ORBIT SPACES OF HYPERSPACES

SERGEY A. ANTONYAN

A Peano continuum is a connected and locally connected, compact, metrizable space that contains more than one point. By the Hilbert cube we mean the infinite countable power $[0,1]^{\infty}$ of the closed unit interval. A Hilbert cube manifold is a separable metrizable space that admits an open cover by sets homeomorphic to open subsets of the Hilbert cube.

Let G be compact Lie group acting (continuously) on a Peano continuum X. We denote by $\exp X$ the G-space of all nonempty compact subsets of X endowed with the Hausdorff metric topology and the induced action of G.

Here we present the following results and some related open problems.

Theorem 0.1. Let G be a compact Lie group acting nontransitively on the Peano continuum X. Then the orbit space $(\exp X)/G$ is homeomorphic to the Hilbert cube.

Theorem 0.2. Let G be a compact Lie group acting on the Peano continuum X, and let $\exp_0 X = (\exp X) \setminus \{X\}$. Then the orbit space $(\exp_0 X)/G$ is a Hilbert cube manifold.

Conjecture 0.3. Let G be a compact Lie group acting transitively on the Peano continuum X. Then the orbit space $(\exp X)/G$ is not homeomorphic to the Hilbert cube.

Recall that for an integer $n \geq 2$, the Banach-Mazur compactum BM(n) is the set of isometry classes of n-dimensional Banach spaces topologized by the famous Banach-Mazur metric.

Corollary 0.4. Let O(n) denote the orthogonal group and \mathbb{S}^{n-1} the unit sphere of \mathbb{R}^n . Then for all $n \geq 2$, the orbit space $(\exp \mathbb{S}^{n-1})/O(n)$ is homeomorphic to the Banach-Mazur compactum BM(n).

Below we assume that $n \geq 2$ is an integer. Let \mathbb{B}^n be the closed unit ball of \mathbb{R}^n and let $C(\mathbb{B}^n)$ denote the subspace of $\exp \mathbb{B}^n$ consisting of all nonempty compact convex subsets $A \subset \mathbb{B}^n$ such that $A \cap \mathbb{S}^{n-1} \neq \emptyset$.

Theorem 0.5. (1) $C(\mathbb{B}^n)$ is homeomorphic to the Hilbert cube.

- (2) $C(\mathbb{B}^n)$ is an O(n)-AR.
- (3) The orbit space $C(\mathbb{B}^n)/O(n)$ is homeomorphic to the Banach-Mazur compactum BM(n).

Let SO(n) be the special orthogonal group. Consider the SO(n)-invariant subset $\operatorname{Sym} \mathbb{S}^{n-1} \subset \exp \mathbb{S}^{n-1}$ consisting of all the sets $A \in \exp \mathbb{S}^{n-1}$ such that A is symmetric with respect to an (n-1)-dimensional linear subspace L_A of \mathbb{R}^n . It is an intriguing problem to understand the topological structure of $\operatorname{Sym} \mathbb{S}^{n-1}$. In particular, we ask ask the following:

SERGEY A. ANTONYAN

Question 0.6. (1) Is $\operatorname{Sym} \mathbb{S}^{n-1}$ homeomorphic to the Hilbert cube? (2) Is $\operatorname{Sym} \mathbb{S}^{n-1}$ an SO(n)-AR? (an AR?)

- (3) What is the topological structure of the orbit space $(Sym S^{n-1})/SO(n)$?

Of course, similar questions can be asked about the hyperspaces of all the sets $A \in C(\mathbb{B}^n)$ (respectively, $A \in \exp \mathbb{B}^n$) such that A is symmetric with respect to some (n-1)-dimensional linear subspace L_A of \mathbb{R}^n .

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, MÉXICO D.F. 04510, MÉXICO

E-mail address: antonyan@servidor.unam.mx