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Abstract

Consider supersonic flow around a ramp. There are two possible shock
reflections, the weak and strong Prandtl-Meyer reflection. Experimentally,
it is the weak reflection that is observed. The purpose of this article is
to present recent analytical formulations and computational results on
this problem. Through numerical computations, we show that the usual
time-asymptotic stability criterion fails to rule out the strong reflection.
Instead, we consider the self-similar flows, the time-asymptotic states of
general flows.

1 Introduction

Consider the isentropic Euler equations of compressible gas dynamics in two
space dimensions:

pe+ V- (pt) =0 Y
| (o0 + V- (o789 + Violp) =0, @
here p is the density, ¥ = (u,v) the velocity, ¥ = (z},2%) = (z,y) the space

variables, and V = 9z the spatial gradients. We consider the polytropic gases
so that, after some rescaling, the pressure function p(p) is given by

plp) = p", v € (1,00).

The Euler equations possess two types of discontinuity, the shock waves as well
as the highly unstable vortex sheets. To focus on the shock waves, we will
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consider the potential flow equations with the additional hypothesis that the

flow is irrotational. That is, there exists a scalar potential function ¢ such that -

7= V.

From this and the Euler equations, (1), (2), the following Bernoulli law holds
for smooth flows:

0= ¢zt + Vg, - Vo + m(p)a,

= e+ 220 2o,

where 7(p) is related to the sound speed c(p) by

= c*(p)/p, 2(p) = po(p).
Thus, for some constant A,

2
p=r(4 g - V2L,

Substituting this (1) yields the potential flow equation:

Cbtt + 2¢m¢tm + 2¢y¢t‘y + [(¢m)2 - C2]¢:z:m + 2¢m¢y¢xy + K¢r)2 - Cz]d)yy = 0& )
3

The stationary potential flow equation

[(¢T)2 - Cg)](ﬁmﬂf + 2¢a‘¢y¢ry + [(¢T)2 - Cz)]¢:’!l[ = 0 (4)

is elliptic when the flow is subsonic, |V¢| < ¢, and hyperbolic when it is super-
sonic |V¢| >ec.

‘The problem we are interested in is the flow.past a wedge of solid. The gas flow
is in the region Q outside of the wedge with angle 2, in the polar coordinates
(z,y) = (rcosb,rsinb), 0| < =,

Q= {(z,y) : 16| > a}.

For constant supersonic upstream flow Vé(z,y) = (i,0), u > ¢, the compres-
sion that the wedge induces gives raise to shocks. Using the shock polar analysis,
Figure 1, [Courant-Friedrichs], Prandtl shows that there are two possible con-
figurations, the weak shock reflection with supersonic downstream flow, Figure
2, and the strong shock reflection with subsonic downstream flow, Figure 3.
The weak reflection is the one observed experimentally. Our main purpose is to
address this analytically.
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Figure 1: Weak shock

Figure 2: Strong shock

One plausible approach is to rule out the strong shock reflection by the consider-
ation of stability, the stable ones are physical. Both weak and strong reflections
are structural stable in that they exist upon small perturbation of the wedge.
The time-asymptotic stability is the relevant one here. In Section 2 we present
computational results on the time-asymptotic stability on both refelctions. A
surprising finding is that both strong and weak reflections are time-asymptotic
stable upon compactly supported perturbations. Thus the consideration of time-
asymptotic stability fails to rule out the strong reflection. The main part of our
effort is to come up with an analytical setup of showing that the weak reflection
is the one observed experimentally in that it represents the time-asymptotic
.state of an accelerating flow. This is explained in Section 3.

2 Computational Results on Time-Asymptotic
Stability

We study the perturbation of the weak reflection, Figure 1, and of the strong
reflection, Figure 2. The perturbation is compactly supported. We present re-
sults for the familiar Godunov method. More sophisticated numerical methods,
as well as changes to upstream Mach number and other parameters, produce
qualitatively similar results. The computational results are presented in Figure
3 for weak reflection and in Figure 4 for strong reflection. For weak reflection,
the perturbation moves away from the tip of the wedge. This is because the
downstream flow is supersonic. Due to dispersion and the absorbing nature of
the leading shock, the perturbation decays in time. The downstream flow for
strong reflection is subsonic and so the perturbation propagates both away from
the tip of the wedge as well as toward the tip, and it also decays in time. In
summary, both weak and strong reflections are nonlinear, time-asymptotically
stable upon compactly supported perturbation. Thus this analysis fails to ex-

114



Figure 4: Strong shock perturbation (density shown)

plain the fact that experimentally it is the weak, not strong, reflection that is
produced. We do, however, observe the instability of the strong reflection when
the downstream state at z = 0o is also perturbed; see Figure 5.

3 Self-Similar Flows

To produce the shock reflection, it is to accelerate the wedge to supersonic speed;
or, equivalently, keep the wedge fixed and accelerate the upstream flow till the
given constant supersonic velocity (@, 0). The acceleration yields complex flow
patterns and many shock waves are generated in the process. What interested
us is what type of shock reflections will eventually be produced. By the time-
asymptotic scaling (z,y,t) — s(z,y,t), s — 04, the process becomes the initial
value problem with initial values at time ¢t = 0:

Vé(z,y,0) = (a,0).

In other words, the wedge is instantaneously accelerated to the supersonic state

(@,0). This simplifies greatly the thinking because both the geometry of the
domain €2, the initial values, and the potential flow equation are invariant under
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Figure 5: Strong shock vanishes under downstream state perturbation; right:
the w ~ak shock appears.

the scaling (z,y,t) — s(z,y,t). Thus the solution is self similar:

¢(z,y, 1) =1p(&,n), E==/t, n=y/t.
The self-similar potential flow equation is
[Cz — (e — E)ZW& —2(ve — &) (b — Mtben + [cz — (P — n)Q]wnn =0.

The velocity takes similar form as before:

[ ¢

vy = 7.

The self-similar potential flow equation is of mixed type. It is hyperbolic if the
flow is pseudo-supersonic:
|7~ (&) > ¢

and elliptic if it is pseudo-subsonic:

Iﬁ— (ga U)f >c.

'The initial condition for the potential flow equation turns to the boundary
condition for the self-similar equation at |(£,7)] = co. The self-similar solution
represents the solution of the time-dependent solution at time ¢t = 1. Since the
flow is clearly pseudo-supersonic around |(¢,n)| = oo, the boundary condition
consists of one-dimensional shock waves parallel to the ramp. We have carried
out numerical computations. Our result shows that the self-similar solution
consists of the weak shocks from the tip of the wedge, the one-dimensional
shocks paralell to the ramp, curved shocks connecting the these two set of
shocks, and a region of pseudo-subsonic flow bounded by the curved shock and
two pseudo-sonic circles determined by the two constant states between the weak
shocks, curved shocks and the ramp, Figure 6. We are finishing the analytical
justification of this flow pattern. This would show that the weak shock reflection
is the physical one.

)..
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Figure 6: The weak shock appears spontaneously at the corner. It is connected
to the straight reflected shock by a curved shock, with a nontrivial elliptic region
below.
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