0oooo0O0oooo
14950 2006 0 103-111 103

Remarks on Quasi-linear Wave Equations
Related to Gas Dynamics

dedicated to Professor Tai-Ping Liu on his
60th birthday

Tetu Makino
(Faculty of Engineering, Yamaguchi University)

This is a joint work with Cheng-Hsiung Hsu (National Central Univ.,
Taiwan) and Song-Sun Lin (National Chiao-Tung Univ., Taiwan).

1 Introduction

We consider the equation

Y — (G(yz))z =0 (1)
on 0 < z < 1 with the boundary conditions
y(t,0) =y(t,1) = 0. (2)

Here we suppose that G(v) is real analytic in |v] < §, G(0) = 0,G'(0) =y >0
and G'(v) > 0 for |v] < 8. As example we keep in mind

Gv)=1-(1+wn)7", (lv] < 1).
The linearized problem is

Yo — YWzz = 0, n (t, 0) = '_Ul(t, 1) =0,



which has smooth time periodic solutions

N
n = Z an sin(nmy/(t + 0,)) sinnwz. (3)

n=1

Thus we have the problem: Are there time periodic solutions for (1)(2) near
to the periodic solution of the linaerized problem? We have not yet obtained
an answer to this question. In this report we give some related observations
to this problem. Detailed discussion can be found in [2].

2 Derivation of the problem

We consider one-dimensional movement of polytropic gas without external
force governed by the compressible Euler equation

pr+(pw)e =0,  (pu)e+ (pu*+P), =0

on a fixed interval 0 < z < L with the boundary conditions

puls=o = pulz=r = 0.

We assume that P = Ap”, where A and ~ are positive constants such that
1 < ¥ £ 2. Equilibria are constant densities p = p = Const. > 0,u = 0.
Let us introduce the Lagrangean coordinate

m=/ pdz.
0

Then the equation is reduced to
‘ Ty + (A(Zm) )m =0,
where r = z(t,m) is new unknown function, while
L 1_oe
ot’ p Om’
We consider the perturbation y near the equilibrium

_ L
zlt,m) =T +y=m+y,

where M is the total mass. Taking ¥ as the independent variable and nor-
malizing the variables, we have (1) and (2) with

G)=1-(1+v)".
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3 Existence of smooth solutions on long time

Let us fix a smooth time periodic solution yi(t,z) of the form (3) of the
linearized problem.

Theorem 1. For any positive number T there are positive constants €* and
C such that for any 0 < € < &* we have C2-solution y(t,z) of (1)(2) on
. 0<t<T such that

ly(t,x) - Eyl(t, .’12)| < 052

for0<t<T and0<z<1. Here
y(0,z) = eyn(0,z),  v:(0,2) = ey1,(0, z).

Before proving this theorem we consider the problem by extending solu-
tions as

y(t, z) = —y(t, —x), y(t,z 4 2n) = y(t, T)
for any n € Z. Putting

U1 =Y, V1= Ure w=eu+U w=cn1+V,
we have

‘/t - U:z: = 07
U, —G'(ev + V)V, = (G'(evi + V) — ¥)ev1a.

The variables v
W =U+Gev; + V) = Glewy), Z=U-Gev, + V) + G(ew),
where ' v
6) = [ VETeYis,
reduce the equation to the diagonali(;ed equation
Wi —Alev, + VW, =L_, Zi+ ANev, +V)Z, = Ly,

where
A(w) = VG (v),
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and
Li = (= + Aevy + V)A(ev1))evi e £ (Alevy) — Alevy + V))eurz.
We look for solutions W, Z such that
W(t,z) =-2Z(t,—x), W(t,z + 2n) = W(t, z).
For simplicity we consider solutions which satisfy the initial conditions
W(0,z) = Z(0,z) = 0.
We construct solutions by iterations. Given V (¢, x), we solve

W — Alevy + V)W, = L_(t,z,V (¢, z)),
Zy+ AMevy + V) Z, = L (t,z,V(t,1)),

and find U,V by
W =U + Gev, + V) — G(en), Z =U-GEev+ V) +G(en).

The solution of the above problem is given by the integral along the charac-
teristic curves: if £(7) = €(7;t, x) is the solution of

d
L _Aew+ V), € =g,
then . |
2,2) = [ Lo(rg). Vi &rar
0
and so on. Through tedious computations we can prove the following lemmas.

Lemma 1. Thare exist My > 0,60 > 0 such that if 0 < e < & and VIl <
e2My, then ||U]| < e2My, ||V ]| € €2Mp and eljv1]| + €2 Mp < 0/2.

Here
|If1| = sup{|f(t,z)| [0<t<T,zeR}

Lemma 2. There exist 0 < e1(< o), M1 such that if 0 < € < &3, V]| <
€2Mo, ||Val| < €2M;, then ||Usl], || Ul |[Vall, [IVil| € €2My and €2M, < 1.
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Lemma 3. There ezist 0 < e3(< €1), My such that if 0 < € < g2,
IWVI| < e2My, ||Val| € e2My, ||Vas|| < €2 M,
then ||Uzell, 1 Usall, [1Vazll, [[Varl | | Veel| < €2M; and e2M; < 1.

Moreover, if V1, V? satisfy the conditions of the lemmas, then we can
prove that

=90 < SVt = VO,

ife< £*(< €2), which is sufficiently small.
Thus we consider the iteration

VO =g  yer) =y,

Then V™ converges to the limit V and

Mwa@meme

gives the required solution.

4 Non-existence of time global smooth solu-
tions

Let us apply the arguemnet of [4].

Theorem 2. Suppose that G"(v) < 0 for |v| < § or G¥(v) > 0 for |v| < 4. If
y(t,z) € C*([0, +00) x [0,1]) is a solution of (1)(2) such that |yz(t,z)| < &1
fort >0,z € (0,1], where 0 < &, < 4, then y = 0 identically.

Proof. We can suppose that y € C?([0,00) x R) solves (1) and y(t,z) = -
—y(t, —z),y(t,z + 2n) = y(t,z) for n € Z.
Putting

w=y+GW), 2=y~ G,

we reduce the equation to

wy — A(yz)we =0, 2+ A(yz)ze = 0.



By the assumption, we have

1
=< <C.
o SAw)=<C
Now let z = z(t) = z(t; a) solve
dx
== Ays(t, z(2)), z(0) = a.
Consider 3
X(t) = B—az(t;a).
Then

X(t) = exp (/0 %A(yz('r,x))dT) > 0.
On the other hand we can prove that
A(y.(t, / ¢
X = (——I&’y(zo“’g))))l "1+ 2(0,0) /0 Q(r)dr),

where ) = — (L0071t
T \Aye(r,2(7)/ 4G (yu(7,2(7))

If G" < 0, then @ > 1/c > 0 and fot Q(r)dr — +o00 as t — oo. Thus we
have z,(0,a) > 0 for any a. Since 2(0,.) is periodic, we have z(0,.) =Const.
By a similar discussion we have w(0,.) =Const. This implies the result.

5 Exact solutions
In [3] F. John gave exact solutions to the equation
e — (1 + Y2)Yee = O.
Along the idea of F. John we construct exact solutions of our general equation
Yie — (G(Yz))z = 0.

Let f be arbitrary function of C(R). Suppose that v = v(t,z) solves
the equation

v=f'(z - A()t). (4)
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Put
y(t, z) = t@(v(t, z)) + f(z — Av(t, 2))1),
where

O(v) = /: CN'(Q)d¢ = vA(v) — G(v).

Then we have

A

Y= —G('U)a Yt = —Av, Y=V, Ygoe = Vg-
On the other hand

Afll _ fll

U = _1+f”A't’ Uz = 1+f”A't’

as long as
1+ f'(z — A)t)A'(v)t # 0.
Thus y(¢, z) satisfies the equation with the initial conditions
y(0,2) = f(z),  w(0,2)=-C(f(z))

Suppose that f € C°(R) satisfies that |f/(€)| < do(< 6) for any £ € R
and

—m = min f"(E)A'(f'(§)) <0 < max f(E)A(F()) < m.

Put T = 1/m. The equation (4), which is equivalent to the equation
£ =z - A(f'(),

admits a unique solution as long as 0 < ¢ <T. Ast — T — 0, we see that
Yz = v,y = —G(v) remain to be bounded but y,, — oo. This is a typical
example of singularity which happens after a finite time for smooth solutions.

6 Estimate of life span of smooth solutions
Let us apply the theory of Lax [5] to find estimate of life span of smooth

solutions.
Consider the initial value problem:

Yu — (G(ym))ft = 01 y(ta 0) = y(t’ 1) = 0,
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¥(0,z) = ¢(z),  :(0,2) = ¢(z),
where ¢, 1 are smooth and
¢(0) = ¢(1) = %(0) = ¥(1) =0.

Theorem 3. There ezist constants €,C such that if |¢.(z)], |¢¥(z)| < € and
if :
|6z2(z),  [he(z)| < M,

then there ezists a solution y(t,z) of class C? as long as 0 <t < 1/CM.

Observe

A

W=7y + @(yz), z=1y - G(ys),

which satisfy
wy — Aw, = 0, 2+ Az, = 0.

Thus a priori estimates of |w|, |z| are obvious.
Consider the quantities

A= \/—A.wm, B= \/Z\—zz’
which satisfy
A — ANA, + pA® =0, B, + AB, + uB* =0,

where 1

= —7G"(1)G ()"
Note that |u| < C a priori. As P. D. Lax said in [5]: “solution to initial-
value problems exists as long as one can place an a priori limitation on the
magnitude of their first derivatives.” Thus this completes the proof.

7 Problem with vacuum

Originally we are interested in the equation
1
Y — ;(PG(yz))_., =0,

where

Gw)=1-(1+v)", p=(1-2)77, P=(1-2)7.
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This equation is derived from the motion of gas under constant gavity gov-
erned by the equation

pr+ (pu)z =0,  (pu) + (pu® + P): = —pg,

where P = Ap” and g is positive constant. Equilibria are

1

__ JA(L —-x)T (0<z<lIL)
Tl <o),

where L is positive constant determined by the total mass and

A = (2_(7_—1_)) =
Ay
The linearized problem has time periodic smooth solutions explicitely written
by the Bessel function of order 1/(y — 1). Detailed discussion can be found
in [1].
But we have not yet proven parallel results for this problem because of
the singularity at z = 1.
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