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Classification of connected palette diagrams without area
and its application to finding relations of formal
diffeomorphisms
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Abstract

We have obtained various sufficient conditions of Feynman diagram y ¢ R? such
that the relation W,.(f,g) = id of f,g admits solutions of non commuting diffeo-
morphisms tangent to identity in [6]. Finding relations of formal diffeomorphisms is
reduced to finding Feynman diagrams satisfying these sufficient conditions. By the
way, Feynman diagrams are obtained from a palette diagram defined in [7]. In this
paper we classify all connected palette diagrams without area consisting of four unit
weighted squares into 5 types, and apply the classification to finding relations of two
formal diffeomorphisms tangent to identity.

1 Introduction
A Feynman diagram in R, is defined by a polygonal path
y=H"+*V2xH® « V" x..cx H" « V™ ni,my,...,mp €Z, (1)

consisting of a unit horizontal vector H in x-positive direction, a unit vertical vector V in
y-positive direction and their inverse vectors H-!, V!, where » denotes the composite of
paths and H" stands for the n-fold composite of H. From y in (1), we obtain a word

W.y-(f, g = f(m) ° g(nz) ° f(ns) ° g(m) 0:++0 Jdng,,_l) ° g(nzp) @)

of £,g, f©Y, g"P for two holomorphic diffeomorphisms f, g € Diff(C, 0) by substituting
H and V in (1) by f and g respectively, where f™ stands for the m-fold iteration of f,
and Diff(C, 0) denotes the group of germs of holomorphic diffeomorphisms of C fixing 0

Diff(C,0) = {f(2) = a1z + a2* +---|a; # 0,a; € C}

and o denotes the composite of mappings. The relation of f, g defined for 7y in (1) is the
equation
Wye(f,8) = id.

1t is nothing but a relation in the subgroup of Diff(C, 0) generated by two elements f, g.
We say an element f of Diff(C,0) (or I’)FT(C, 0) ) is tangent to identity if f'(0) = 1,
that is the coefficient a; of z is 1. J. Ecalle and B. Vallet [2] constructed vg_ri\ous types
of relations of two formal diffeomorphisms tangent to identity in the group Diff(C, 0) of
formal diffeomorphisms. F Loray [3] investigated those relations in the study of non

solvable subgroups of Diff(C,0) from the view point of real and complex codimension
one foliation. While, the structure of non solvable sub groups is not well known [3, 4].



A palette diagram T is defined by a collection

r= {rsl,pl_l, [S2, P2l s [Sms pn]}, 3)

where [S;, pil,i = 1,2,...,n, denotes a unit square with weight p;, that is a unit square
S =(a,a+1)x(b,b+1),a,b € Z,in the real 2-plane R? which is attached to a non zero
integer p € Z*. Here we assume Sy,...,S, are distinct with each other. For a palette
diagram I, we call a collection of n unit squares

1““={s,,sz,...,s,.}

the base of I'. We say a palette diagram (or its base) is connected if every square S; has at
least one vertex in common with another square S ;, j # i. Hence a palette diagram (or its
base) is disconnected ( or non connected ) if there exists at least one square which has no
vertex in common with any other squares. We regard palette diagrams or basis of palette
diagrams up to congruence and reflection to be equivalent.

From a palette diagram I" we can obtain infinitely many (but countable) distinct closed
Feynman diagrams y C R? such that the value of the winding number on the square
domains $,,S32,...,S, are respectively py, ps,...,pn € Z°. Here the winding number
p(7) = p(y)(x,y) at a point (x,y) € R? of a closed path y c R? is the number that y winds
around (x,y). And for a closed Feynman diagram 7, there is a palette diagram I" from
which v is obtained.

The Area and Moment of a palette diagram I in (3) (or a closed Feynman diagram y
obtained from I') is defined by

Area(l“):i i G(I‘)=(an p;ffxdx/\dy,i p;ffydx/\dy)
i=1 i=1 Si =1 Sy

respectively. And we define the polynomial Pi(T')(a,8) of a,B of k-th degree with reél
coefficients by

PR = Y || @x+pyf dxndy.
i=1 i )

For a palette diagram I" in (3), assume G(I') # 0 and (e, B) is a vector orthogonal to
G(I). Then we see that Px(I')(e, B) is a polynomial of degree k+1 of py,..., p, since @ and
B are polynomials of degree 1 of py,...,p,. In this paper we consider palette diagrams
without area consisting of four unit weighted squares.

Definition 1.1. Ifa palette diagramT consisting of four unit weighted squares [S y, pl,1S2, 4],

[S3,7),[S4, —p — q — r] without area has one of the following property (E) or (F) or (G)
or (H) or (I), we say T has the type (E) or (F) or (G) or (H) or (1).

(E) G(I') # (0,0), and for a vector (a,) orthogonal to G(I') (hence all points on a
complex line (@ : B)),

Pya,B)=c(p+q)p+nrqg+r),

where c is | or 4,
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(F) GT) # (0,0), and for a vector (a,B) orthogonal to G(I') (hence all points on a
complex line (a : B)), Py(a,B) has one of p + q, p + r, q + r as a factor, that is
Py(a, B) equals the one of the following three polynomials:

C1 (P"‘Q)PI(P,‘I,"), Cz(P"")pZ(P,q,r), 3 (q+")P2(P,q,r),

where c),cy,c3 # 0 are constants and p,, p2, p3 are polynomials of degree 2 of
p.q.r,

(G) G(I') # (0,0), and for a vector (a, b) orthogonal to G(I') (hence all points on a
complex line (e : B)), Py(a,p) has one of p, q, r as a factor, that is P, B) equals
the one of the following three polynomials:

ca p pa(p,q,r), ¢sqps(p,q.r), c6r pe(P,q.7),

where c4,cs,c6 # O are constants and pa, ps, pe are polynomials of degree 2 of

pP:q,r,

(H) GI') # (0,0), and for a vector (a,B) orthogonal to G(I') (hence all points on a
complex line (@ : B)), P(a,B) equals a polynomial p+(p,q,r) of degree 3 of p,q,r
other than the above three cases,

(1) GI) # (0,0), and for a vector (a,B) orthogonal to G(T') (hence all points on a
complex line (a : B)), Py(a,B) =0 fork=2,3,....

Here (a : B) = {A(a,B)|A € C}.

In §2, we review my talk at RIMS. In §3, we state the result of classification of all
connected palette diagrams consisting of four unit weighted squares into the types (E) ~
(I). One of main results of this paper is the following:

Theorem 1.1. All connected palette diagrams consisting of four unit weighted squares
{S1,p),(S2,9),[S3,7), [S4,—p — g — r] without area and with moment are classified into
the above 5 types (E) ~ (1) if p, q, r, s are chosen properly.

In §4 we give the proof of the classification theorem. In §5 we apply the classification to
obtaining relations of two formal diffeomorphisms non commute and tangent to identity
using theorems already obtained in [5, 8]. For another main result see Theorem 5.3.

2 The substance of my talk at RIMS

Here we state the substance of my talk at RIMS. See [6, 8] for more details.
We consider the non linear ordinary differential equation

dz L ' .
?d-; - f(t’ Z): Z(O) = 20, (4)

on the complex domain, where f(t,z) is continuous with regard to a parameter ¢, holo-
morphic with regard to a parameter z, and f(t,0) = 0, £ f(t,2)|.-0 = 0. Let X, = £(t, 2)d..

It is a holomorphic vector field on C depending on the time parameter ¢.
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From the main theorem ( Theorem 8 ) in | 1], we see that the solution of (4) is expressed
as
«) = & j,"-x,sz_

Here L j'ﬂ -X,dt denotes a formal vector field without constant term and linear term de-
fined by the following recursion formula;

Lf—X,dtzH,[t]—Hz[t]+H3[t]—+-~ , 5)

where H,[t] = £ X, dt = Ty[t] and H,[t](k > 2) is defined by the recursion formula

k
(k+ DHealf] = Te+ ). (%[H,, Terd+ Y Kop D (oo Uy, Tirl -+ 11), (6)
r=1

p21 m>0
2psr m;+---+m2,,=r

where

Ty = Tyl = f f diydity... Al . X Xig)y -1, K] (k2 1),

OSups) S~ Sua<in <t

and (-1)"!(2p)!K,, = B, are Bernoulli numbers. Here [*, *] denotes the Lie bracket of
vector fields. And eX denotes a time one map of a vector field X.

Let y(£) = (x(1), y(1)),0 < t < 1, be a piecewise smooth closed path in R? with starting
point 0 and a;(2)d-, a2(z)8. holomorphic vector fields with 2;(0) = a,'(0) = &(0) =
a,’(0)=0. ForX, = a,(z)t'):%f- +a2(z)65% we calculate the Taylor coefficients L,, L3, Ls, . ..
of

1
Lf X,dt=H1[1]+H2[l]+H3[l]+~--=L/2Z2+L323+L424+-~-
0

as formal vector field using the above recursion formula. It is nothing but a logarithm
function ( but formal ) of the holonomy mapping of a y(C, 0)-valued connection 1-form
~w = —(a1(2)8.dx + a3(z)d-dy) on the trivial (C, 0) bundle over R? along v*. Here x(C,0)
denotes the Lie algebra of all holomorphic vector fields without constant term, and y* is
a path obtained by inverting the sign of the velocity and the orientation of .

Let

a1(2)0:
ay(2)0:

(an+apl +- +aud +-+)d,,
(and® +apd +- - +ayz ++-+)8.,

and

- ay; '
A= I:a]l] , and K;=aux+ ajy.
2i

Then the results of calculations of Taylor coefficients L,, L3, L4, ... are the followings.
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L, = L3 = 0and

Ly = ‘fdeKzf\sz,
D
Ls = fopszKzl\dK3, mod ffpdx/\dy
= ffp(K3—3K2 )dK; A dK3, mod ffpdxAdy,fprzdx/\dy

= 4ffp (K;® - K2K3)dK, A dKs,
D

mod ffpdx/\dy,ffpKgdxAdy,ffp(Kg-3K22)dx/\dy.
D D vD

In general,

| 1
L = —gl- (K - 11k +36) f f p Ki3dK; A dKs,
D

mod ffpdx/\dy, fprzdx/\dy, ffp(K3—3K22)dx/\dy,
D D D

Ri(Az,As, ..., Aps),

for k > 8. Here D denotes the domain enclosed by v, ff the multiple integral over D by
the standard measure dx A dy, p the winding number of ¥, and R, the remainder term. For
the proof and further calculations see {6, 8].

In the case v is a closed Feynman diagram in R?,

f f p dx A dy = Area(y), f f P Ktdx A dy = Pi(y)a2, a22).
D D

And assume v has its expression (1), that is
p
y=H"x V2 x H® 5 V™ % .. x H' % V" nymy,..., 0 €Z°,

then |
el b @ @8 F+axa: Pt _ W, (f. 8),

where f = 4@ g = 2% and W,.(f,g) is a word of f,g in (2). Finding sufficient
conditions of Feynman diagram y such that W,.(f,g) = id admits solutions of formal
diffeomorphisms tangent to identity is cqunvalent to finding sufficient conditions of y such

that the Lie integral L L (a1(2)8.% 7t az(z)é[ o 2)dt equals to zero vector field, that is its
Taylor coefficients are all 0, for properly chosen A;,i = 2,3,.... Some of such conditions
are obtained (See Theorem 5.1 for example). Some examples of relations of two formal
diffeomorphisms non commute and tangent to identity including a relation constructed by
Ecall and Vallet are also obtained.
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3 Result of the classification of connected palette diagrams
without area consisting of four unit weighted squares

Here we state the classification theorem obtained.

Theorem 3.1. A connected palette diagram I consisting of four unit weighted squares
without area with the type (E) equals up to congruence and reflection to the one of the
diagrams.in the list below, where p,q,r, p + q + r are arbitrary non zero integers and

s=-p-q-r.

(E)
No. r condition of p,q,r
1 rls Bp+2g+r, p+q) #(0,0)
Pl 49
r S ’
2 (2p+q+r, p+q) #(0,0)
P14 '
,
3 “lqls (-2p-q+r, —p+r)#(0,0)
P
r R
4 (Bp+q+2r, p+q) #(0,0)
P q
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(E)
No. r condition of p,q,r
s
5 p r ("P'*'r, _P"'ZQ""')"#(O,O)
q
6 P14 (-p-r, p+q)#(0,0)
rls

Theorem 3.2. A connected palette diagram T consisting of four unit weighted squares
without area with the type (F) equals up to congruence and reflection to the one of the
diagrams in the list below, where p,q,r, p + q + r are arbitrary non zero integers and
s=-p—-q-r. )

¥
No. r condition of p,q,r
r
1 s (-2p-q, —-p—q+r)#(0,0)
P9
)4 s
2 @Bp+2g+r,g+r)+(0,0)
q1r '
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(F)

No. r condition of p,q,r

(g+2r, p+r)#(0,0)

Theorem 3.3. A connected palette diagram I consisting of four unit weighted squares
without area with the type (G) equals up to congruence and reflection to the one of the

diagrams in the list below, where p,q,r,p + q + r are arbitrary non zero integers and
s=-p—q-r. ‘

(G)
No. r condition of p,q,r
1 P (p-29-r,p)#(0,0)
r q S
r
2 (-p+4q,r)%(0,0)
' prlsl|aq
p
3 (g +2r,p) #(0,0)
K) q r
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(G)
No. condition of p,q,r
4 (-p+q+2r,qg+2r)#(0,0)
S (-3p-2g-r,r) #(0,0)
6 (-p-q+r,—p+r)#(0,0)
7 (2p-q+r.qg-r)#(0,0)
8 2p+4q,-2p—-q-2r)#(0,0)
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Theorem 3.4. A connected palette diagram I consisting of four unit weighted squares
without area with the type (H) equals up to congruence and reflection to the one of the
diagrams in the list below, where p,q,r,p + q + r are arbitrary non zero integers and

s=-p-q-r.

(H)
No. r ' condition of p,q,r
_ r
1 p q (‘ZP"‘q,P"'Q"'Zr)‘#(O»O)
s
2 r V (_p+rs“2p_2q—r)¢(0’0)
Pl 9a
r
3 p s . (—P+ra“q+")¢(0,0)
q

Theorem 3.5. A connected palette diagram T consisting of four unit weighted squares
without area with the type (I) equals up to congruence and reflection to the one of the
diagrams in the list below, where p,q,r,p + q + r are arbitrary non zero integers and

s=-p—-q-r.

@
No. r condition of p,q,r

1 plaglr]s -3p-29-r#0
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@

No. r

condition of p,q,r

-3p-2q-r+0

4 Proof of the classification theorem

There exist exactly 22 distinct bases of connected palette diagrams consisting of four unit
squares (See [7] for detailed enumeration). To prove the classification theorem (Theorem
3.1 ~ 3.5), we have only to compute G(T') and Py(a.8) = [[ pax + ByYdx A dy for
(a, B) orthogonal to G(T') for 22 palette diagrams consisting of four unit weighted squares
attached to non zero integers p,q,r,s = =-p—-q-—r.

The moments G(I') and vectors (a, 8) orthogonal to G(I') of palette diagrams I in the
lists of Theorem 3.1 ~ 3.5 are followings. The computations are performed for palette
diagrams in the usual coordinate system that the horizontal direction is x-direction and
the vertical direction is y-direction in the lists. '

(E-1) GA)=(-3p-29-r,-p-9),
(B2 GM) = (-2p~q-1,-p-9),
(E3) GM) =(-2p—q+r,—-p+r),
(E-4) GI)=(-3p-q-2r,-p-9q),
(E-5) GM)=(-p+r,-p-29-r),
(E-6) GM) =(-p-r,p+9),

(F-1) GM) =(-2p-q,-p—q+r),
(F-2) GMO) =(-3p—-29-r,—qg-r),
(F-3) G(I) = (g +2r,p +7),

G-1) GM)=(p-g-2r,p),

(G2) GM) = (-p+q,7),

(G-3) GT) = (g +2r,p),

(G-4) GI) =(-p+q+2r,g+2r),

(e,8)=(-p—q,3p+2q+7).
(@.B)=(p+9,—2p—q-T1).
(@,B)=(p—-r-2p—q+r).
(@,B)=(p+g9,—-3p—q-2r)
(@B =(-p-29-r,p-r).
(@.B)=(p+4q,p+r).
(@.f)=(-p-q+nr2p+q)
(@.B)=(q+r,-3p—-2q-r).
(@,B)=(-p-r,q+2r).
(@.B) =(-p,p—q~2r).
(@,8)=(r,p-9)

(@,B) = (-p,q +2r).
(@,f)=(g+2r,p—q-2r).



(G-5) G(N) = (-3p-2g -1,
(G-6) GI)=(-p-q+r,—p+7),
(G-7) G =(-2p-q+r,qg-7),
(G-8) G(I) = (2p +4,~2p -~ 21),
(H-1) G@) = (-2p-q,p+q+2r),
(H-2) G) =(-p+r,—2p~29-7),
(H-3) GI) = (~p+7,-q +7),

(I-1) G@T) = (-3p-2g-1,0),

(1-2) GO)=(-3p-29-r,—-3p-29-7r),
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(@,B)=(r,3p+2g+r).
(@B)=(p-r-p—q+n).
(@B)=(q-r2p+q-1)
(@.8) = (2p+q+2r,2p +q).
(@,B)=(p+q+2r,2p+q).
(@,)=(@2p+2q+r,—p+r).
(@,B)=(g—r,—p+r).

(a,8) = (0, 1).

(a,B) = (1,-1).

The conditions of p, g, r in the lists of Theorem 3.1 ~ 3.5 are the conditions that G(I') #

(0,0).

The polynomials Px(a,B) of p,q,r for the above (a,f) orthogonal to G(I') are the

followings.

(E-1) Pa(@,B) = (p+q)p+r)g+n).

(E-2) Pya.p)=(p+ q)Xp +r)g+7).

(E-3) Pa(a.B) = (p+q)p+1)q+7).

(E4) Py(a,B)=4p+q)p+r)g+7)

(E5) Pa(a,B) = 4(p+ 4)p + 1) + 7).

(E-6) Pa(@,B) = (p+q)p+1)qg+7).

(F-1) Py(a,B) = (p+1)glg +71)+ p(q +4r)}
(F-2) Py(a,B) = (g +n{9p* +gqr +9p(g + ).
(F3) Py(@,B) = (p+r)lglg + 1) + plg +4n)}
(G-1) Py f) = plig+2r7 + pg+4n).
(G-2) Py(a.B) = rip? + (-2 +7) + (g + 1))
(G-3) Py, B) = pl(q +2r)% + plg +4n).
(G-4) Py(a,B) = pl(q +2r) + pl(g +4r)).
(G-5) Py(a,B) = ri9p* + 4q(g + 1)+ 3p(4q +3r)).
(G-6) Py(a,B) = g{p* + p(q - 2r) + r(g + 1)}



(G-7) Py(a,B) = 4pl(q —r)* + p(g +1)).
(G-8) Pa(@,B) = 4r{4p* +4p(g +1) +q(g + ).
(H-1) Py(a,B) = 4qr(q +r) + p*(q + 167) + p(q* + 20gr + 16r?).
(H-2) Py(@,B) =4qr(q+r) + pX(4q +9r) + p(44* + 16gr + 9r?).
(H-3) Py(@.B) = pAq +71) +qr(g +r) + p(g* - 6qr +712).

(I-1) Pya,p)=0,k=2,3,....

(I-2) Pi(@,B) =0,k =2,3,...

The author used Mathematica for computations of G(I') and P2(a, ). We note that
if we change the position of p, g, r, s attaching to unit squares, the polynomial P»(a,p)
should vary. But if we choose it as in the lists of Theorem 3.1 ~ 3.5, we obtain the desired
classification. o

5 Application of the classification theorem to finding re-
lations of formal diffeomorphisms

Here we explain the application of the classification in §3 to finding relations of two
formal diffeomorphisms. We have obtained in [5, 8] the following theorems for relations
of two formal diffeomorphisms in terms of Feynman diagrams.

Theorem 5.1 ([5), Theorem 8.2.). Let y € R? be a closed Feynman diagram. Assume
Area(y) = 0 and G(y) # 0. Let Az = (ayz, ax) # O be orthogonal to G(y), and assume

fprzzdxAdy;tO.
D

Then the relation W,.(f,8) = 1 admits formal non commuting solutions f,g such that
f 0y = g'(0) = 1, (f7(0),g"(0)) = A;. And the 4-jet of f,g can be arbitrary. If the
y-moment _[poydx A dy is not O, then the Taylor coefficients of f of order 2 5 can be

arbitrary, and if the x-moment f fD pxdx A dy is not 0, then the Taylor coefficients of g of
order 2 5 can be arbitrary.

Theorem 5.2 ([8]). Let ¥ ¢ R? be a closed Feynman diagram with Area(y) = 0 and
G(y) # 0. For A, = (a2, an) # 0 orthogonal to G(vy) assume

fprz”dx/\dy=O, p=23,...
D

and W,.(f,g) = id for f,g # id tangent to identity with (f"(0),8"(0)) = Az. Then f,g
commute.
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In these theorems p denotes the winding number of y and D the domain enclosed by 7.
And K; = appx + azny.
Then we obtain the following lemmas straightforward by Definition 1.1.

Lemma 5.1. Assume a palette diagramT consisting of four unit weighted squares without
area has one of the following property 1 ~ 4.

1. T has the type (E) and non zero integers p, q, r satisfy the condition that p +q # 0
andp+r#0andq+r #0,

2. T has the type (F) and non zero integers p, q, r satisfy one of the following conditions
that,

p+q#0 and pi(p,q,r)#0,
p+r¢0 and p2(p’qsr)¢03
g+r+0 and ps3(p,q,7)#0,

3. T has the type (G) and non zero integers p,q,r satisfy one of the conditions that
pa(p,q,r) #0,  ps(p,q,r)#0,  ps(p.q.7) #0,

4. T has the type (H) and non zero integers p, q, r satisfy the condition that p+(p, q,r) #
0,

where pi(p,q,7),i = 1,2,...,7, is polynomials in Definition 1.1. Then for all Feynman
diagrams v obtained from T', Wy.(f, 8) = id admits formal solutions f,g # id non com-
mute and tangent to identity such that (f(0),8"(0)) = (a,pB), where (a,B) is a vector
orthogonal to G(y).

Lemma 5.2. Assume a palette diagram T consisting of four unit weighted squares without
area has the type (I). For a Feynman diagram y obtained from T, assume W (f,g) = id
for f.g # id tangent to identity with (f’(0),8"(0)) = (a,pB), where (a,p) is a vector
orthogonal to G(y). Then f,g commute.

And we obtain the following Theorem 5.3 and 5.4 naturally as the application of the
classification theorem form Lemma 5.1 and 5.2.

Theorem 5.3. Assume I' equals the one of the diagrams in the lists of Theorem 3.1 ~ 3.4
with p, q, r satisfying the following conditions on polynomials for each diagram;

(E~1)~(E-6) p+q#0 and p+r+#0 and q+r#0,

(F-1) p+r#0 and q(q+r)+plg+4r)#0,

(F-2) q+r#0 and 9p*+qr+9p(q+r)#0,

(F-3) p+r#0 and q(g+r)+p(g+4r)#0,

(G-1) (g+2r) +plg+4r)#0,

G-2) P +p(-29+1)+q(g+r) #0,

(G-3) (g+2r)+plg+4r)#0,
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G-4
(G-5)
(G-6)
G-7
(G-19)
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(g +2r)? + p(g +4r) #0,

9p® +4q(q +r) +3p(4q +3r) # 0,
PP+plg-2ry+rig+r)#0,
(g-r+plg+n#0,

4p2 +4p(g+r)+q(g+r)#0,

(H-1)~(H=-3) Pya,B)#0.

Then for all Feynman diagrams 'y obtained from T, W,-(f,g) = id admits formal solutions
f.g # id non commute and tangent to identity such that (f"(0),8"(0)) = (a,p), where
(a,P) is a vector orthogonal to G(y).

Theorem 5.4. Assume I equals the one of two in the list of Theorem 3.5. For a Feynman
diagram v obtained from T', assume W,-(f,8) = id, f,g # id are tangent to identity and
(f(0),8"(0)) = (a,B) where (a, ) is a vector orthogonal to G(7). Then f,g commute.

As examples of Theorem 3.3, the following éxamples shown in [5] are reappeared.

Figure 1: closed Feynman diagram and its dual diagram in R?
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These are Feynman diagrams obtained from a palette diagrém (G-3)forp=1,9g=-1,r=
-1,s= 1. Since
(q + 2",17) = (—'3! l) * (0’0)

and
(g+2r) +plg+4r)=9-5=4 %0,

we see by Theorem 3.3 that the relations

Wye(f,8) = V8P o (/g = d,
W, (f,8) = fogofPolg flofolg flo{f ", o™ =id,
W, (f,8) = (f0,8 " ogo (s, g P)ogt o fD |

of f7, gD o oD o (D, DY 6 D = g

admit formal solutions f, g # id non commute and tangent to identity such that (f”'(0), g(0)) ="
(-1,3), where {f,g} = ffVog Mo fog.
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