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A binary mixture of gases is confined in a gap between two coaxial circular cylinders rotating at
different angular velocities. One of the component gases is the vapor of the substance that forms
the cylinders, so that evaporation or condensation (or sublimation) of the vapor may take place on
the surfaces of the cylinders. The other component is a noncondensable gas that neither evaporates
nor condenses on the surfaces. Axisymmetric and axially uniform flows (the cylindrical Couette
flow) of such a mixture are investigated on the basis of kinetic theory with special interest in the
continuum (or fluid-dynamic) limit in which the Knudsen number goes to zero. The fluid-dynamic
system that describes the behavior of the mixture is derived by a formal but systematic asymptotic
analysis of the Boltzmann system. The resulling system shows some nontrivial effects such as the
ghost effect and the flow bifurcation.

1. INTRODUCTION

Axisymmetric and axially uniform flow between two rotating coaxial circular cylinders is a
textbook example known as cylindrical Couette flow in classical fluid dynamics. It is also one of
the basic flows for a rarcficd gas and has been investigated on the basis of kinetic theory (see,
for example, [1-4]). The flow is a simple time-independent and spatially one-dimensional flow,
and it exhibits neither instability nor bifurcation unless the axial uniformity is rcleased. However,
if the gas is a vapor of the substance that forms the cylinders and it undergoes evaporation or
condensation (or sublimation) on the surfaces of the cylinders, the situation changes dramatically.
The flow exhibits bifurcation for relatively small Knudsen numbers even under the constraint of
axial uniformity [5-8]. That is, there appear two or more different solutions for a certain range
of parameters, such as the rotation speeds, the radii of the cylinders, and the Knudsen number.
The structure of this bifurcation was investigated in detail by a formal but systematic asymptotic
analysis of the Boltzmann equation with a delicate parameter setting in the case of slow rotation
and small Knudsen numbers, and the essential features of the bifurcation were clarified [7]. One
of the cases considered in Ref. [7] was then investigated mathematically in Ref. [9], and a rigorous
proof of the existence of the bifurcation in the asymptotic limit was given.

Now let us consider the continuum (or fluid-dynamic) limit where the Knudsen number goes
to zero in the case with evaporation and condensation on the cylinders. When the inner cylinder
is rotating and the outer cylinder is at rest, there appear three different types of solution in a
wide parameter range. First type exhibits evaporation on the inner cylinder and condensation
on the outer, the second type condensation on the inner cylinder and evaporation on the outer,
and the last type no evaporation or condensation on the cylinders [5]. The first and second types
are described by the Euler equations with appropriate boundary conditions for evaporation and
condensation [10]. For the third type, since there is no evaporation or condensation, it is natural
to think that the flow field between the cylinders is the same as that of the ordinary cylindrical
Couette flow. It is, however, not correct. The infinitesimal evaporation and condensation in this
case have a significant effect on the flow field, such as the tangential velocity and temperature
fields [12]. This is an example of the ghost effect that was discovered in Ref. [11] and investigated
cxtensively in successive papers (see, e.g., Refs. [12-18]). The fluid-dynamic system that describes
the third-type solution was derived systematically from the Boltzmann equation in Ref. [12], and
the deformation of the tangential component of the flow velocity caused by the ghost effect was
clarified. Direct numerical analysis of the Boltzmann equation or its model equation for very small
Knudsen numbers was able to give numerical solutions that correspond to the first and the second



type mentioned above [5, 6, 8]. However, it could not show the solution corresponding to the third
type [5, 6], most probably because of the instability of the solution. When the outer cylinder is
rotating and the inner cylinder is at rest, there is no bifurcation of the flow in the continuum
limit, and the solution without evaporation or condensation (i.c., the solution with the gost effect)
appears for the rotation speed higher than a critical value. The solution corresponding to this
solution was obtained by the direct numerical analysis for small Knudsen numbers [5, 12].

In the present study, we consider the same problem, the cylindrical Couette flow of the vapor with
evaporation and condensation on the surfaces of the cylinders. The difference from the previous
study is that we consider the case where another noncondensable gas, which neither evaporates
nor condenses on the surfaces of the cylinders, is also contained in the gap of the two cylinders.
According to the study of the plane Couette flow of the mixture of a vapor and a noncondensable
gas [19], we can expect, in the cylindrical Couette flow, that evaporation and condensation are
blocked by the noncondensable gas and vanish in the continuum limit in any parameter range.
Therefore, the solution that exhibits the ghost effect caused by the infinitesimal evaporation and
condensation is the natural and only possible solution when there is the noncondensable gas. We
investigate this problem and derive the fluid-dynamic system that describes the behavior of the
mixture in the continuum limit by a systematic asymptotic analysis of the Boltzmann system. As
expected, the resulting fluid-dynamic system shows the ghost effect. More specifically, although
evaporation and condensation of the vapor vanish in the continuum limit, it changes the flow field,
such as the profile of the tangential component of the flow velocity, dramatically. In addition,
such type of solution exhibits bifurcation in a certain parameter range. The ghost effect as well
as the bifurcation of solution is investigated in detail on the basis of the numerical solution of the
fluid-dynamic system. Furthermore, these results are compared with the Monte Carlo simulation
of the Boltzmann equation for small Knudsen numbers.

2. FORMULATION OF THE PROBLEM
2.1. Problem

Let us consider a binary mixture of a vapor (A-component) and a noncondensable gas (B-
component) confined in the gap between two coaxial circular cylinders made of the condensed
phase of the vapor, rotating at different angular velocities. The vapor may evaporate or condense
on the surfaces of the cylinders, whereas the noncondensable gas undergoes ordinary reflection
without evaporation or condensation there. The radius, temperature, and surface velocity of the
inner cylinder are denoted by L;, T}, and V}, respectively, and the corresponding quantities of the
outer cylinder by Ly;, Ty, and Vj;.

Restricting ourselves to the case of axisymmetric and axially uniform flows, we investigate the
steady behavior of the mixture on the basis of the Boltzmann equation with special interest in the
continuum limit where the Knudsen number vanishes.

2.2. Basic equations

Let us introduce the cylindrical coordinate system (r,8,z) with the z axis along the common
axis of the cylinders. Let £ be the molecular velocity and &, g, and £, its r, 8, and z components,
Fe(r,€) the velocity distribution function of the molecules of the a-component (oo = A, B). In
what follows, we will use the indices o and 3 to represent the components of the mixture, i.e.,
a,8 = A, B.

The Boltzmann equation in the present problem is written in the following form:

OFx  EOF™ & OF* _ Ba(ph_pe 1
& ar +73€r T 3&9—’3§BJ (F7, F9), )

where JP is the collision integral defined by:

JP(F,G) = / [F(£)G(E') — F(€.)G(€)BP*(le - V|/V, V)d(e)dé., (2)
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Here, . is the integration variable corresponding to £, and d€, = d¢.,d€.ed€,,; e is the unit
vector and d€)(e) is the solid-angle element in its direction; m® is the mass of a molecule of the
a-component; the domain of integration with respect to e is all direction, and that with respect
to &. is its whole space; B*(|e - V/|/V,V) is a nonncgative function of je - V|/V and V, whose
functional form is determined by the intermolecular force.

In order to describe the boundary condition on the cylinders, we need to introduce the saturation
number densities n; and ny of the vapor molecules at temperatures 77 and T}y, respectively. For
each substance, the saturation vapor pressure (or number density) is a function of the temperature
only, determined by the Clausius-Clapeyron relation. Thus, ny and n;; are determined by T3
and Ty, respectively. However, we can regard n; end njy as parameters independent of Ty and
Tpp if we keep the freedom of choosing substance of the vapor. For the purpose of describing the
boundary conditions on the inner and outer cylinders in a unified fashion, we define the symbols
Owy Nw, Vw, a.nd Tw by

ow=1 ny=n;, Vy=Vp Tw=T[, &t’I‘=L1,

(5)
ow=-1, ny=nq, Vy=Viy, Ty=Tiy, atr=1Lj.
The boundary conditions at r = Ly and Ly are expressed in the following form (15, 20, 21]:
Frogi@+ [ KEEEIF(E)E, (or ot >0) ®)
Twlar<

where the source term g3 (&) and the scattering kernel K2 (&, £, ) are given functions, the functional
forms of which are determined by the nature of the boundary. The g% (&) and K2(€,€.) need to
satisfy the following conditions:

93(5) 20, (owér > 0), (7a)

95(6) =0, (owér > 0), (7b)

KS(& 6*) 2 01 (Uwf'r > 0, awew < 0); (7(‘)

| lelenlkE€ €)=Y (outer <), (7a)
0wy >0

where Eq. (7d) indicates that there is no net particle flux of the B-component across the surface
of the cylinders, that is, the B-component is noncondensable. In the present problem, g2 and K4
depend on ny,, Vi, Ty, and m4, and K2 on V,,, T, and m®B. We assume that Eq. (6) is satisfied
by the wall-state equilibrium distributions, i.e.,

FS = g2(€) + / K3 (6, £ FS(6)dEs, ®)
Owler<0
with
a_ Ny €2 + (&p — Vi)? + &2 .
Fi = GrkaT fmAYTE P (“ 2kpTy/mA ) (Be)
B _ c &+ (6 —Vu)® + €
F, = (2mkgT, /mB)3/2 exp (_ 2kpT,/mPB ) , (#b)

where c is an arbitrary constant, and kp is the Boltzmann constant. We also assume that Eqgs. (9a)
and (9b) are the only equilibrium distributions that satisfy Eq. (8).
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Let n%, v™ = (v3,vg,0), p®, and T* be the molecular number density, the flow velocity, the
pressure, and the temperature of the a-component. These macroscopic quantities are expressed in
terms of the velocity distribution functions as

n® = /F"dﬁ, (10a)
weos [erde = [ar (10b)
p* = kon°T® = 3 [ me((6, = v2)? + (60 — v§)? + 2P0, (100)

where d§ = d¢,d€sd€;. In Egs. (10a)-(10c) and in what follows, the domain of integration with
respect to £ is its whole space unless the contrary is stated. The number density n, the mass
-density p, the flow velocity v = (vr,vg,0), the pressure p, and the temperature T of the total
mixture are defined by

n= / (F4 4 FB)dg, (11a)
p= / (mAFA + mBFB)de, (11b)
vy = % / £.(mAFA + mBFB)dg, (11c)
vg = % / Eo(mAF4 + mBFB)dg, (11d)
p=konT = 7 [1(6 —0)? + (& — o)? + E(mAFA + mBFB)de. (11e)

Therefore, they are expressed in terms of the macroscopic quantities of each component as

n=n4+n8, (122)
p=mAnt + mBnB, (12b)
vr = (mAn4v2 + mBnBuB)/p, (12c)
vp = (mAn4vg + mBnBovf)/p, (12d)
p= ) [P +m*n(of - v.)?/3 + m*n*(v§ — vs)?/3]. (12e)
a=A,B

To complete the physical setting of the problem, we nced to specify a quantity associated with
the amount of the noncondensable gas. As this parameter, we choose the average number density
of the noncondensable gas,

/L]
B B
Ngy = —r5—5= rFZde¢drds. (13)
* W(L§I - L3) ~wJLp
By integrating both sides of Eq. (1) with respect to £ over its whole space, we obtain
v = const, (14)

which expresses the mass conservation for each component gas. On the other hand, if we integrate
Eq. (6) (with & = B) multiplied by &, with respect to € over the space o,,¢, > 0 and take Eq. (7d)
into consideration, we obtain n® v,.B =0at r = Ly and L;;. Thus we have

TLB’I),?:O, (L] ST‘SL”). ’ (15) ‘
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2.3. Dimensionless expressions

To derive the dimensionless expressions of the basic system, we introduce the following dimen-
sionless variables:

LT 13 Vt% va . M
T_Lj, C (CT!CG:CZ)—V fa—nIFa’ a_mA7
ne Ve p* . T

7o _— — Do — D% DY T m—— Aa: — o _— —— 16
ft o Y (02,9g,0) Vi P o7’ T T, (16)
..n P v .. p . T

- - v= ) $0 = =, T= =)
n nl’ P p[ (vr vﬂ ) V 9 p I T[

where Vi, = (2kpT1/m#)1/? is the most probable speed of the molecules of the A-component in
the equilibrium state at rest at temperature T7; p; = m“n; and p; = kgn;T are, respectively,
the density and the pressure of the vapor in the saturated equilibrium state at rest at temperature
T;.

Then the Boltzmann equation (1) becomes

2

a __ . Ba 70« o
DIt = e 2o, KO TR 1) an)
€ (r(& 8
D Cr—+—‘id—<r— PR (18)
72,9 = [17(€0a(¢) - FCIaCNB e V117, 7)a0e)ice, (19)
Ba N
C =( + (e V)e, C» = (e — A_g"(e Ve, (20)
oo se 2OWP
V = Clt - C’ V= lVIa ”p = ma (21)
ot o0 o BP® «_ B3®
B (e VI/V.V) = gz, K™ = g (22)
B = [ F @)% o VIV, vIdn(eldgas., (23)

s 22125 a0

o —
B = (2rkpTy /me)3/2 exp( 2kgTr/me

Here, ¢. is the integration variable corresponding to ¢, and d¢. = d(urd¢usd(.z; the domain of
integration is the whole space of (. and all directions of e [e and dQ(e) are the same as in Eq. (2)];
Kn on the right-hand side of Eq. (17) is the reference Knudsen number defined by Kn = £,/Ly,
where £y = 2V}, /\/7n; B§*4 is the mean free path of the molecules of the vapor in the equilibrium
state at rest with temperature T7 and molecular number density n;.

When the intermolecular potential extends to infinity, the so-called angular cutoff is introduced
in Eq. (23), that is, BA® is set to be zero for the domain |e- V|/V < § (6: a specified constant),
which corresponds to grazing collisions. It should be noted that the function BP* in general
depends on the dimensionless parameter Uy fo /ksTy, where U is the characteristic size of the
intermolecular potential for the interaction of a molecule of the a-component with a molecule of
the f-component [15]. This parameter is not shown explicitly in the above equations. When both
component gascs consist of hard-sphere molecules, BP* does not depend on this parameter, and
BP= KPe and £, are given by

: payi2 AT A 1
Bﬁa (“ e- V s Kﬂﬂ = ( ) ) = !
W le- V| (aP>)172 \ 244 " V2n(dA)n,

(25)
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where d® is the diameter of a molecule of the a-component.
Corresponding to Eq. (5), we introduce the following symbols:

ow=1 fy=1, V.,,:K]—, Tu,:l, at =1,
e Vi T L (26)
- A, = M Y, = _ﬂ I - ...L[_ F o= ﬂ
Ow = —1, %y nr Vi Vi T, T, at 7 Ir
The dimensionless form of the boundary conditions is as follows: at # =1 and Ly;/Ly,
=RQ+ ) K3(¢, (7 ¢)dC.,  (for ol >0), (27)
Cwlar<
where
o= Vihoe  Re_viKs 28)
9w = nr Guw> w — Ythiw (
and §g(¢) end K3(¢, .) satisfy
350 >0, (0w >0), (29a)
gﬁ (C) =0, (owCr > 0)1 . (29b)
K2(¢,¢) 20, (0uwGr >0, oular <0), (29¢)
/ ICT/Ctr|f{£(¢; ¢ )d¢ =1, (ower < 0). (29d)
cwlr>0
In addition, corresponding to Egs. (8)—(9b), we have
=@+ [ RSECEEIA, (30)
Owler<0
- 2 _ 24 2
f;;\ = I"w' exp _C‘r + (Ca AVW) +Cz , (31&)
(""Tw)"s/2 T,
B ¢ G+ (o= Vu)2+ (2
= e €X| - ry y 31b
fu T By p( T (31b)

where ¢ is an arbitrary (dimensionless) constant.

It is seen from Egs. (26) and (30)—-(31b) that the parameters nyy/nj, V;/Vm, Vit /Vin, Tri/T1,
and m® /mA are contained in the boundary condition. In general, however, §2 and K A also depend
on the reference temperature Ty, the reference number density n;, and the reference molecular
mass m4, and K B also depends on T and m4. In the casc of the so-called complete condensation
condltlon [15] for the vapor, and the diffuse reflection condition [15) for the noncondensable gas,

< and K & are given by

) = Ty ﬁ)mexD( ¢+ (G ;w w)” +C’), (32)

KA, ¢) =0, (34)
B\ - |

k26 = -2 (52) outrem (—C' . +"). (35)

In this case, §5 and f(3 depend only on ny;/nr, Vi/Vin, Vir/Vin, T11 /T, and m¥®/m4 and do not
depend on Ty, ny, or m4.
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The dimensionless version of the relations between the macroscopic variables and the velocity
distribution functions, Egs. (10)—(12) are given by

- / fede, (364)
0= [Grrae 9§ — o / Cof*d, (36b)
5 = aode = 2 [ oG- 90+ (G - 087 + e, (36¢)

A= [(FA+ 19dc =t + 42, (36d)
p= / mAfA + mB fB) d¢ = mAat + mBaB, (36¢)

By = l / G (MAfA+mBFB) & = % (mAa4eA + mBaBoB), (36f)

o= L[ G (Ah B %) o= (hatep 4 Pa5D) (36g)
p=aT =3 [1G - )+ (G- 00 + ) (mAFA + 5 £5) a¢

. 2, 2 .
[p"‘ + =A% (D — ,)% + SN (DF — 99)? ], (36h)
s 3 3

where d¢ = d¢,d¢pd¢,. Here and in what follows, the domain of integration with respect to ¢ is
its whole space unless the contrary is stated.
The dimensionless forms of Eqgs. (13)-(15) are, respectively,

B Lis/L;
Tay 2 / A B 14
T T B ar, 37
nr (Lir/L1)? - (37)
fﬁ"ﬁf =const and AP9Z =0, forl1 <7< Li/Ly. (38)

3. ASYMPTOTIC ANALYSIS FOR SMALL KNUDSEN NUMBERS -

In this section, we consider the case where the Knudsen number Kn is small and carry out
a systematic asymptotic analysis of the boundary-value problem, Egs. (17) and (27), following
the asymptotic theory developed by Sone (see, e.g., Refs. [11, 12, 15, 22-24]) as a guideline. The
analysis here can be carried out in a way parallel to Ref. [19]. For convenience, we use the following
small parameter ¢ rather than Kn in this section:

e = (vV7/2)Kn < 1. (39)

3.1. Fluid-dynamic equations and boundary conditions

First, we leave aside the boundary condition (27) and look for a moderately varymg solution
f&, which satisfics AfF/0F = O(f%), in the form of a power series of e:
fi = fHo+ fie+---. (40)

This f§ is called the Hilbert solution or expansion. Substitution of Eq. (40) into Egs. (36a)-(36h)

gives the corresponding power series expansions of the macroscopic variables of each component
and of the total mixture:

h?{"-’h?{[) +h?{16+"‘, (41)
heg = huo + hme+---, (42)
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where the letter h stands for 7, 0, f’, etc., and the subscript H indicates the quantities corre-
sponding to the Hilbert solution. The coefficient functions h%,, and kg, are expressed in terms
of f§, (n € m). Their explicit forms for m = 0 and 1 are given in Appendix A. After substituting
Eq. (40) into Eq. (17) and arranging the power of ¢, we obtain a scrics of integral equations for
the coefficients fg, .

Y KGR (fy, i) =0, (43)
B=A,B
ST KBaFE (o, Fiim) + IO (f s £5i0)]
B=A,B
m—1
=Dffpm-1— 3. > KT, fEma)y  (m=1,2,..), (44)
I=1 f=A,B

where Y771 is set to be zero when m = 1.

As is well known [25], the solution of Eq. (43) is a local Maxwellian distribution for each com-
ponent with a common temperature and a common flow velocity. The solution is expressed in the
following form using the leading order terms 7%, firsr0, Dox0, and Tio of the Hilbert expansion
of the macroscopic quantities:

o 4 )2 he (2 4 2
fBy = —1HO exp | - (¢r = Breo)” + (Coﬂ Domo)® 465\ (45)
(7 Tho/he)3/2 Tho/m>
This gives the obvious relations
020 =050 = Prmo, w0 = Do = tomo,  Tho = Tho = Tuo. (46)
On the other hand, from Eq. (38) we have
Afobro =0, (1 <# < Lyt/Ly). (47)

The case where A5, = 0, i.e., there is no noncondensable gas in the leading order (of the Hilbert
solution), has been investigated for gencral geometry in Ref. [26]. In this case, a small amount
of the noncondensable gas is blown away by the vapor flow and pushed against the surface where
condensation of the vapor is taking place. As a result, the noncondensable component of a very
small amount accumulates in a very thin layer adjacent to the condensing surface and may have a
significant effect on the global vapor flow [26-—28] In the present study, we consider the oppositc
case, i.e., the case where A5, > 0in 1 < # < L;;/L; (the case where 78, vanishes in a certain
interval of # can be handled in the framework of the present analysis). Then, 95, vanishes
identically, so that Eq. (46) gives

ft0 = Dfpo = drro = 0. (48)
Therefore, the leading-order solution ff}, reduces to
fgo = —,Ef@—-——exp _Cr? + (CGA_ ﬁaHO)z + Ctz . (49)
(WTHO/Tha)3/2 Tho/m>

The mth-order equation, Eq. (44), is an inhomogeneous linear integral equation for f,.. Because
of the form of Eq. (49), the left-hand side of Eq. (44) is essentially the linearized collision term for a
binary mixture of gases. Therefore, the corresponding homogeneous equation has the mdependent
nontrivial solutions: (a®, he¢, m*¢?) f&%,, where a® are arbitrary constants, and ¢* = =2+ +¢2
In consequence, in order that Eq. (44) has a solution, its inhomogeneous term should satisfy a
certain solvability condition, which is reduced to the following form:

/ Dffm_1d¢ =0, | (50)

| & mecosgnac=o, (51)
a=A,B

/ > m*(*Dffm_1dC = 0. (52)

a=A,B
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If we insert Eq. (49) in Egs. (50)—(52) with m = 1, the #-component of Eq. (51) gives a constraint
shown in Eq. (54) below, but other conditions are satisfied automatically. With this constraint,
Eq. (44) with m = 1 can be solved. The explicit form of the solution f§, is given in Appendix B.
If we substitute this fg, into Egs. (50)-(52) with m = 2, we obtain some constraints for the
macroscopic variables contained in f§,. With these constraints, we can proceed to the higher order.
In this way, the functional form of f,, with respect to ¢ is determined successively (n =0, 1, ...),
and at the same time the constraints on the (unknown) macroscopic variables h%,, and hg, are
obtained in the form of ordinary differential equations. The latter equations are the so-called
fluid-dynamic equations. The set of equations necessary to determine the leading-order solution
ffio is essentially obtained from Eq. (50) with m = 2, the #-component of Eq. (51) with m = 1,
the f-component of Eq. (51) with m = 2, and Eq. (52) with m = 2, and can be summarized as
follows:

d .. .
EF (TPHO'UrHl) = 01 (53)
1 dﬁHO ﬁHO'agHo _
2 F (54
e . d d [, T2 rdo o
7PHODrH1 3 (*Daro) = 7 ["2/1 go ( ;;m ~ 9?") ) (55)

o d /. 5 di|..~1/2. diggo D
FprodeH1 32 (vgyo + §TH0> =% [wT},/ozveHo ( ke 9;"’

vea1/pdT #prodrm T
+r,\T,1/(,2 Ho — kp PHoU-H1THO ’ (56)
dr xA
Ho
where
Tl (~ dinTao |~  dxfh
A A ~ — ~ D D O
TOHoUrH1 r——xgo T—4F + AB= o
B Ay F X?m 2
—2('m -m )DABT/zvgﬂ()! (57)
Tyo
pro = mAhg, + mBafy,  Pro = AnoTHo, (58a)
. .
Xio = T2, o = i + o )

The 4, A, kr, Dr, and Dap in Egs. (55)-(57), which are functions of Tyo and xf, (or x2,) and
depend on the model of molecular interaction, correspond to the viscosity, thermal conductivity,
thermal-diffusion ratio, thermal diffusion coefficient, and mutual diffusion coefficient, respectively.
The definition of these transport coefficients is given in Appendix B. With Egs. (58a) and (58b),

Egs. (53)-(57) form a closed set of equations for A}y, 220, Orm1, Demo, and Tho. Equations (53)-
(56) are, respectively, the conservation equations for the total mass, the #-component of the total
momentum, its f-component, and the total cnergy. Equation (57) expresses the diffusion in the
radial direction.

In the derivation of the Hilbert solution, we have used the fact that the radial component of the
flow velocity of the noncondensable gas is identically zero, which is a consequence of the boundary
condition (27) on the cylinders. Except this, however, the boundary condition has not been taken
into account so far. We now consider the boundary condition. Let us assume that the macroscopic
variables 7%, Poro, and Tro in f§, take the following values on the surfaces of the cylinders; at
=1,

v
"ﬁ'o = 1) ’UﬂIIIO = T/:I;’ THU = 15 (59)
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and at ¥ = L;; /Ly,

. n . Vi . T

Ao = —n'lli, dono = 175;], Ho = TI;L (60)
Then, because of the relation (30), it is seen that f§, satisfies the boundary condition (27) at the
leading order (the zcroth order in €). The restrictions (59) and (60) give the consistent boundary
conditions on the cylinders for the fluid-dynamic equations (53)-(58). Note that the boundary
conditions (59) and (60) contain only the dimensionless parawcters nrr/nr, Tir/Tr, Vi/Vin, and
V11/Vin and do not depend on the reference quantity ny or Ty.

The fluid-dynamic system, Eqgs. (53)-(58) and Egs. (59) and (60), gives the solution Afl,, 728,
UrH1, Dgro, and Tyo, with which the leading-order term fg, is determined [Eq. (49)]. In this way,
we obtain the leading-order solution of the boundary-value problem, Egs. (17) and (27), by the
Hilbert expansion.

3.2, Continuum limit and the ghost effect

Here, we give a brief remark on the behavior of the mixture in the continuum limit where Kn or
€ vanishes. In this limit, the solution is given by Eq. (49), and the macroscopic variables reduce
to their respective leading order terms, ie., (A4, A8, T, 95, ) — (Ao, 730, THo, Domo, 0) [cf.
Eq. (48)]. That is, in this limit, evaporation and condensation of the vapor stop, and the radial
component of the flow velocity 9, vanishes. Therefore, one might expect that the flow field in
this limit is given by the flow ficld in the same limit of the ordinary cylindrical Couctte flow of a
binary mixture of noncondensable gases (or between impermeable cylinders). This is not true. The
leading-order terms 74, ﬁﬁu, Tro, and Pgno are determined together with the first-order term
Dra1 of the radial component of the flow velocity. This means that, in spite of the fact that there is
no evaporation or condensation, the flow field in the continuum limit is affected by the infinitesimal
radial flow (or infinitesimal evaporation and condensation) [note that 9, = drg1€ + -+ — 0, but
Orz1 is of O(1)]. This is an example of the ghost effect that was pointed out in Ref [11] and
investigated extensively in subsequent works (see, Refs. [12-18] and the references in Refs. [15, 18];
for the case of a gas mixturc, we refer to Refs. (19, 29-31]). In particular, the situation in the
present problem is essentially the same as that of the plane Couette flow of the mixture of a vapor
and a noncondensable gas [19]. Some numerical examples of the continuum limit obtained from
the fluid-dynamic system, Egs. (53)-(58) and Eqgs. (59) and (60), will be given in Sec. 4.

In the case of the ordinary cylindrical Couette flow of a binary mixture of noncondensable
gases, i.e., in the case where the A-component is also a noncondensable gas, the fluid-dynamic
system can be derived readily by a slight modification of the analysis in the present section. The
resulting fluid-dynamic equations are Eqgs. (53)—(58) with §,41 = 0, and the boundary conditions
are Egs. (59) and (60) with thc conditions for 7§, discarded. In this system, n;, which appears in
the nondimensionalization (16), should be regarded as an appropriate reference molecular number
density, and n;; disappears. In addition, we have to specify a parameter associated with the
amount of the A-component, say n /n; with n being the average molecular number density of
the A-component. Some numerical solution of this system (ordinary Couette flow, for short) will
also be shown in the next section.

4. RESULTS AND DISCUSSIONS

- In this scetion, we show some numerical results based on the fluid-dynamic system derived in
Sec. 3 and discuss the behavior of the vapor and noncondensable gas in the continuum limit.
We assume that both components consist of hard-spherc molecules. Therefore, since the fluid-
dynamic boundary conditions do not depend on n; or T;, the problem is characterized by the
dimensionless parameters nry/ny, Tr1/Tr, Vi/Vin, Viz/Vin, nB,/ny, Lir/Lr, mB /m#, and dP /dA.
We let T7; /Ty =1, Vi1/Vin = 0, and Ly /L1 = 2 throughout this section. The relations between

the terms 72%y,, Ygmo, THo, etc. occurring in the Auid-dynamic system and the physical quantities
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in the continuum limit are as follows:

. n® u p . T
Ao = — HO = Tho = =
Ho ny ! p mAn, ! T] !
DoH0 = Y Dppr1 = Hm ol im w2 (61)
Vin’ " e—0Vip e Kn—0Vy \/7_rKn’

2 Ly /Ly B nB
— Padgdr = Cav,
(Lir/L1)? -1 [ TTHo ny

4.1. Ghost effect

In Figs. 1 and 2, we show the profiles of the macroscopic quantities Afj,, A%, derro, drar1, PHo,
and Tyo for various values of nB,/n; in the case Vi/Vip = 0.5, m3/m# = 0.2, and dB/d4 = 1:
Fig. lis for nj;/n; = 2, and Fig. 2 for n;;/n; = 0.5. In Fig. 1, infinitesimal evaporation takes place
on the outer cylinder and infinitesimal condensation on the inner, so that there is an infinitesimal
inward flow (771 < 0). In Fig. 2, the situation is opposite (¥rry > 0). The magnitude of the
infinitesimal radial flow (|0,.g1€|) increases as the amount of the noncondensable gas decreases,
i.e., as nB /n; decreases. Correspondingly, the profile of the tangential velocity component (gz0)
is pushed inward (Fig. 1) or outward (Fig. 2) with the decrease of n2 /ny. In Figs. 1 and 2,
the resuits for the ordinary cylindrical Couette flow (i.e., the case where the A-component is also
noncondensable) arc also shown by dashed lines for the corresponding parameters, V;/V;;, = 0.5,
mB/mA = 0.2, and d®/d4 = 1. Here, the reference molecular number density n; has been

determined in such a way that the total number of the A-component, ny flz Fif,df, takes the
same value as the corresponding case where the A-component is the vapor (see the last paragraph
of Sec. 3.2). The Uppmo for the ordinary cylindrical Couette flow is practically independent of
nB /ny, ie., the concentration of the components.

We should now recall that there is no evaporation or condensation (i.e., the radial flow is in-
finitesimal) in the case of the mixture of a vapor and a noncondensable gas. However, the behavior
is quite different from that of the ordinary cylindrical Couette flow. For example, the tangen-
tial velocity profile deviates significantly, and the deviation increases as n2 /n; decreases. This
deviation is due to the ghost cffcct caused by the infinitesimal evaporation and condensation.

We have also performed a Monte Carlo simulation for the original Boltzmann system, Egs. (17)
and (27), using the dircet simulation Monte Carlo (DSMC) method {32, 33]. We have assumed
the complete condensation condition for the vapor and the diffuse reflection condition for the
noncondensable gas, i.e., Eq. (27) with Eqgs. (32)—(35) and changed the Knudsen number Kn from
0.05 to 0.005. The results for the tangential and radial components of the flow velocity are shown
in Figs. 3 and 4. Figure 3 corresponds to the casc of Fig. 1 with n2 /n; = 0.2, and Fig. 4 to the
case of Fig. 2 with nB, /n; = 0.2. As Kn is reduced, the magnitude of the radial component v,
decreases, showing the tendency that it vanishes in the limit Kn — 0. This is consistent with the
fact that 9,59 = 0 in the asymptotic analysis. On the other hand, the tangential component vy
approaches the solid line that indicates the solution of the fluid-dynamic system. By the way, the
dashed line indicates the solution of the fluid-dynamic system for the ordinary cylindrical Couette
flow.

4.2. Bifurcation

Let us denote by M, the mass flow of the vapor in the radial direction per unit time and per
unit length of the axial coordinate z, which is infinitesimal in the continuum limit. Then, it is
related to prodrp and AR 04, as
_ M, 2
- 27rL1mAn1Vu. ﬁKn’

“n oA A ArA ~A . =~ —
FPHoUrH1 = P NgeDry, = lim M, M
Kn—0

(62)

where M is introduced for the later convenience. Figure 5 shows #pyo¥r g1 versus Vy/Vy, for various
values of nZ, /n; in the case ny;/n; = 1.5, mB/mA = 1, and dB/d4 = 1. When nB, /n; is decreased
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from 1 to 0.1, the curve becomes steep near V;/V;;, = 1, and the gradient of the curve there becomes
negative with the further decreasc of nZ, /n;. For example, for n2, /n; = 0.05, there are three values
of #proDr1 8t the same V;/Vy, in a certain interval. In other words, the solution is not unique,
and the bifurcation of the solution takes place. As nB /n; is decreased further, the curve tends
to approach the dot-dashed curve that indicates the pure-vapor case [12]. In this special case of
mPB /mA = dB/dA = 1, all the curves pass the point (V;/Vin, #prodra1) = (1.0053, 0). The profiles
of the tangential component dggo of the three solutions at V;/V;p, = 1.0053 for n2 /n; = 0.08,
0.05, and 0.02 are shown in Fig. 6. The solution with #pgof,g1 = 0 is common to all nfv /nr and
corresponds to the ordinary cylindrical Couette flow.

We have also performed a Monte Carlo simulation (DSMC) of the original Boltzmann system.

Figure 7 shows the results for the case corresponding to Fig. 5. More specifically, M in Eq. (62)
versus V7 /V,;, is shown at Kn = 0.005 for n2,/n; = 0.5, 0.05, and 0.02 in the case n;;/n; = 1.5,
m?B/mA =1, and d?/d4 = 1. The corresponding curve in the continuum limit based on the fluid-
dynamic system is also shown for comparison, The DSMC result demonstrates the nonuniqueness
of the solution. However, we were not able to obtain the solution that roughly corresponds to
the part of the curve with the negative gradient in Fig. 5. The solution on this part might be
unstable. The profiles of the tangential velocity vp of the DSMC result corresponding to the points
(Vi/Vin, M) = (1.0053, —3.36) and (1.0053, 4.46) for nB /n; = 0.05 are shown in Fig. 8 together
with the corresponding result in the continuum limit, i.e., (V1/Vin, #prodra1) = (1.0053, —4.643),
(1.0053, 0), and (1.0053, 12.17).

In Figs. 7 and 8, the DSMC results at Kn = 0.005 still deviate significantly from the corre-
sponding continuum limit. The discrepancy should reduce if we are able to carry out the DSMC
computation for smaller Knudsen numbers. Although such a computation is seemingly easy in spa-
tially one-dimensional problems such as the present one, in reality it is not an easy task because of
the structure of the flow. When the Knudsen number is small, the Kn®-order tangential velocity
Dono is determined together with the Kn-order radial velocity ©ry4,€6. Therefore, in the DSMC
computation, we need to obtain the small radial velocity precisely in order to describe the tangen-
tial velocity correctly. As is well known, however, one of the drawbacks of the DSMC method is
the difficulty in obtaining small quantities because they are buried in the statistical fluctuations
inherent to the method. Since the radial velocity in the present problem decreases in proportion
to the Knudsen number, the computation becomes increasingly difficult with the decrease of the
Knudsen number.
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APPENDIX A: MACROSCOPIC QUANTITIES OF THE HILBERT EXPANSION

The explicit expressions of the macroscopic quantities of the Hilbert expansion by f§,, are
summarized. The coefficients of each gas h%,, are

Ao = / F%0dC, (A1)

oY+ 1 1 o

10 = 7o [ G- Iodl, (a2)
HO

. 1

B0 = - / (o S0dC, (A3)

A s0 o
Prro = Mol fo

= % / [(¢r — D20)* + (Co — D80)? + (2™ fFodC, (A4)
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and
i = [ finde, (A5)
oy 1 o ﬁ%ﬂ o
Oy = 75— [ & fi1dC — = Ohos (A6)
"o " Ho
R 1 A% .
1 = 7 [ CofndC - 2240, (A7)
hHy . T Ho
P = Mol + i Tho ‘
2 . . .
= 2 (16— 020 + (60 — 950)? + " . (A9
The coefficients of the total mixture hy,, are expressed in terms of those of each gas:
Aro = fifyo + Afos (A9)
pro = MmARf, + MmE AT, (A10)
. 1 4.4 . . B
UrHo = E(mAnfm”fHo + mBngoﬁfHO)a (A11)
1 .
Borro = —— (Mo 0k0 + MPAZD5k0)s (A12)
~ ~ 2 ~ N2 o \2 2 PN Y o 2
pro=tmTuo= Y |B%o+ 3™ ko (Vikio)® + 3o (Veho)® | (A13)
a=A,B
and
ﬁHl ﬁ'IA{l + ﬁgl) (A14)
pr1 = mAagy, + mPag,, (A15)
N nasa AQ Sasa Aa N A A
Dy = 7 Y (mORgodyy + MA%08k0) — Auidemo | (Al6)
PHO a=A,B
. 1 PP cana . a
Don1 = (M Age0em1 + MO AG195H0) — PH1Den0 | (A17)
PHO |28 ]
pr1 = o1 + i Tro
. 2 s 4, ..
= {P?n + 3m*hin [(Vi0)? + (Vého)?] + 3™ fiio (Vo Vein + Vﬁm%"fn)},
a=A,B
(A18)
where
Vitim = 0m — Urtims Vom = O51m — Ootim. (A19)

APPENDIX B: HILBERT SOLUTION f&,

In this appendix the index « is used to represent the labels A and B of the gas species, in
addition to o and 8. The first-order Hilbert solution fg, is given in the following form:

P obrmile +0omilo | Tt [ aza 5
fin =fio | B + oy LS LM | AL (aga
P B THE Tho 2
. o 1 dTye - - ~THZ (oo Dono
—~ C A () — _ B~ HQ -
. s 1 dpt,  2mPAl 02
- Z D@ (&) — PHo _ Ho%io | | (B1)
Py finopro \ df 7
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where

. ér - -9 . - 20 19 33 . %
R N Tr N R, B B ) (B2)
THO THO THU

The functions A%(¢), B*(¢), and D®)® are the solutions of the following integral equations:

S KPxf Lo A 4% =~ (mac - ),

p=AB (B3)
subsidiary condition: Z m*xGols(A%) =0,
a=A,B
S KX LB ((r(oBP, (s B%) = —2%C,Co, (B4)
B=A,B
=8 meng

Z KﬂaX%IDX?-IDLTa(CrD(-Y)ﬂ1CrD('Y)a) = _‘Cr (5(.\:1 - P HO) )

B=A,B PHO (B5)
subsidiary condition: Z mex %o Ig (DP) = 0,
a=A,B
where ¢ = (¢? + ¢Z + (2)'/2. The operators Lr(f,g) and I, (F) is defincd as follows:
B(1,9) = [ +9(¢) - £(6) - 9(OIEP(G) BEan (@), (B6)
BS* = Bf*(le- V|/V,V) = BP= (ge V|V, VT‘,;/:) T2, (B7)
8 ~a\ 3/2 poo o
2 =% (T [ eroen-m, (88)
i 0
where
mP 32

Ef(¢) = (T) exp (-2, (B9)
Go=(C+ o+ )2 (B10)

The transport coefficients 4, A, ky, Dy, and D ap in Eqs. (55)-(57) are defined by means of the
functions A%, B%, and D™ as follows:

Dap = xﬁox?}o (AAA +App—Asp - ABA) )

ﬁT = Xﬁoxgo (bTA - DTB) )

. (B11)
ﬂ' = Za:A,B 'maX?{oﬁa,
bT o s ﬁT
kr = ——, /\=)\'-—kTT—-——,
DaB XfioxFho
wherc
A, = e (D®)a
af = 74 (D ) )
Dra = 215 (A%,
2 (B12)

e = melg (B2,

: 5 5
o _ Yra | |sar2 2 @
X —214([771,( 2}A).
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From the subsidiary conditions and appropriate integration of the integral equations in Egs (B3),
(B5), the following relations are derived, with the help of which the form of Egs. (55)-(57) is
obtained:

Aaﬂ = Aﬂm (B13)
> wPxpBas =0, (B14)
B=A,B
Y mPxGoDrs =0. (B15)
B=A,B

A numerical database for the coeflicients f, 5\, ko, bq', and Dyp for hard-sphere molecules has
been constructed in Ref. [34], and it has been used in obtaining the numerical solution presented
in Sec. 4.
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FIG. 1: Profiles of the macroscopic quantities in the continuum limit for various nZ,/n; (hard-sphere
molecules) in the case of ni/nr = 2, Vi/Vi, = 0.5, mB/mA = 0.2, and dB/d_A = 1 (Liz/Ls = 2,
Tr11/Tr = 1, and Vi; = 0). The dashed line indicates the corresponding results for ordinary cylindrical
Couette flow (see the main text for the meaning of n; in this case).
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FIG. 2: Profiles of the macroscopic quantities in the continuum limit for various nZ,/n; (hard-sphere
molecules) in the case of nir/ns = 0.5, Vi/Vin = 0.5, m®/m# = 0.2, and dB/d* = 1 (Lni/L;
Trr/Tr = 1, and Vy; = 0). See the caption of Fig. 1.
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FIG. 3: Profiles of the flow velocity for small Kn (DSMC result for hard-sphere molecules) in the case of
Ngv/nr = 0.2, nir/nr = 2, Vi/Vin = 0.5, mB/mA = 0.2, and dB/dA = 1 (Ly;/Lr = 2, Tar/Tr = 1, and
Vir = 0). The solid line indicates the profile of the continuum limit, and the dashed line that of the same
limit for the ordinary cylindrical Couette flow.
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FIG. 4: Profiles of the flow velocity for small Kn (DSMC result for hard-sphere molecules) in the case of
ng,/ni =02, nyr/ng = 0.5, Vi/Viy = 0.5, mB/m* = 0.2, and d®/d* = 1 (L1, /L1 = 2, Tis/T; = 1, and
Vir = 0). See the caption of Fig. 4.
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FIG. 5: The #pnobru1 versus Vi/Vis in the continuum limit for various nZ,/n; (hard-sphere molecules)
in the case of nyz/n; = 1.5, m¥/m# = 1, and d®/d* = 1 (Ly;1/L; = 2, Tii/T1 = 1, and Vi; = 0). The
dot-dashed line indicates the pure vapor case [12].
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FIG. 6: Profiles of dguo of the three different solutions in the continuum limit at V;/Vis = 1.0053 (hard-
sphere molecules) for n2,/n; = 0.08, 0.05, and 0.02 in the case of nir/n; = 1.5, mB/m4 = 1, and
dB/dA =1(Ly/L1 =2, Ti1/Tr =1, and Vir = 0).
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FIG. 7: Magnified mass flow rate M versus Vi/Vin at Kn = 0.005 (DSMC result for hard-sphere molecules)
for nZ /n; = 0.5, 0.05, and 0.02 in the case of nyr/n; = 1.5, m?/m# = 1, and d®/d4 = 1 (L;1/L1 = 2,
Tr1/Ti = 1, and Vi; = 0). The solid line indicates the results in the continuum limit.
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FIG. 8: Profiles of the Bngential velocity vg at Kn = 0.005 (DSMC result for hard-sphere molecules) corre-
sponding to (V;/Vin, M) = (1.0053, —3.36) and (1.0053, 4.46) in the case of n5, /nr = 0.05, nyr/n; = 1.5,
mB/mA =1,andd®/d* = 1 (L11/L1 =2, Ty /T1 = 1, and Vj; = 0). The corresponding results in the con-
tinuum limit, i.e., the profiles at (Vi/Vin, #paodra1) = (1.0053, —4.643), (1.0053, 0), and (1.0053, 12.17),
are also shown by the solid line.
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