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with first order boundary condition

Yoshihiro SHIBATA
Department of Mathematical Sciences, School of Science and Engineering,
Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan.
c-mail address: yshibata@waseda.jp

1 Problem

Thoughout this paper §2 denotes a bounded or exterior domain in R" (n 2 2) with C%! boundary
0 and 0 < T £ co. We consider the generalized Stokes cquation:

us— DivS(u,7)=f, divu=g=divg inQx(0,T) (1.1)

which is obtained as a linealization of the Navier-Stokes cquation describing the motion of a
viscous incompressible Newtonian fluid in 2. Here, f is a given exterior force field, g and g
arc given functions, and u = (uy,...,u,) and 7 are the unknown velocity and pressure field,
respectively. In (1.1) we denoted the stress tensor of the fluid by

S(u,m) = D(u) —wI, D(u)= (Dij(u))
Djj(u) = B;u; + 0ju;, I:n x n identity matrix

A large number of papers have been devoted to the study of these equations. However, the
overwhelming majority of thosc works is concerned with the Stokes cquation coupled with non-
slip boundary condition: u|,, = 0, that is, the fluid is required to be at rest at the boundary. The
purpose of this paper is to study the Stokes equation with different, but nonetheless physically
rcasonable, boundary condition. Namely, as the boundary condition, we consider

voul,, =0
, - T(x , — on 12
B(u 7l')lljn 1 (u w)lﬂﬂ {(S(u, W)V— (S(u, TI')V, V)V+ (lu)|6n = hlen ( )
as well as
B(u, W)‘on = T2(uv7")‘an = S(u, W)”‘an = h‘on (1.3)

where v denotes the unit outer normal to Q. T{(u, 7) is called slip boundary condition when
a = 0 and Robin boundary condition when o > 0 1) respectively. The boundary condition
T{ admits motion of the fluid at the boundary in tangential directions. On the other hand,

*Partly supported by Grant-in-Aid for Scientific Research (B) - 15340204, Ministry of Education, Sciences,
Sports and Culture, Japan

1The results about the Neumann boundary condition casc and Robin boundary condition case were obtained
by joint works with S. Shimizu (Shizuoka Univ.) and R. Shimada (Waseda Univ), respectively.

1) Throughout the paper, we assume that o 2 0.
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the boundary condition Th(u, ) is called Neumann boundary condition, which is derived as
a linearization of some free boundary problem for the Navier-Stokes equations which will be
discussed in section 5.

Complementing equations (1.1), (1.2) and (1.3) with initial condition for the velocity field,
we arrive at the following initial boundary value problem to be studied

ug — DivS(u,n)=f inQx(0,T)

divu=g=divg in @ x (0,7)

B(u,m)=h on 89 x (0,T)

ul,_o = o in 2 (1.4)

2  Analytic semigroup approach to (1.4)

In order to treat (1.4) in the analytic semigroup framework, in this section we consider the
initial-boundary value problem:

{ u — DivS(u,m) =0, divu=0 inQx (0,00) (2.1)

B(u,m)|pn =0, ult=0 =ug

First we consider the slip or Robin boundary condition case. Namely, B(u, ) is given by the
following formula:

Su,m)v — (v S(u, 7)v)v + au = D(u)v — (v D(u)v)v + au

B(u, 7) = T{'(u,7) = {

To eliminate the pressure term 7 in the first equation of (2.1) we use the Helmholtz decompo-
sition: ‘
Ly()" = J, () ® Gy (82)
Jq(2) = {u € C(Q)" | divu = 0}
={ueL,0)"|divu=01inQ, v-u|. =0}
Gy() = {Vr |7 e Xq(Q)}

The space X,(Q2) is defined in the following way: When 2 is a bounded domain,

X,(Q) = {r | 7 € WA(5), /

0

When 2 is an exterior domain and 1 < ¢ < n,
Xy(Q2) = {7 € Lpg/(n-q)() | VT € Ly(9), |17r||xq(m < oo}
”"”xq(n) = ”7"”1,“/(”_4)(0) + ”v“'”/,q(n) + ”7r(dl1)~1”z.q(n)
When 2 is an exterior domain and n £ ¢ < oo,
X4(R) = {7 € Ly10c(Q) | Vr € Ly(92), 71,y < 00}

Ilwllxq(n) = ||V7r”l,q(n) + ”ﬂ.(d‘I)ullqu(n)



Here, dy(z) is a weight function defined by the relations:

do(z) = 1+ |z wheng#n, 1 <g<oo
Tl + =) log(2 + |z|) when g =n

In fact, such decomposition was proved by Fujiwara and Morimoto [9], Farwig and Sohr (8],
Galdi {11], Miyakawa [16], Simader and Sohr [24] and references thercin. In this case, given
u € Ly(2)", we choose 7 € X,(f2) as a weak solution to the Neumann problem:

Ar =V - u in 9, ﬁ

ov lan: vl (2.2)

And then, we define the lincar continuous projection Py, : Ly(2)" — J,(2) along G,(2) by the
relation: Pyu = u — V. Noticing that Div §(u,7) = Au — Vr when divu = 0, we define the
Stokes operator Aé corresponding to (2.1) with B(u, 7) = T{*(u, ) by

Al = P(-A) (2.3)

with domain:
D(A}) = {u € J, () NWZ(Q)" | (D(u)v — (v - D(u)v)v + au)|,, = 0}. (SD)

Concerning the generation of an analytic semigroup by the Stokes operator A; with slip or
Robin boundary condition, we have following theorem.

Theorem 2.1. Let 1 < g < 0o and let Q be a bounded domain or an ezterior domain in R™
(n 2 2) with C%! boundary 0. Then, Aé generates an analytic semigroup {Tq}(t) Yo on Jy(Q).

Moreover, when Q is bounded, {T(t)};>o is exponentially stable. In particular, fort >0 we
have the following estimates: B

“qu(t)ul)”z,q(n) < qu—c.,t ”uf)”x,q(n) Vup € JQ(Q)
1T (£)uol S Ct~temt w0/l gy Vuo € Jo(€)

wi@o) =
1 —
1Ty ()uollyypq, S Coe % J|uo | Vup € D(4y)

w2
with some positive constants c; and Cy,.

Remark 2.2. In the bounded domain case, the generation of the analytic semigroup of the
Stokes operator A; on J,(2) was proved by Giga [12]. Its exponential stability was proved by
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Shibata-Shimada [17]. In the exterior domain case, the generation of the analytic semigroup of -

the Stokes operator Aj on J,(€2) was proved by Shibata-Shimada [17]. The asymptotic behaviour
has not been proved yet in the exterior domain case, but employing the similar argument to
that due to Iwashita [13] in the non-slip boundary condition case, we can show the local energy
decay and Lg-L, decay estimate. We will discuss this clesewhere.

Next, we consider the Neumann boundary condition case. Namely, let us consider the
initial-value problem:

{ut —DivS(u,7)=0, divu=0 in§ x (0,00) (2.4)

S(ua 7r)ulan =0, u|t=0 = Ug



To eliminate the pressure term 7 we use the second Helmholtz decomposition:
Ly()" = jq(n) & é,,(ﬂ)
Jo () = {u € Ly()™ | divu = 0 in O}
Gy() = {V | 7 € X((Q), 7|, =0}

which was proved by Grubb and Solonnikov [10] and Shibata and Shimizu [21, 22]. In this case,
given u € Ly(Q2)™, we choose m € X,(Q) as a weak solution to the Dirichet problem:

Ar =dive inQ, 7. =0 (2.5)

And then, we define the continuous projection from f’q s Ly ()™ — J,(82) along G¢(€2) defined
by the relation: Pju = u — V. _

In order to introduce the reduced Stokes operator A:‘; corresponding to (2.4), let us consider
the resolvent problem:

{)\u—DivS(u,w)zf, divu=0 in

2.6
S(u, T)V|pq =0 (26)
Let g and 8 be the second Helmholtz decomposition of f:
f=g+V0, divg=0, Ab=divfinQ, 6|.=0
Then, we have
M —DivS(u,7r—~0)=g, divu=0 inQ
S(u,m—0)v|pq =0
Setting kK = m — 6, we consider
A —DivS(u,k) =g, divu=0 inQ @.7)
S(u, K)|gq =0 '

under the condition that divg = 0 in Q. Applying the divergence to the first equation in (2.7)
and using the facts that divu = 0 and divg = 0 in Q, we have

Ak=0 in§ : (2.8)
Since (D(u)v — kv)|, = 0, multiplying thc boundary condition by v, using dive = 0 and

complementing the resultant boundary condition with (2.8), we arrive at the equation for 7 as
follows:

Ak =0 in Q, k|, = (v D(u)v — divu)|, (2.9)
If u € W2(82), then we have a unique solution k € X,(€2) of (2.9) such that

“””xq(n) s CllUllwg(m

Let K be the operator: W2(2) — X,(Q) defined by the formula: K(u) = «. Then, (2.7) can
be written in the form:

A —DivS(u, K(u)) =g in Q, S(u, K(u))v|,=0 (2.10)
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We see that (2.10) is cquivalent to (2.7) when g € J,(€2). Therefore, we set

Aju = —Div S(u, K (u)) (2.11)
with domain

D(A]) = {u € W7 (Q) N Jy(Q) | S(u, K (w))], = 0}
Then, we have the following‘thcorem.

Theorem 2.3 (Grubb-Solonnikov [10], Shibata-Shimizu [21, 22]). Let 1 < q < co. A2
generates an analytic semigroup {T2(t)},5, on J(8).

In order to get the exponential stability of {T2(t)},,, in the bounded domain case, we have
to restrict oursclf to the subspace which is orthogonal to the rigid space R defined by

R ={Az +b| A: anti-symmetric matrix, b€ R"}

Note that D(u) = 0 if and only if u € R and that if u € R then divu = 0. Let pp, m =
1,...,M = n(n — 1)/2 + n, be thc orthogonal basis of R such that (pm,pr), = Ome. Given
closed subspace X of L,(2), we sct

X\R={uve X |(up),=0, €=1,...,M}

Theorem 2.4 (Shibata-Shimizu [22]). Let 1 < g < o0o. Assume that Q is a bounded domain
with C*! boundary. Then, AZ generates an analytic semigroup {T;(t)};50 on Jg() \ R which
enjoys the estimates:

”qu(t)UOHLq(n) < qu-—cqt “uoHL,,(m Vug € jq(Q)
“TqQ(t)u(lnwg(m < th—le_cqt ”uOHLq(ﬂ) Vug € J(I(Q)

20000 < Coe™" ] Vuy € D(42)

Wi
for any t > 0 and up € J,(Q) \ R with some positive constants Cyx > 0 and cq.

Now, let us consider the asymptotic bchaviour of {qu(t)}@o in the exterior domain. To
state the theorems, we set

R"\Q C Bg,, Bg,={x€R"|]|z| < Ro}
Lyr() = {f € Ly() | f(z) =0, = & Br}-
Then, Shibata and Shimizu [21] proved the following two theorems.

Theorem 2.5 (Local energy decay estimate). Assume that Q is an ezterior domain in R™
with C>! boundary and that n 2 3. Let 1 < q¢ < oo and R 2 Ry. Then, we have

—A2t £ -2
lle thqu0||Wn;2(ﬂnBR) S Cort” 7||uoll 1y

for allug € Ly p(Y) and t 2 1.
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Theorem 2.6 (L, — L, estimate). Assume that Q is an exterior domain in R™ unth Cc%1
boundary and that n 2 3. Then, we have the following estimates:

_nf{l_1
e~ uoll, o < Cart T gl (2.12)

_nf{1_1)_1
Ve etugl, oy < ot F0) g, (2.13)

foralluoejq(ﬂ),1§q§r§oo (g# 00, 7#1)and t>0.

If we consider the non-slip boundary condition u|, = 0, instead of the Neumann boundary
condition, then we know that (2.13) holds only for 1 £ ¢ £ 7 < n (r # 1), which was proved by
Iwashita [13]. Later on, scveral refinements of Iwashita’s result were done by several authors:
Maremonti-Solonnikov [15], Dan-Kobayashi-Shibata [6] and Dan-Shibata [4, 5]. Further refer-
ences can be found in the references of [15, 6, 4, 5]. In particular, Maremonti-Solonnikov [15]
proved that the assumption: 1 £ ¢ £ 7 £ n (r # 1) is unavoidable in the non-slip condition
case. Therefore the estimate (2.13) shows the eventual character of the Neumann boundary
condition. Namely the null force on the boundary implics the better decay rate for the gradient
of the solutions.

3 L,-L, maximal regularity of solutions to (1.4)

In this section, we consider the Lpy-L, maximal regularity of solutions to (1.4). We consider only
the case that §2 is a bounded domain in what follows. To state our Ly-Lg maximal regularity
theorem, first of all we introduce some functional spaces: Let 1 < p,q < oo, X: Banach space,
0<T< oo

Wi (D x I) = Ly(I, Wi(D)) N W(1, Ly(D))
190ty = 1l cr g + Mehgecn o
Wpl,o((O,T),X) ={ue W;}((—oo,T),X) |u=0fort<0}
Given a € R, we set
< Dy > u(t) = FH(1 + s2)*2Fu(s)](t)
HZ(R,X) = {u€ Lp(R, X) | < D, >* u € Ly(R, X)}

el igmx, =11 < De>* vl mx, + lullz,mx

F and F~! denote the Fourier transform and its inverse formula, respectively.
Set

Hyp/*(D x R) = Hy*(R, L(D)) N Ly(R, W, (D)) |
H22(D x (0,00)) = {u € HEY3(D x R) | u = 0 for ¢t < 0}

4,p,0
IIulIH;:;/z(,,xm = Ilull";ﬂmq(m) el wws on
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Finally, given 0 < T' £ oo we sct

H}2/2(D x (0,T) ={ulav€ H,}[}/z(Dx]R), u=von D x (0,T)}

it ol |

Voe Hq{;/z(D xR), v=uonDx(0,T)}
Hyy (D x (0,T)) = {u | 3w e H*(D x (0,00)), u=wvon D x (0,T)}

,p,0
“ ” 11/2

of {}v Wi o |

(DxR)
Yo 11/2(Dx(0 )), v=uon D x (0,T)}
Bi0-1/P () = [Lq(ﬂ), W2 )1-1/pp

@)= {[{q(n), D(AD1-1/pp
Dyp [J4(2), D(AD]1-1/pp

ul Hyp/2(px©1n

o (Dx(0, T))

Theorem 3.1 (Ly-L, maximal regularity). Let 1 < p,g <00, 0< T < o0, uy, f, g, § and
h satisfy the condition:

up € Dygp(), € Ly((0,T), L))", g € Hypt (% (0,T)) (3.1)

G € Wo((0,T), Ly(0)", he HE (€ x (0,T))"

In the slip or Robin boundary condition case, in addition we assume the compatibility condition:
v-h|.=0. Then, (1.4) admits a unique solution

(u,m) € W22 (2 x (0, T))" x Ly((0, T), Wy () (3.2)

which enjoys the estimate:

“u”Wi’,}(nx(o.rn o mwgan = Criiivollog e

+ ”f“Lp((O,T),Lq(n)) + ”(g’ || 1 l/l(n X (0,T)) ”g”W}(O.T).Lq(ﬂ))} (3'3)

where Cr > 0 is independent of T in the slip or Robin condition case and Cpr = C(1 +T) in
the Neumann condition case.

Theorem 3.2 (Exponential stability). Let T = oo in (1.4). Assume that (3.1) holds with

T = oco. In'the Neumann condition case, in addition we assume that

(uo,pe)g =0, £=1,....M
(@), pe)q + (9(t),pe)r =0 £=1,..., M, ae.t>0

Then, (1.4) admits a solution (u,m) which satisfies not only (3.2) and (3.3) with T = oo but
also the following estimate:

071 07
||e u”Wg";(nx(D,w)) + “c L p((0,00), ‘Vlcn)) = C{”uD”Dq p(Q1)
i it i
+ lle f“"f'(“’""’)"‘ﬂ(“” +1le™ (g, h)Hnéiﬁ/z(nx(o,w)) le g”“’#“’m)'bq(ﬂ))}

where v is any constant in [0, vo) with some v > 0.

Moreover, in the Neumann boundary condition case, the solution u(t) satisfies the orthogonal

condition: (u(t),pe), =0 forallt >0 andf=1,..., M.
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Remark 3.3. (1) In the slip or Robin boundary condition case, Theorems 3.1 and 3.2 were
proved by Shibata-Shimada [18]. In the Neumann boundary condition case, Theorem 3.1 was
stated by Solonnikov [25] under the assumption: 3 < p = ¢ < oo, which is combined with
Benedek-Calderén-Panzonce theorem [2] (cf. also [1]) implies that Theorem 3.1 also holds under
the assumption: 3 < ¢ < 0o and 1 < p < co. But, Theorem 3.2 is a quite new result compared
with [25].

(2) In order to state the relationship between D, () and BZ,(,}‘“ 4 )(Q), we introduce the set
BXI-1/P)(Q) as follows:

BA-1/P)(Q) = {u € BXMP(Q)" | dive = 0 in 0}

Then, it follows from Triebel [28] and Steiger [26] that there hold the following relations: When
the boundary condition is a slip or Robin one and 2(1 — 1/p) > 1+ 1/q,

Dyp(Q) = {u € BLGTYP(Q) | v - ulyg =0, (D(w)v = (v- (D(w)))v)],q =0},
when the boundary condition is a slip or Robin one and 1/g < 2(1 - 1/p) <1+ 1/q,
Dyp(Q) = {u € BIGPN(Q) | v - ulpg = 0},
and when the boundary condition is a slip or Robin one and 2(1 - 1/p) < 1/g,
Dyp() = B3 /P()
On the other hand, when the boundary condition is a Neumann one and 2(1 —1/p) > 1+ 1/g,
Dyp(8) = {u € B ™/P(9) | S(u, K (w)|pq = O},
and when the boundary condition is a Neumann one and 2(1-1/p) < 1+1/g,
Dyp(€2) = BEI-1/P)(Q)
4 A skech of our proof of the maximal regularity results in the
Neumann boundary condition case

4.1 First step

We consider the maximal regularity of the problem:

us — DivS(u,7) = f, divu=0 in x (0,00) (4.1)
S(u,mv|, =0, ul,.,=0

where f € C§°(R, Ly(R2)) C Lp(R, Ly($2)) which satisfies the conditions:
(f@)ypm)g =0, teR,m=1,...,M; f(t)=0 fort<0.

By Duhamel’s principle we have

u(t) = A T2(t - 5)f(s) ds



and therefore by Theorem 2.4 we have

't
“u(t)“wg(n) < C/o (t— s)—1/2e—21(c—s)||f(S)HLq(m ds
with suitable v > 0, which implis that

t t
lle” ”||Lp«o,w>,wq1(m) = Crglle™ f ”Lp((U,oo)-Lq(n)) (42)

The estimate (4.2) is used to estimate the perturbation terms which are obtained by the local-
ization procedurc.

4.2 2nd step

We consider L,-L, maximal regularity in the whole spacc and the half-space. We used the
operator valued Fouricr multiplicr theorem. To statc this theorem, first we start with the R
boundedness of the operator family. Let X and Y be two Banach spaces with norms || - ||, and
Il - ||y, respectively. Let B(X,Y") denote the set of all bounded lincar operators from X into Y,
and we set B(X) = B(X, X).

Definition 4.1 (R-boundedness). A family of opcrators 7 C B(X,Y) is called R-bounded
if there exist constants C > 0 and p € (1, 00) such that for cach m € N, N being the set of
all natural numbers, T; € T, z; € X and for all scquences {r;(u)} of independent, symmetric,
{-1, 1}-valued random variables on [0, 1] there holds the incquality:

1 m 1] m
ST dus o [T1Yrwe) du
0 =1 70 =1

The smallest such C is called R-bound of 7', which is denoted by R(7).
Given M € L 1oc(R, B(X,Y)) we definc an opcrator Ty by
Tué = FHMFg)
Then the following theorem was proved by Weis ({29]).

Theorem 4.2 (Operator Valued Fourier Multiplier Theorem). Suppose that X and Y
are UMD Banach spaces and 1 < p < oo. Let M € C}(R\ {0}, B(X,Y)) be such that the
following conditions are satisfied:

R({M(p) | p € R\ {0}}) = Ko < o0
R({pM(p)' | p € R\ {0}}) = &1 < 00

Then, the operator Tar is a bounded linear operator from Lyp(R, X) into Lp(R,Y) with norm:
“TMHB(L’,(RX)‘Lp(m,y)) é C(K’O + K'l)
where C > 0 depends only on p, X and Y.

To show the R-boundedness, the following two propositions arc useful (cf. Denk-Hieber-

Priiss [7]) .

145



146

Proposition 4.3. Let 1 < ¢ < oo and {ks(z) | s € R\ {0}} be a family of L, 1oc(R™) functions
ks(x). Set

K@) = [ ke-y)iWdy s €R\{0)

B
Suppose that there exists a constant C > 0 independent of s € R\ {0} such that

IKsfllLy@ey S ClillLy@ny [ € La(R™), s € R\ {0}

Zld“ (z)| £ Clz|~™"+)  z e R™\ {0}, s R\ {0}
|a|=1

Then, {K; | s € R\ {0}} is R-bounded on B(L,(R")) and its R-bound is less than or equal to
Cn¢C with some constant Cyp ¢ depending only on n and q.

Proposition 4.4. Let1 < g < 0o. Let G be a domain inR™ and T = {T,, | u € M} C B(L4(Q))
be a family of the kernel operators:

(Tufl(z / ku(z,y) f
for x € G and f € Ly(G). Suppose that there exists a ko(z,y) such that

'ku(x) y)l g kO(xv y)

for almost all z, y € G and for any p € M. Set

(Tof1(e) = [ kale,9) o) dy
If Ty € B(Ly(G)), then T is R-bounded on B(L,(G)) and its R-bound is less than or equal to
C(I:G“TOHB(L,,(G))’ where Cy g depends only on g and G.

In order to explain how to show the Lp-L; maximal regularity, we consider the following
model problem in the half-space:

—Au+u+Vr=0, dive=0 in R} xRy

'du,- 3un .
—L ={; =1,...,n—-1
(axn + 81:_7 lznzo A .7 ) 1n

(252 =) Lo =tn (43)

oz,

The solution formula for (4.3) consists of the following formulas:

w(z,?) / L7} [Br(§) e B O mh(e! 4, )] (2, ) dyn
B/\(é") - V ’\‘+ l£,l2+ 6 (Els--°a£7L—l)7A=7+iT

wa(z, t) = /0 L7 AN g le BN Ih(g, yo, X)| (', 8) dyn

oo r N
wa(z, )= [ £ [AE)IE PMAE 20 + im)HLEs un, V] &', 0)
0 L
e~ BA(E)Tn _ o—IE'lan

MaEen) = gy el




Here, Ax(€') is a function satisfying the multiplier condition:
108/ AN(E)] € Car (A2 4 JE' + 1) 721~

for any A = v+ 47 € [0, 00) x iR and ¢ € R*! where Cy is independent of A and &', b denotes
the Fourier-Laplace transform of h, and £7! denotcs the inverse Fourier-Laplace transform.
Narmely,

R(E, Yy N) = / e 80y (! g, t) da'dt = Figo [ TR)(E], 0y )

g

c-—-l g x',t — 271,)—11. cifl.m/+(7+if)tg EI,T d:l:'d‘r — e‘yt]:'—-’l xl,t
(€7)

g

For examplc, let us explain how to estimate the following term by using Theorem 4.2:

—~t e 00 )\6—13.\(6')(27"+yn) N
o = [ f@‘,ﬂ[ BE um V)| (/s 2)dy

Bx(¢)
Set

B,(¢')

K\ (1)g = / ky(z' — ¥ zn + yn)g(y) dy
Wl'_

k(7,2) = F5b [WJ 2

Then, we have
e M Buwy = FTUK (1) Fle " R)()](t)
If we show that '
|ky(T,2)| S Alz|™", |T0rky(T,2)| S AlZ|™" (4.4)

then by Proposition 4.4 we have
R{K(r) | € R\ {0}} € CA

with some constant C' > 0 independent of v and 7, because we know the L,(R%) boundedness
of the operator:

Tolol(=) = /R,. Alle' =y P + (@n + v0)% 29 (', yn) dy'dyn
¥
Therefore, applying Thecorem 4.2 we have

—t e -t
”e v dlowl“l.p(lkl«q(“)) é C”C K h”Lp(mJaq(w.l, )

for any 4 2 0, where C is independent of v 2 0.
To show (4.4), we use the following lemma.

Lemma 4.5 (Shibata-Shimizu [19]). Let X be a Banach space and || - || its norm. Let
be a number > —n and set o = N + 0 — n where N 2 0 is an integer and 0 < o0 < 1. Let f(§)
be a function in C*°(R"™\ {0}, X) such that

dgf(f) € Li(R", X) for|y|SN
I8 F(E)llx € CHlgl*™™ VE#£0, VyeNG
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Set g(x) = fgne ™€ f(£) d€. Then, we have

< p —(n+a)
Hg(x)“x = C’n,a(hflgld\})iz C'Y)IZE‘ Vz ?é 0

where Cp o 15 a constant depending only on n and a.

O;wy, Byw3 and second derivatives with respect to z variables of wy, we and w3 can be
estimated in the same spirit, and therefore we arrive at the estimate:

€7 e V20 97 gy

< C{|(V(e™™e), < D, >'/2 (e70), VAT O, s, oant 720
where u is a solution to the cquation (4.3).

4.3 3rd Step

By using the localization technique, we reduce the problem to the whole space problem and the
half-space problem and by using the result in 2nd step and by representing 7 in terms of f and
u, we can show the a priori estimate:

2
”(ut’ V u) “L‘,(RLq(n)) é C{“f”],p(qu(n)) + l|u!I]‘p(an1 (n))} (4’5)
where u is a solution to

u; — DivS(u,n) = f, divu=0 in Q x (0,00)
S(u,m)v|. =0, u|,.,=0

Finally, applying (4.2) in the 1st step to (4.5), we have
”ut”t,,,(m,z,q(n)) + ”u”Lp(RWg(ﬂ)) + “7THLP(RWJ @) § C”f”t,,,(m,Lq(n))

4.4 4th step
Let u be a solution to the non-homogeneous boundary value problem:
u, — DivS(u,7) =0, divu=0 in Qx (0,00)
S(u,m)v|.=h, u|,_,=0
To get a priori estimate of u;, we use the solution ¥ to the adjoint problem:
Y+ DivS(¢,0)=¢, divy =0 in Q x (—o0,T)
S, 0|, =0, |, =0

Given T > 0 and ¢ € Ly (R, Ly(Q)) which vanishes for t > T, we know the existence of solution
(¥,0) € W;”;,(ﬂ x R)® x Ly (R, qu,(Q)) such that ¢ and 6 vanish for ¢ > T and satisfy the
estimate:

“'lwbt“l,p,(m,bq, ) + ”d)”bp,(mwsl o)) + Ila”“p’(qull 1)) g C"‘t”l,p,(ml,q, Q) (46)



where 1/p+ 1/p' = 1/q+ 1/q' = 1. Observing that

(ut, P)axm = (W, Y + Div §(¢, 0))ax

= —(ugt — Div S(us, m), ¥)aur + (S(ue, m)V, ¥) i

= (hu, w)l‘xm

=(V (vhe), ¥)aun T Whes Vi) g n

= —(V - (vh), Ye)gug + (v < Dy >~ Y2 by, < Dy >V2 V)0

we have
I(ut’ ¢)nxml g C(”h”LP(qul ) + “ < Dt >1/2 h’”L,,(M.Lq(n)))x
(Il‘/)tllz,p,(nz,q,(n)) + ” < Dy >1/2 Vw”i,pf(uhqr(ﬂ)) (4'7)

Since we know the interpolation inequality:

1< D>Vl s an S O arg @ + 190, awa o)
by (4.6) and (4.7) we have
[(uts D) axm! S C(”h“LI,(qul(m) + |l < Dt >1/2 h”LP(RLq(n)))“¢“LP,(m.Lq, @)
which implies that
el ey S OB, iy * 1 < Do > Bl o)

In this way, we can show the L,-L, maximal regularity.

5 A free boundary problem for the Navier-Stokeé equations

In this section, we consider a time dependent problem with free surface for the Navier-Stokes
equations which describes the motion of an isolated finite volume of viscous incompressible fluid
without taking surface tension into account. The region ), C R", n 2 2, occupied by the fluid
is given only on the initial time ¢ = 0, whilc for ¢ > 0 it is to be determined. The velocity

vector field v(x,t) = ‘(vy,...,vn) and the pressurc 6(z,t) for z € Q, satisfy the Navier-Stokes
equations (cf. [25]):

ve+ (v-V)v—DivS(v,0) = f(z,t) inQ, t>0

dive=0 in,t>0
S(v, Qv + Oz, ) =0 inl;, t>0
v|t=0 = vo on . (5.1)

Here, tM denotes the transposed M, I'; denotes the boundary of €, and »;(z) is the unit outer
normal to I'; at the point z € Ty. V = (8),...,0,) with 8; = 8/0z:. S(v,6) is the stress tensor
defined by the formula:

S(v,0) = D(v) - 81
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where D(v) is the deformation tensor of the velocities with elements Dyj(v) = div; + 0;v; and
I is the n x n identity matrix. For the n x n matrix of functions S = (S;5)

n n
DivS =D 8;815,..., Y 05n;)
j=1 =1

The external force f(z,t) and the pressure 6p(z,t) are functions defined on the whole space.
Below, we shall always assume that 6y(z,t) = 0, since we can arrive at this case by replacing
6(z,t) by 6 + 6p.

Aside from the dynamical boundary condition, a further kinematic condition for I'; is sat-
isfied which gives I'; as a set of points z = z(§,t), § € [p, where z(,t) is the solution of the
Cauchy problem: J

Z=vat), ho=¢ (5.2)
This expresses the fact that the free surface I'y consists for all £ > 0 of the same fluid particles,
which do not leave it and arc not incident on it from inside §2;. It is clear that ; = {z =
z(&,t) | £ € N} and Iy = {z = z(&,t) | € € To}.

The problem (5.1) can thercforc be written as an initial boundary value problem in the given
region Qp if we go over the Euler coordinates z € §2; to Lagrange coordinates £ € §2 connected
with z by (5.2). If a velocity vector field u(€,t) = (uy,...,un) is known as a function of the
Lagrange coordinates ¢, then this connection can be written in the form:

t
r=¢+ / u(é, 7) dr = Xu(6,1) (5.3)
0
Passing to Lagrange coordinate in (5.1) and setting 8(X,(§,t), t) = m(&,t), we obtain
ug — Div[S(u, ) + Ulu, m)] = f(Xu(&,t),t) inQx(0,T)

divu+ E(u) = div [u + E(u)] = 0 in Q x (0,T)
[S(u,m)+U(u,m)y=0 onT x (0,7)
Ulg=0 =0 - in Q. (5.4)

Here and hereafter, Q is a bounded domain in R™, n 2 2, whosc boundary I' is assumed to
be a C%! compact hypersurface, v is the unit outer normal to T, U(u, ), E(u) and E(u) are
nonlinear terms of the following forms:

U(u,7) = Vl(/ot VudT)Vu+ Vz(/ot Vudr)w
E(u) = Vi( tw dr)Vu E(u) = V4(/t Vudr)u
0 0

with some polynomials V;(-) of fot Vudr, j = 1,2, 3,4, such as V;(0) = 0.
As a lincarized problem of (5.4), we have the Stokes equation with Neumann boundary
condition:
up — DivS(u,m)=f inQx(0,T)
divu =g=divg in Q2 x(0,7)
S(u, M| =h, ult=0=1uo (5.5)

By using Theorems 3.1 and 3.2 and the contraction mapping principle, for (5.4) we have the
following two thcorems ([23]).
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Theorem 5.1. Let 2 < p < oo and n < ¢ < oo, Then, given vg € Dyp(R) and f €
Ly(R, Ly(R™)) which has bounded derivatives with respect to x for each t, there exists a T =

T([IUOHDq‘p(m, HfHLp(Mq(M,)),sup@O IVFC O, @ny) > O such that (5.4) admits a unigue solu-
tion

(u,m) € Wap (2 x (0, T)™ x Lp((0, T), W, (£2))

which satisfies the estimate:

”uHW«?ﬁﬁ(nx(o.T)) 1l o mwgan S CUIMlbg @ + 11l 0m 10}

Theorem 5.2, Let 2 < p < 00 and n < q < 0. Then, there ezist positive numbers € and v

such that if vo € Dyp(R), llvolly, @) S € and (vo,pe)g =0 for £=1,..., M, then (5.4) with
T =00 and f = 0 admits a unique solution .

(u, m) € WEHQ x (0,00))™ x Ly((0, 00), W, ()
which satisfies the estimate:

it vyt
le u”w.}‘,’é(nx(o,w» +lle ﬂllbp((o,oo)'wt}(n)) s Clvollpg pea

for some v > 0 and the condition:
(u(-t),pe)g =0 for&=1,...,M andt 20

Remark 5.3. Theorems 5.1 and 5.2 have been proved by Solonnikov [25] when p = g, but our
approach is completely different from [25]. Moreover, since we show the maximal regularity
result with exponential stability on the whole time axis (0,00) for (1.7) with T = oo (cf.

Theorem 3.2), our proof of Theorem 5.2 is very simple compared with the corresponding proof
in §4 of Solonnikov [25].
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