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Uniqueness of solutions for Schrodinger maps and

related estimates for the product of functions

REBKERERBEFER R % (Jun Kato)*
Department of Mathematics, Kyoto University

1 Introduction

In this note, we consider the uniqueness of solutions of the Cauchy problem for
the system of the nonlinear Schrédinger equations arising form the Schrédinger map,
which is called the modified Schrodinger map.

We briefly explain the Schrédingre map and the derivation of the modified
Schrédinger map. The Schrédinger map from R x R™ to §2 is described by the map
s:R x R® — §% C R3 satisfying

Ois = s X As, (1.1)

where x denotes the exterior product in R3. In general, the Schrédinger map is
formulated as the Schrodingerlike evolution of the harmonic map. In the case where
the target manifold is S? have a special importance, because they naturally arise
from Landau-Lifshitz equations governing the static as well as dynamical properties
of magnetization.

Applying (s x O;s)- to each term of the equation (1.1), we have

Oys - As =0, (1.2)
since

(s x 8;8) + Bys = det(s ;s O;8) =0,
(8 x 0;8) - (8 x As) = |8|20;s- As — (s As)(s- 8;8) = O;s - As.
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Thus, integrating (1.2) over R™, we obtain
o, / |Vs(t, z)|2dz = 0, (1.3)
R” :

which implies that the solution of (1.1) conserves the H'-norm. So, it is natural to
expect the well-posedness of the Cauchy problem for (1.1) in such a energy class. We

also notice that the equation (1.1) is invariant with respect to the scale transformation

s(t,x) — s(A\2t, \r)

for all A > 0. Observing the relation between the size of H-norm of the initial data
and life span of the time-local solution by using the scale transformation above, it is
considered that the Cauchy problem of (1.1) is well-posed in H" only if » > n/2. So,
the energy class H! is critical in two space dimensions, and this critical case provides
interesting problems similar to the wave maps [7].

In what follows, we consider the local well-posedness of the Cauchy problem of (1.1)
in two space dimensions for the data in H" with the small r as long as possible. To
begin with, we rewrite the equation as follows. By using the stereogfaphic projection

2Rez 2Imz 1-—|zf?
1412|127 14|22 1+|2)?

CBzH( )GSZ,

the equation (1.1) is rewritten as the nonlinear Schrodinger equation

2
) 2Z0;z
Bz =4y (8- I—q’z—'g)ajz. (14)
i=1

Then, in [5], Nahmod, Stefanov and Uhlenbeck used the U(1) gauge invariance of (1.4)

to transform it into a system of nonlinear Schrédinger equations, called the modified

Schrodinger map:

tOu; + Auy = —21 A - Vuy + Aouq + |A|2u1 + 43 Im(uzﬁl)uz,

1.5
i1Oug + Aug = =21 A - Vug + Aguz + IAlz’u;, + 4t Im(ulﬁg)ul, ( )
where '
iy 9z
U; =€ ,
I 1+ |2)?

i=12, (1.6)
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and the Coulomb gauge has been chosen. Then, A = Au] = (4;[u], A2[u]) and

Ag = Ap[u] are determined from

divA =0,
ajAk —_ 6kAj =—4 Im(ujﬁk),

n
~AAg =4 8;0cRe(u;Tx) — 2Alul?,
Jik=1
where we denoted u = (u1,uz). For the explicit representation of A and Ay, see (2.1),
(2.2). In the rest of this note we devote to the local well-posedness of the Cauchy
problem for the modified Schrédinger map.

Remark 1.1. (1) Although in general it is quite intricate to work out the equivalence
between the Schrédinger map problem (1.1) and the modified Schrédinger map prob-
lem (1.5), for the sphere and in cases which cover the range of solutions considered
in this paper such equivalence has been discussed in Kenig and Nahmod {3].

(2) It is important to notice that due to the relation (1.6) the well-posedness of the
modified Schrédinger map problem (1.5) in H® corresponds to the well-posedness of
the Schrodinger map problem (1.1) in H*+!. Thus, the energy class of the Schrédinger
map problem (1.1) corresponds to the L? for the modified Schrédinger map problem
(1.5). In fact, we can compute 8, ||u(t)||2, = 0 directly from (1.5).

2 Main Result

In the following we consider the well-posedness of the Cauchy problem for the
modified Schrédinger map in two space dimensions,

10puy + Auy = —2i Au] - Vuy + Aofujuy + | Afu]|?uy + 44 Im(uoT Jug,
(MS) ¢ iBug + Aup = —2i Au] - Vug + Ao[uJuz + |A[u]>uz + 44 Im(usiz)us,

ul(ovx) = u(l)(x)’ U2(0,$) = 'u’(z)(x)a
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where u;, ug are complex valued functions, and A[u] = (Ai[u], A2[u]), Ao[u] are

determined by

Aj[u] = 4GJ * Im(uﬂig), _7 = 1,2, (2.1)
1 z 1 =
Gi(z) = E;ms, 2($)="'2‘;h.—l2’
2
Aofu] = —4 > R;RxRe(usTr) — 2lul®. (2.2)
k=1

Here, R; = 8;(—A)~/2 denotes the Riesz transforms.

One of the advantage to consider (MS) instead of (1.1) is that (MS) have the nice
structure in the nonlinear term, which enable us to construct energy estimate for
the solution to (MS). In fact, Nahmod, Stefanov, and Uhlenbeck [6] showed the local
well-posedness for the data in H® when s > 1 by using the energy method. Then,
independently, the author [1], and Kenig and Nahmod (3], showed the existence of
the solution for the data in H® when s > 1/2.

Theorem 2.1 ([1], [3]). Let up € H*(R?) with s > 1/2. Then, there exist T > 0 and
at least one solution u € L>=(0,T; H®*) N Cy([0,T); H®) to (MS) satisfying

J*~1/2=¢y € [2(0,T; L) (2.3)
where 0 < & < s —1/2, J = (I — A)Y/2. The solution is unique when s > 1.

The improvement of regularity comes form the use of a variant of the Strichartz
estimates which was first introduced by Koch and Tzvetkov [4] in the context of the
Benjamin-Ono equation. However, the uniqueness of solutions could not be proved
in the same class due to the lack of the good structure such as (MS) on the equation
satisfied by the difference of the two solutions.

The purpose of this note is to show the idea of the proof of our following recent
result on the uniqueness of solutions to (MS). In the following we use the notation
L% X to denote L?(0,T; X) for a Banach space X.

Theorem 2.2 ([2]). Let u and v be smooth solutions to (MS) with the same smooth

data satisfying
u,v € L®(0,T; HY/?) N L?(0,T; B}y (2.4)
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for some ¢ > 4 with 1/p =1/2 —1/q. Then, u = v holds. Moreover, the estimate
() = v@lla-172 < Cllult’) — v(E) | g-172 (2.5)

holds when t > t/, where the constant C depends on lullzse 2y NvllLge r1/2,

HuIIL;B;/:, and ||v)|L%B;/22, and B, , is the Besov space.

Theorem 2.1 was proved by using the compactness argument based on a priori
estimates of the solution to (MS):

1772 "%u]| 13 poo < Clluo] are, (2.6)

lullzge e < Cllluoll gasaser lluollare, 2.7)

for s >1/2,¢,¢ € (0,5 —1/2). When s > 3/4, we observe that the solution to (MS)
satisfy the condition (2.4) by interpolating a priori estimates (2.6), (2.7). Indeed, if
we set s = 3/4 + 2¢, we have

HUHszr}ggx/f3 S “J1/4+EUHL§,L°° <M, llulngng/;+2= S llullrse gosasae < M,
for some constant M > 0, thus we obtain

1-2 2
Il 27z < Il ol e

2/p 1-2/p
Ly < “u“L%B:‘{,‘,llu“L?B;/;“‘ <M,

where 1/¢ = 1/(4 + 16¢) and 1/p = 1/2 — 1/q. Therefore, in the case s > 3/4 we
are able to apply Theorem 2.2 in the proof of Theorem 2.1, and obtain the following
corollary.

Corollary 2.3. Let up € H*(R?) with s > 3/4. Then, there exist T > 0 and a unique
solution u € C([0,T}; H®) to (MS) satisfying

Je=12=¢y € L*(0,T; L)
where 0 <e < s—-1/2.

Remark 2.4. In Corollary 2.3 we could improve the condition of the regularity on the
initial data which was already known, s = 1. There is still a gap from the condition
8 > 1/2 which the existence of a solution is known. There is also a gap from the
critical space L2.
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3 ldea of Proof of Theorem 2.1

In this section we describe the idea of the proof of Theorem 2.1. For simplicity, we

consider the more simple problem which contains the essential part of (MS),
i0u+ Au=1A[u] - Vu, (t,z)e€ (0,T) x R?,
{ u(0,r) =ug, z€R?
where A[u] = G * |u|?. Here, we denoted G = (G1,G2). We notice that
Alu] ~ Jz|™ * |ul* ~ D7 |uf?,
where D® = (—A)%/2,
Let u, v be the solutions to (P), then w = u — v satisfy
10w + Aw = iAfu] - Vw + i(A[u] — Av)) - V. (3.1)
The usual way to show the uniqueness is to estimate the L2-norm of w. In fact,

multiplying @ to both sides of the equation (3.1), taking the imaginary part, and
then integrating over R?, we obtain

-;-Bt”'w(t)lliz = Re,/m (Afu] — AP)) - Vvwdz.

If we consider the solutions in the class

u,v € C([0,T); H?)

with s > 1, then the uniqueness of solutions is easily obtained as follows. Let 1 <
S0 < min(s,2), andset 1/p=1-50/2,1/2=1/p+1/g, and 1/r =1/g+1/2. Then,
applying the Hélder inequality and the Sobolev embedding we obtain

300wl <| [ (Alu- AW) - Vvws]
< 1D (fuf? - [0 el Vol il zo
< uf® = ol ol g ol
S (lullze + Pollze) ol oIl

S (lullga-so + 10l ga-s) 10l groo w22



Since HS «— H2=%0 H® < H% by using the Gronwall inequality we obtain

lw®)llzz < Cllw(0)]] 2,

which implies the uniqueness of solutions.
To show the uniqueness of less regular solutions, we consider the estimate of w in
H~1/2 instead of L? to overcome the loss of the derivative the nonlinearity. We use

the following energy estimate.

Lemma 3.1. Let w be a solution to

0w+ Aw —ia-Vw =F, (3.2)
where a is R%-valued function. Then, for0 < s <1,0<t < T, we have

Jw(®)llu-+ < exo{C /0 " IVa(t)=at } (Jw@)lla-s + / F@a-edt). (33)

Idea of Proof of Lemma 3.1. For 0 < 7 < T, we denote by S(t,7)f the solution to

10w+ Av—ia-Vv =0, (t,:z:) € (r,T) x R?,
v(r,z) = f(z), zeRZ

Then, the solution to (3.2) is written as
i
w(t) = 5(¢,0)w(0) =i [ 5 IF(r)dr.
0
Thus, to prove (3.3) it suffices to show
t
ISt -+ < exp{C [ [Vat)zmat J e (34)

To prove (3.4) we consider the dual problem for fixed ¢ € (0, 77,

10,5+ At —iV-(a®) =0, (r,z)€ (0,t) x R,
#(t,z) = g(z), z€R>

We denote by S(, t)g the solution to the problem above. Then, S(,t) is dual operator
to S(t,7). In fact, the simple calculation shows that

8 (S, 7)f,5(t,t)g) =0
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by using the equation, and integrating this from 7 to ¢ we derive
(S(t,7)f,9) = (f,8(r,t)g)-

Meanwhile, from the equation we have
.15 < [ a- VioPds < [Valo5(r)

Similarly, we have
0, [[V(7)||s < ClVal|Le [VD(T)] L2

Thus, interpolating them we obtain

t
13,0l < exp{C [ IVa(e)lzmat gl (35)

for 0 < s < 1. Therefore, by using the duality we obtain

IS¢, flu-+ = sup_| [ 86,7 s

ol e =1

= sup I/fg(f,t)cpdx*

el =1
< sup ||flla--1S(m )ellae

flollge=1
t
<exp{C [ IVar)lumdr}ifln--.
0

Thus we obtain (3.4). O

Applying Lemma 3.1 to (3.1) with s = 1/2 we obtain

T
@)l < exp{C /0 IV ()]l '}
(3.6)

t
< (IO lr-sr+ [ 1AL~ Ale) - Vollg-sadt’).
Since VA[u] ~ R;Ri|u|?, for sufficiently small § > 0 and & > 2/§, we have
IVARllze S 1 RsRelufllLs S 17°1uf s S 17%ullZe S Hullfg:/;-

So, the problem is to estimate the product of functions in the Sobolev spaces of
negative order which appears in the last term in (3.6).
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Remark 3.2. One might think there would be another possibility to apply Lemma

3.1 instead of H~1/2, However, from the general version of the lemma below, and

1/2

from the structure of the nonlinear term, the space H~'/“ provides the best result in

our method.

Lemma 3.3. Suppose n =2 and ¢ > 4. Then the following estimates hold.

Ifgllg-12 S “g”B;'/:“f”H—l/?a (3.7)
(G * (£9)) Vhllgr-12 S (lgllmarallbllggare + HQHB:Q||h||3;(g)||f’|ﬂ—1/=- (38)

If we apply (3.8) to estimate the last term of (3.6), then we obtain

Iw@lla-e < C(Ho@la-va + [ () + 1o lwlz-adr),

where we denoted X = H/2n B;,/zz. Thus, by the Gronwall inequality we obtain
lw(®llg-1/2 < Cllwt) | g-1/3-

Thus, Theorem 2.2, the imiqueness of the solution, follows.

Finally we describe the idea of the proof of Lemma 3.3.

Idea of Proof of Lemma 3.3. To prove (3.8) we first show that
1£gllzzar2 S llgl gazallFllara (3.9)

holds. In fact, by using fractional Leibniz rule we have

1fglmr2 S Wflmrallgllse, , + I1F1 B2, 19l 5izz,

where 1/2 = 1/q + 1/r. Then, the embeddings B;,/: < BY, , and HY/2 — H?*/9 —
B, give (3.9). Thus, by using the duality we obtain

Nfallg-1/2 = Sup ‘/fgtpd:z:

el g1/2=1

.<_ sup || flla-1/2llgll g2
"‘P”HI/2 =1

Sl g-1r2 ||g||33(:.

Now we turn to the proof of (3.8). Since div G * (fg) = 0, we have
(G * (£9)) Vhlig-1/2 = |div{(G * (fg)) R}l z-1/2 S /(G * (f@))hllrra.  (3.10)
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To estimate the right hand side of (3.10) we divide G * (fg) into the high frequency
part and the low frequency part,

G * (fg) = So(G * (f9)) + (1 — S0)(G * (£9))- (3.11)

Here, Sp is defined as the Fourier multiplier by ¢, where ¢ € C§°(R™) with ¢ =1
near the origin.
As for the high frequency part, the second term on the right hand side of (3.11),
we easily obtain
{1~ S0)(G * (f9)) }hll 12 S 17l g37211(1 = So) (G (f9) a2
S llhllgigzzllfgllﬂ—xlz
<
< |lh||B;(22||9|IB;(;||f||H—1/z,
by using (3.9), (3.7).

As for the low frequency part, the first term on the right hand side of (3.11), we

estimate
1{S0(G * (£9)) }hllzrrr2 S 150 (G * (£9)) llwr. 1l 272 (3.12)

To complete the proof we have to estimate So(G * (fg)) and its gradient. By trans-
lation invariance it suffices to do this at the origin. The argument for So(G * (fg))
and for its gradient is the same. We observe that

50(G * (£9)) (0) = {& + (9)}(0)
- [ 2wrwates

where we set ® = F[p] * G. Note that ® € L"(R?) for 2 < r < 0c. Thus,

S6(G * (1)) = | [ 26)rwatwas]

< || ®gllgrsallfll g-1/2
Sl gz lgllaaall fla-12.

Finally, we notice that
12l 5173 S 1l gyaee S 1@l3g, ~ 1@ze < o,

since @ is supported in the low frequency part in the Fourier space, and ® € L™(R?)
for 2 < r < 00. This completes the proof of (3.8). O
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