}^{*}\mathcal{K}_{N_{k}(M)})arrow H_{*}(M,p;\mathcal{K}_{N_{k}(M)})$ are isomorphisms as right
$\mathcal{K}_{N_{k}(M)}$ -vector spaces.

This lemma yields various applications of torsion-degree functions to homology cylinders.

4.1. Magnus representations and torsion-degree functions. As a first application
of Lemma 4.1, we define a matrix-valued invariant of $C_{g,1}$ and $\mathcal{H}_{g,1}$ . The following con-
struction is based on Kirk-Livingston-Wang’s paper [9].

We fix an integer $k\geq 2$ . Since $R_{2g}\subset\Sigma_{g,1}$ is a deformation retract, we have
$H_{1}(\Sigma_{g,1},p;i_{\pm}^{*}\mathcal{K}_{N_{k}(M)})\cong H_{1}(R_{2g},p;i_{\pm}^{*}\mathcal{K}_{N_{k}(M)})=C_{1}(\overline{R_{2g}})\otimes_{\pi_{1}R_{2g}}i_{\pm}^{*}\mathcal{K}_{N_{k}(M)}\cong \mathcal{K}_{N_{k}(M)}^{2\mathit{9}}$

with a basis

$\{\overline{\gamma_{1}}\otimes 1, \ldots,\overline{\gamma_{2g}}\otimes 1\}\subset C_{1}(\overline{R_{2g}})\otimes_{\pi_{1}R_{2g}}i_{\pm}^{*}\mathcal{K}_{N_{k}(M)}$

as a right free $\mathcal{K}_{N_{k}(M)}$-module, where $\overline{\gamma:}$ is a lift of $\gamma_{i}$ on the universal covering $\overline{R_{2\mathit{9}}}$ .
Deflnition 4.2. (1) For each $M=(M, i_{+}, i_{-})\in C_{\mathit{9},1}$ , we denote by $r_{k}’(M)\in GL(2g, \mathcal{K}_{N_{k}(M)})$

the representation matrix of the right $\mathcal{K}_{N_{k}(M)}$ -isomorphism

$\mathcal{K}_{N_{\mathrm{k}}(M)}^{2g}\cong H_{1}(\Sigma_{g,1},p;i_{-}^{*}\mathcal{K}_{N_{k}(M)})rightarrow H_{1}(\Sigma_{g,1},p;i_{+}^{*}\mathcal{K}_{N_{k}(M)})\underline{\simeq}\kappa_{N_{k}(M)}^{2g}:_{+}^{-1}0|_{-}\underline{\approx}$

(2) The Magnus representation for $C_{\mathit{9},1}$ is the map $r_{k}$ : $C_{g,1}arrow GL(2g, \mathcal{K}_{N_{k}})$ which assigns
to $M=(M, i_{+}, i_{-})\in C_{g,1}$ the matrix $i_{+r_{k}’(\Lambda f)}^{-1}$ .

While we call $r_{k}(M)$ the Magnus “representation”, it is actually a crossed homomorphism.
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Theorem 4.3 ([15, Theorem 7.12]). For $M_{1}=(M_{1}, i_{+}, i_{-}),$ $M_{2}=(M_{2}, j_{+}, j_{-})\in C_{g,1}$ , we
have

$r_{k}(M_{1}\cdot M_{2})=r_{k}(M_{1})\cdot\sigma_{k}(M_{1})r_{k}(M_{2})$ .

Moreover, we can show the following.

Theorem 4.4 ([15, Theorem 7.13]). $r_{k}$ : $C_{g,1}arrow GL(2g, \mathcal{K}_{N_{k}})fa$ctors through $\mathcal{H}_{\mathit{9},1}$ .

Consequently, we obtain the Magnus representation $r_{k}$ : $\mathcal{H}_{g,1}arrow GL(2g, \mathcal{K}_{N_{k}})$ , which is
a crossed homomorphism. Note that if we restrict $r_{k}$ to $C_{g,1}[k]$ (and $\mathcal{H}_{\mathit{9},1}[k]$ ), it becomes a
homomorphism. In what follows, we use $\sim r_{k}:=\overline{r_{k}(\cdot)}^{T}$ instead of $r_{k}$ by a technical reason.
$\overline{r}_{k}$ is a crossed-anti-homomorphism.

We now define some numerical invariants by using $I_{2g}-r_{k}(\sim M)$ for $(M, i_{+}, i_{-})\in C_{\mathit{9},1}[k]$ .
Recall that for every homology cylinder $(M,i_{+}, i_{-})$ belonging to $C_{g,1}[k]$ , two inclusions $i_{+}$

and $i$-induce the same isomorphism $i_{+}=i_{-}$ : $N_{k}arrow N_{k}(M)=$ , so that we can naturally
identify them. Under this identification, we have the following.

Lemma 4.5 ([15, Theorem 11.1]). Let $M$ be a homology cylinder belonging to $C_{g,1}[k]$ .
(1) $(I_{2g}-\overline{r}_{k}(M))(1-\gamma_{1}, \ldots, 1-\gamma_{2\mathit{9}})^{T}=0$,

(2) $( \frac{\partial\zeta}{\partial\gamma_{1}}$

$\cdots,$
$\frac{\partial\zeta}{\partial\gamma_{2\mathit{9}}})(I_{2g}-\overline{r}_{k}(M))=0$,

where $\partial/\partial\gamma$: is the ordinary free differential (and we send it to $\mathbb{Z}N_{k}$ ).

We consider $\neg\ell d_{N_{k}}(I_{2g}-\overline{r}_{k}(M))$ to be an invariant of $M$. By Lemma 4.5, the rank of
$I_{2g}-r_{k}(\sim M)$ is at most $2g-1$ . As $I_{2g}-r_{k}(\sim 1_{C_{g,1}})=0_{2g}$ indicates, however, the rank is not
necessarily equal to $2g-1$ . That is, $\neg d_{N_{k}}^{p}(I_{2g}-\overline{r}_{k}(M))$ has a possibility of being $\infty$ . Such
a situation corresponds to the vanishing of the Alexander polynomial of the closing of a
homology cylinder as we will see in Remark 4.9.

Note that $\neg d_{N_{k}}^{\beta}(I_{2g}-\overline{r}_{k}(M))$ is a homology cobordism invariant since $\sim r_{k}(M)$ is. We can
show that it does not depend on the choice of a generating system of $\pi_{1}\Sigma_{g,1}$ .

4.2. $N_{k}$-torsions and torsion-degree functions. In this subsection, we identify $N_{k}$

with $N_{k}(M)$ by using $i_{+}$ for each homology cylinder $M=(M, i_{+}, i_{-})\in C_{g,1}$ .
Since the relative complex $C_{*}(M, i_{+}(\Sigma_{g,1});\mathcal{K}_{N_{k}})$ obtained from any smooth triangulation

of $(M, i_{+}(\Sigma_{\mathit{9}_{)}1}))$ is acyclic by Lemma 4.1, we can consider its Reidemeister torsion
$\tau_{N_{k}}(M):=\tau(C_{*}(M, i_{+}(\Sigma_{\mathit{9},1});\mathcal{K}_{N_{k}}))\in K_{1}(\mathcal{K}_{N_{k}})/(\pm N_{k})$.

We now call this the $N_{k}$ -torsion of $M$. Recall that Reidemeister torsions are invariant
under subdivision of the $\mathrm{C}\mathrm{W}$-complex $(M, i_{+}(\Sigma_{g,1}))$ and simple homotopy equivalence.
We refer to [13] and [18] for generalities of Reidemeister torsions.

By a topological consideration, we can show that

$d_{N_{k}}^{\ell}(\tau_{N_{k}}(M))=d_{N_{k}}(\tau_{N_{k}}(M))\neg p=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathcal{K}_{N_{k}}}{}_{\psi}H_{1}(M, i_{+}(\Sigma_{g,1});\mathcal{K}_{N_{k}^{\psi}}[t^{\pm}])$ ,

which can be computed from a presentation of $\pi_{1}M$ .
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Proposition 4.6 ([15, Proposition 11.2]). Let $M_{1},$ $M_{2}\in C_{g,1}$ . Then
$d_{N_{k}}^{\ell}(\tau_{N_{k}}(M_{1}\cdot M_{2}))=d_{N_{k}}^{\psi}(\tau_{N_{k}}(M_{1}))+d_{N_{k}}^{\psi\cdot\sigma_{2}(M_{1})}(\tau_{N_{k}}(M_{2}))$

holds for every primitive element $\psi\in H^{1}(\Sigma_{g,1})$ .

Note that if we $\mathrm{r}\mathrm{e}s$trict $d_{N_{k}}^{\psi}(\tau_{N_{k}}(\cdot))$ to $C_{g,1}[2]$ , we obtain a monoid homomorphism from
$C_{\mathit{9}\prime 1}[2]$ to $\mathbb{Z}_{\geq 0}$ .
Remark 4.7. Proposition 4.6 can be seen as a generalization of [10, Proposition 1.11].

4.3. Factorization formula of $N_{k}$-degrees for the closing of a homology cylinder.
For each homology cylinder $(M, i_{+}, i-)$ , we can construct a closed 3-manifold

$C_{M}:=M/(i_{+}(x)=i_{-}(x))$ , $x\in\Sigma_{g,1}$

call$e\mathrm{d}$ the closing of $M$. Note that if $M\in C_{\mathit{9},1}[k]$ , we have a natural isomorphism
$N_{k}=N_{k}(\Sigma_{g,1})\cong N_{k}(M)\cong N_{k}(C_{M})$ .

In Particular, we have $H_{1}(\Sigma_{g,1})=H_{1}(M)=H_{1}(C_{M})$ .

Theorem 4.8 ([15, Proposition 11.4]). Let $M=(M, i_{+}, i_{-})\in C_{g,1}[k]$ . For each primitive
element $\psi\in H^{1}(N_{k})=H^{1}(C_{M})$ , we have

$\overline{\delta}_{N_{k}}^{\psi}(C_{M})=d_{N_{k}}^{\psi}(\tau_{N_{k}}(M))+\overline{d}_{N_{k}}^{\psi}(I_{2g}-r_{k}(\sim M))\in \mathbb{Z}\cup\{\infty\}$ .
Remark 4.9 (The case of $k=2$). Since $\mathbb{Z}N_{2}=\mathbb{Z}N_{2}(\Sigma_{\mathit{9}})$ and $\mathcal{K}_{N_{2}}=\mathcal{K}_{N_{2}(\Sigma_{\mathit{9}})}$ are commu-
tative, we can use the ordinary determinant to calculate the invariants seen above. The
following is a direct generalization of the formula for string links given in [9, Theorem
6.2]. For $M\in C_{g,1}[2]$ , we put

$\Delta_{N_{2}}(M):=-\frac{\det((I_{2\mathit{9}}-\overline{r}_{2}(M))_{(1,1)})}{(1-\gamma_{1})(1-\gamma_{g+1})}\in \mathcal{K}_{N_{2}}$ ,

where $A_{(:,j)}$ denotes the matrix obtained from a matrix $A$ by removing its i-th row and
j-th column. We call $\Delta_{N_{2}}(M)$ the Alexander rational function of $M$. Then the Alexander
Polynomial $\Delta_{C_{M}}$ of $C_{M}$ decomposes as

$\Delta_{C_{M}}=$
.

$\overline{\tau_{N_{2}}(M)}\cdot\Delta_{N_{2}}(M)$ ,

where $=$ means that these equalities hold in $\mathcal{K}_{N_{2}}$ up $\mathrm{t}\mathrm{o}\pm N_{2}$ .

4.4. Examples. The formula in Theorem 4.8 holds as elements of $\mathbb{Z}\cup\{\infty\}$ , so that the
additivity loses its meaning when the value is $\infty$ . Note that $\overline{\delta}_{N_{k}}^{\psi}(C_{M})=\infty$ if and only if
$\neg d_{N_{k}}^{\psi}(I_{2\mathit{9}}-\overline{r}_{k}(M))=\infty$, and this occurs when $H_{1}(C_{M;}\mathcal{K}_{N^{\psi}}[t^{\pm}])$ has a non-trivial free part.

The following are some examples of homology $\mathrm{c}\mathrm{y}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}^{k}\mathrm{s}$ which have non-trivial Alexan-
der rational functions. By using Theorem 4.12 in the next subsection, we obtain many
situations where the formula sufficiently works. The computations for the cases of $k\geq 3$

are generally quite difficult.
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Example 4.10. Assume that $g=1$ . We denote by $\tau_{\zeta}\in \mathcal{M}_{1,1}$ the Dehn twist along $\zeta$ ,
which belongs to $C_{1,1}[3]$ . Then, we have

$\overline{r}_{2}(\tau_{\zeta})=$ .

Then $\Delta_{N_{2}}(\tau_{\zeta})=-1\in \mathbb{Z}N_{2}$ , which is non-trivial.

Example 4.11. Assume tfat $g\geq 2$ . Let $\tau_{1},$ $\tau_{2}$ and $\tau_{3}$ be Dehn twists along simple closed
curves $c_{1},$ $c_{2}$ and $c_{3}$ as in Figure 2, respectively.

Figure 2

Then $\tau_{1}\tau_{2}^{-1},$ $\tau_{3}\in C_{g,1}[2]$ . By a direct computation, we can check that
$\Delta_{N_{2}}(\tau_{1}\tau_{2}^{-1}\cdot\tau_{3})=$

.
$-(\gamma_{1}^{-1}-1)^{2_{\mathit{9}}-2}$ ,

while $\Delta_{N_{2}}(\tau_{1}\tau_{2}^{-1})=\Delta_{N_{2}}(\tau_{3})=0$ .
4.5. $N_{k}$-torsion and Harvey’s Realization Theorem. As seen in Theorem 4.6, the
degree of the $N_{k}$-torsion gives a monoid homomorphism

$d_{N_{k}}^{\psi}(\tau_{N_{k}}(\cdot))$ : $C_{g,1}[2]arrow \mathbb{Z}_{\geq 0}$

for each primitive element $\psi\in H^{1}(\Sigma_{g,1})$ and an integer $k\geq 2$ . To see some properties
of these homomorphisms, we use a variant of Harvey’s Realization Theorem [7, Theorem
11.2], which gives a method for performing surgery on a compact orientable 3-manifold
to obtain a homology cobordant one having distinct higher-order Alexander invariants.
By Theorem 4.8, we can expect that a similar result holds for the degrees of $N_{k}$-torsions,
and this is indeed the case.

Theorem 4.12. Let $M\in C_{g,1}$ be a homology cylinder. For each primitive element $x\in$

$H_{1}(\Sigma_{\mathit{9},1})$ and any integers $n\geq 2$ and $k\geq 1$ , there enists a homology cylinder $M(n, k;x)$

such that
(1) $M(n, k;x)$ is homology cobordant to $M$,
(2) $d_{N_{\mathrm{k}}}^{\ell}(\tau_{N_{1}}(M(n, k;x)))=d_{N_{k}}^{p}(\tau_{N_{i}}(M))$ for $2\leq i\leq n-1$ ,
(3) $d_{N_{k}}^{\psi}(\tau_{N_{n}}(M(n, k;x)))\geq d_{N_{\mathrm{k}}}^{\ell}(\tau_{N_{n}}(M))+k|p|$

for any primitive element th $\in H^{1}(\Sigma_{g,1})$ satisfying $\psi(x)=p$ .
Corollary 4.13. The maps $\{d_{N_{k}}^{\psi}(\tau_{N_{k}}(\cdot)) : C_{g,1}[2]arrow \mathbb{Z}_{\geq 0}\}_{k\geq 2}$ are all non-trivial homo-
mo$\prime \mathrm{p}$ hisms, and independent of each other for any primitive element $\psi\in H^{1}(\Sigma_{g,1})$ .

In fact, we can show it by constructing homology cylinders that are homology cobordant
to the unit $1_{C_{g,1}}$ . From this we see that $C_{g,1}[2],C_{g,1}[3],$

$\ldots,$
$\mathrm{K}\mathrm{e}\mathrm{r}(C_{g,1}arrow \mathcal{H}_{g,1})$ are not finitely
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generated as monoids. Note that $d_{N_{k}}^{\psi}(\tau_{N_{k}}(M))=0$ if $M\in \mathcal{M}_{g,1}$ , since $\Sigma_{g,1}\cross I$ is simple
homotopy equivalent to $\Sigma_{g,1}$ .

5. PROBLEMS

Finally, we raise the following problems.

Problem 5.1. Generalize the factorization formula (Theorem 4.8) to $\delta_{N_{k}}^{\psi}(C_{M})$ . Can we
write it in terms of the Magnus representation and $N_{k}$-torsion?

Some partial answers to this problem are already obtained. For example, it is easily
checked that $\delta_{N_{k}}^{\psi}(C_{M_{\mathrm{t}\rho}})=\theta_{N_{k}}(I_{2g}-\overline{r}_{k}(M_{\varphi}))$ for $\varphi\in \mathcal{M}_{g,1}$ .
Problem 5.2. Compute higher-order Alexander invariants explicitly.

General cases seem to be quite difficult. In our setting, we need to consider only the cases
of free nilpotent quotients $N_{k}$ , whose group rings $\mathbb{Z}N_{k}$ have somewhat $\mathrm{e}\mathrm{a}s$ier structures.
Difficulties are concentrated on Ore properties of $\mathbb{Z}N_{k}$ .
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