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Weak Solutions to the Navier-Stokes-Poisson
Equations
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We study the global existence of weak solutions to the Navier-Stokes-
Poisson equation

pt+ V- (pu)=0 :
(pu)e + V - (pu @ u) + pV® + aVp" = pAu+ (A + p)V(V - u)

1 .
Ad = - — i 1
4mg (p ] /np) in Q x (0,T) (1)
with the initial-boundary condition
u =0, -‘;Lf:o on 00 x (0,7T)
Plico = po(z),  (Pu)lp = @o(z) InQ, (2)

where @ C R? is a bounded domain with C%*® boundary 69 (0 < 6 < 1), v
the outer normal vector, p = p(z,t) the density,

u = u(z,t) = (u'(z,t),u(z,t), u’(z, )

the velocity, ® = ®(z,t) the Newtonian gravitational potential, v > 1 the
adiabatic constant, 4 > 0 and X the viscosity constants satisfying A+ %u >0,
a = €5 the constant determined by the entropy S, and g > 0 the gravita-
tional constant. Physically, this system describes the motion of compressible



viscous isentropic gas flow under the self-gravitational force. Such a fluid
may be formulated as the Euler-Poisson equation, and several mathematical
studies have been done for this Euler-Poisson equation [16, 17, 2, 10], where
the viscosity is neglected, the equation is considered in the whole space RS3,
and the solution admits to have the compact support. Then, the contact
angle between fluid and vaccume is not zcro in the equilibrium state, and
establishing the existence of the solution in an appropriate function space
including the equilibrium state is not easy because of this, even locally in
time with spherically symmetry in space. _

In a series of papers (20, 18, 19], T. Makino and his co-workers studied
such a problem of vaccume for spherically symmetric Navier-Stokes-Poisson
equation (of a specified pair of the viscosity constants) with solid core. Here,
we study the Navier-Stokes-Poisson equation on the fixed domain Q without
radial symmetry or solid core, and show the existence of the weak solution
in a resonable function space including the equilibrium state, emphasizing
that the vaccume region {x € Q0 | p(z,t) = 0} can exist inside this domain
although the equilibrium state is everywhere positive in this problem.

Similarly to the above mentioned equations, equation (1) is provided with
the properties of the conservation of total mass M = [, p and the decrease
of total energy E;

E = /<|u|+ ) 2//9“ (z,y)p(z)p(y)dzdy
+ 5 VAl - g Ival,

and here, P = ap” and G = G(z,y) denote the pressure and the Green’s
function of the Poisson part, respectively, so that ®(z) = g [, G(z, y)p(y)dy
if and only if

ov

In this Poisson equation, p € LY(Q) implies ®,, € L?(Q) (¢ = 1,2,3) for
v > 2. More precisely,

A<I>=47rg(p—|—slﬂnp) in Q, aQ{i=0 in 09, /Q<I>=O.

19, < oK llllg @)

by Lt elliptic estimate and Sobolev’s inequality, where K is a constant deter-
mined by Q. In accordance with the energy E given above, therefore, v > %



and v = g are the subcritical and critical exponents of the equilibrium, re-
spectively. In more detail, the equilibrium state is realized by u = 0, and
hence it holds that (3) and

a
® + -—71p"'1 = constant  in Q.

Then, this problem has a variational solution in the case of v > g, while it
does not admit a solution if 1 <y < £ and Q C R? is star-shaped [21].

Our result on the non-equilibrium state, on the other hand, is regarded
as the generalization of Feireisl, Nevotny, and Petzeltové [12] concerning the
Navier-Stokes equation without the Poisson term ; more precisely,

Theorem 1 Let T > 0 and v > 3. Then, given py € LY(Q) and |g|* /po €
LY(Q) with po = po(z) > 0 and gi(z) = 0 for z of po(z) = 0, we have a finite
energy weak solution p,u, ® to (1) satisfying the following.

p=p(z,t) 20, p€ L®(0,T; L7(Q)), u' € L (0, T; Hy(9)).
E=E{t)e L (0,T).

Z+ulVulz+ A+ ) |V ul <0in D0, T).

The first two equations of (1) hold in D' (Q x (0,7)).
®(,t) = 9 Jo G(-,y)p(y, t)dy for a.e. t € (0,T).

The first equation of (1) holds in D’ (R3 x (0,T)) if the zero extension
s taken outside S to p,u.

S - A e d o~

7. The first equation of (1) is satisfied in the sense of the renormalized
solution, i.e.,

Lb(e) + V- (blo) + B (0o~ bp) V- u=0  (5)

in D' (Q x (0,T)) for any b € C(R) such that ¥ (z) = 0 if || is large.



Similarly to the Navier-Stokes equation without the Poisson term, any
finite energy weak solution satisfies

pPE C([O T] Lweak(ﬂ))
pu' € C([0,T]; Ll,iék(ﬂ)) (6)

by the first two equations of (1) and consequently, the initial conditions make
sense in the above weak solution.

In fact, we have pu' € LZ(O T; LP(Q)) for £ = & -
ity, and therefore,

% by Sobolev’s inequal-

47 ,,4 = |[ pu-ve| < ClIv9l,

for ¢ € CP(Y), where §+% = 1. This implies the continuity of ¢ € [0,T] —
Japd for ¢ € LY () by p € L®(0,T; L7(R)), where = + * = 1, and hence
p € C([0,T); LY 00k (1)). The second relation of (6) is shown similarly, because -
the energy inequality guarantees \/pu € L*(0,T; L*(Q2)) by (4) and v > &,
and therefore, pu € L>(0,T; L%(Q)) follows from p € L*(0,T; L"(f2)).

B. Ducomet, E. Feireisl, H. Petzeltova, and I. Straskrabé [7] prove the
above Theorem 1 in the case that the solution ® of the Poisson equation
A® = 4mgp is expressed by the corresponding Green function provided p is
extended to be zero outside .

We shall follow the scheme [12, 7] to construct our weak solution. In more

detail, taking large 3 > 0, we construct an approximate solution u = us¢(z, t)
to

pe+V - (pu) =elp
(pu)e + V - (pu'es) + a(p")z; + p®a, + 8(0P)z, + eVt - Vp
= pdu’ + (A + p)(V - w)g,

Ad = 47g (p - ﬁ/f;p) in Q x (0,7) (7

with (2) by the Faedo-Galerkin method. Then, we obtain the actual solution,
by vanishing the artificial viscosity € and then the artificial pressure 6. The
condition vy > % is necessary to take the limit of the Faedo-Galerkin approx-
imation and construct the solution to (7), using the div-curl lemma. This



restriction is the same as that of [12], because the total mass conservation
llo(-,)ll; = M guarantees

lolls < M ]

for ;_;_o + % = 2, and therefore, if v > %, then 20 < -y and the contribution of
the Poisson term —5—71r—g |V ®|)2 of the total energy E is absorbed into that of
the pressure term [, P by (4). We note that this condition v > % is actually
weaker than v > 3.

Also, we use the following lemma on L! convergence used in taking limits
of the approximate solution.

Lemma 0.1 If ® : R — (—o00,+00] is a proper, lower semi-continuous,
convez function, D C R™ is a domain with bounded measure, and

St,tp |vell, < +oo (8)
vy >V weakly in L(D) (9)
P(vy) = ®(v)  weakly in L*(D) (10)
[ e = [ @) (11)

with p > 1, then it holds that

vy = v strongly in L'(D). ' (12)
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