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1 Introduction.

We consider the one-dimensional motion of a compressible, viscous and heat con-
ductive gas driven by the self-gravitation in the free-boundary case. In addition to this
situation, we take into account the energy producing process inside the medium, that
is, the gas consists of a reacting mixture and the combustion process is current at the
high temperature stage.

The motion mentioned above is described by the following four equations in the
Euler coordinate system corresponding to the conservation laws of mass, momentum
and energy, and an equation of reaction-diffusion type:

([ petupy = —pyy,
p(ve+vvy) = (=p+pvy)y +pf,

(1.1)
ple: +vey) = (k8y)y + (—=p+ pvy)v, + Agz,

\ p(z +vz) = (dpzy)y — ¢z

in | (Q() x {t}), where Q(t) := {y € R|5:(t) < y < 12(t)} and () for i = 1,2 are

fluctuating boundary functions. Here the density p = p(y,t), the velocity v = v(y, t),
the absolute temperature 8 = 6(y,t) and the mass fraction of the reactant z = 2(y, t)
are the unknown functions, and positive constants u, d and A are the coeficients of
viscosity, the species diffusion and the difference in heat between the reactant and the
product. .

The external force per unit mass f = f(y,t) is given by f = —U,, where U is the
solution of the boundary value problem

Uy =Gp in {J (@) x {t}),
t>0 (1.2)
Uly=y:t) = Uly=pay =0 for ¢ > 0.

Here G is the Newtonian gravitational constant. The rate function ¢ = ¢(@) is defined
by the Arrhenius law

$(6) = 6% %, (L3)



where A is the activation energy (a positive constant) and (3 is a non-negative number.
At high tempereture regimes, pressure p = p(p, ) and internal energy e = e(p, ) are
given by p = pg + pr and
04
e=Cy0+a—
i/

with the specific heat at constant volume (positive constant) Cy, the Stefan-Boltzmann
constant a > 0, respectively. Here pg = pg(p,0) is the gaseous (elastic and ther-
mal) pressure, which is described for example, by Benedict-Webb-Rubin equation of
state [21]
P = Rpo + (RB()0 - Ao - 009—2) 2
(Rb29 bl) p + blap + b30—.2 3 (1 + ’sz) e 7P
with the perfect gas constant R and positive constants Ag, By, Co, b1, bs, b3, @, v depen-

dent on the concrete media, and pr = pgr(p, 8) is the radiative pressure given by Stefan
law [14]

_ 0
3—30.

For technical reason, we neglect the terms except the first in the right hand side of
pg- We also assume the conductivity k = x(p,6) has the following form (see for
example, {1], [8]):
9
K=Ki+ Kya—,
p

where x;, K3 and q are positive constants.
We impose the dynamical and kinematic boundary condltxons fori=1,2
(-p+ Fww)|y=yi(t) = = DPe for ¢ >0,

dy; (t)

—% v(yi(t),t) for t >0,

where the positive constant p, is the external pressure, and the thermal and chemical
boundary conditions for i = 1,2

{ (50y)|y=psty =0 for ¢t >0,
(dpzy)ly=yiy =0  for £>0,

and the initial conditon

(pa v, 0’ Z) |t=0 = (pO(y)v 'UO(y)v GO(y), Zo(y)) fOI' Yy € (0)'



10

We introduce the Lagrangian transformation. For arbitrary fixed point (y,t). €

U (Q(t) x {t}), we consider the solution curve Y, (r) of the Cauchy problem
0

=
Y, :(t) = v.

The unique existence of such a solution curve is guaranteed from the fundamental
existence theorem of an ordinary differential equation as long as v is suitably smooth.
Let Y, +(0) = £. Then this is uniquely solvable in y,

{ Ay (7 =v(Yye(r),7) for 0 <7<t

y=Yeo(t) =6+ /Otv(Yf,o(T),T) dr.

It is well known that the kinematic boundary condition implies that for each ¢t > 0 this

mapping (y,t) — (£, t) is one-to-one from Q(t) x {t} onto 2(0) x {t}. We put 3, (0) =0
and y(0) = L. Futhermore, we introduce the mass transformation

£
>z = / po(s) ds.
0
Then problem (1.2) is reduced to
(pUz)e =G in (0, M) x (0, 00),
ﬁ'lmo,M =0 for t>0,

where M = foL po(§) d€ and the tilde “”” means transformed functions. Through the

relations f = —p U, we can get the explicit formula
M~ -1
. , )7 d
f(z,8) = -G (z _ L np(n, ) ") . (1.4)
Jo A(n,t)~tdn

Consequently, by putting v(z,t) := 1/5(z,t), u(z,t) := 9(z,t) and normalizing M =1
our problem becomes

( —
Uy = Uy,

_ 7 Jy m(n,t)dn
u = (_p+5uz)m—G(x_———}olv(n,t)dn)’
e = (56:) +(-p+Lus)us 42z,

d
’zﬁzz) - ¢Z

2t =
\



in (0,1) x (0, 00) with the boundary conditions

By By @ (-
( p+ Uz, U0x, vzz:”) Jc=0’1_-( Dey, 0, 0) for ¢ >0, (1.6)
and the initial condition
(vau,o,z)|t=0 = (UO("B)’UO("D)’HO('T),zO(x)) for z € [0’ 1]' (1°7)

One-dimensional problems have been studied under various conditions. For the
viscous polytropic ideal gas a pioneering work of global in time existence with large
initial data was due to Kazhikhov and Shelukhin [11] under Dirichlet boundary condi-
tion with respect to the velocity. In the free-boundary case, Nagasawa [15] discussed
the global existence problem and the asymptotic behavior for the polytropic ideal gas
with the external pressure depending on time. Dafermos and Hsiao [3], Kawohl [10]
and Jiang [9] considered problems for some general fluids. Also Chen [2] studied a
model equations for a reacting mixture. All works mentioned above were not taken
into account the influence of an external force.

Ducomet [4] - [7] treated a one-dimensional self-gravitating gaseous model as some
large-scale structure of the universe, called “pancakes” in the astrophysical literature
(see [12], [17]). Following the spirit of [17], he adopted as the self-gravitational term

f@,t) = -G (x - -;—M)

not the exact form (1.4), and also assumed that the initial data and the solution are
symmetric.

Now, by integration of (1.5)? with respect to z over [0, 1] we get

d t o o1 fmmt)d
a‘/0 udr = G(2 }olv(n,t)dn)' (1.8)

Denoting u — fol udz by u again, we obtain the final form:

¢

UVt = Ug,
U = (~p+%uz)z—-G(x—%),
{ e = (gez)z + (—p + %ux) Uz + AQ2, (1.9)

e = (%z,) — ¢z
\ v z

" in (0,1) X (0,00) with the same initial-boundary conditions (1.6) and (1.7). For this
system it is natural that initial function ug (which corresponds to ug — fol ug dz for the

11



original system (1.5)) satisfies

1
/ updz = 0. (1.10)
0

In this paper we construct the unique global classical solution of system (1.9), (1.6),
(1.7) with the equations of state

p= R% + %04, e = C,0 + avd* (1.11)

and the conductivity
K = K1 + Kav69, (1.12)

without the symmetric assumption to the initial data and the solution. From (1.8)
it is easily seen that this solution leads to the one for the original problem (1.5)-(1.7)
describing the exact one-dimensional self-gravitating fluid model, not the approximated
one : “pancakes” which has been considered by Ducomet. The difficulty of our problem
is mainly caused by radiative components of equations of state and §-dependency of
the conductivity. We can solve the problem only for the case of some q > 4, which is
physically valid [22]. Similar result has been obtained in [7], but the proof in it is not
clear for the authors.

Let Q:= (0,1), m be a nonnegé.tive integer and 0 < o < 1. T is a positive constant
and Qr :=Q x (0,T). We denote '

/@ = sup |u(z,1)|
(z,t)€Qr

and use the familiar notations C™+(Q), C2'7/*(Qr), C24"'*°/*(Qr) for the Holder
spaces (see for example, [13]).
Our main result is

Theorem 1 (Global Solution) Let o € (0,1), 4 < ¢ £ 16 and 0 < § < 13/2.
Assume that

3
(vo, o, B, 20) € CTH(R) x (c2+°(sz)) (1.13)
satisfies the compatibility conditions, (1.10) and
vo(x), Bo(z) >0, 0< z(z) <1 for z € (1.14)

Then there ezists a unique solution (v,u,0,z) of the initial-boundary value problem
(1.9), (1.6), (1.7) with (1.3), (1.11), (1.12) such that for any T >0

(v, vz, ) € (CZ’?”(QT))

3 y 3
;e (Cen), (L)

v(z,t), 8(z,t) >0, 0<z(z,t)<1 for (z,t) € Qr. (1.16)
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Proof of Theorem 1 is based on the local existence theorem and a priori estimates.
The fundamental theorem about the existence and the uniqueness of the local in time
solution in three-dimensional case was firstly established by Tani [19], [20] under suffi-
ciently general initial-boundary conditions. For a radiative fluid, Secchi [16] obtained
the corresponding result.

We can easily obtain suitable unique local solution to our problem in the same
manner as these works (see for example, [18]). Therefore, to prove Theorem 1 it is
sufficient to establish the following a priori boundedness.

Proposition 1 (A priori estimates) Let T be an arbitrary positive constant, 4 <
g <16 and 0 < B < 13/2. Assume that the initial data satisfy the hypotheses of
Theorem 1 and problem (1.9), (1.6), (1.7) with (1.3), (1.11), (1.12) has a solution
(v,u,0,z) such that

O, ) € (C2@n)', @) e (G2 @n). @
Then there ezists a positive constant M depending on the initial data and T such that

|’U, 'U:n’vtla,a/% |’I.L, 0’Z‘2+0,1+C¢/2 < M’ (118)

v(z,1), 0(z,8) > /M, 0<z(z,t)<1 for (z,¢) € Qp. (1.19)

2  Proof of Proposition 1.

In proving Proposition 1, we need several lemmas concerning the estimates of the
solution and its derivatives. Our methods are mainly based on the techniques in Ka-
wohl [10] and Jiang [9]. We use C as positive constants, and || - || denotes usual L?
norm.

Lemma 1 For anyt € [0,T]

_/: (%u2 +e+Az+ f(a:)v) dx

'l
= / (§u02 +eo+ Az + f(m)vo) dz := Ep, (2.1)
0
t

Um+/vmmga (2.2)

1 1 t 1 d 0 1 1
/ ~z2dz + / / — 22 + ¢2% ) dedr = / ~z% dz. (2.3)
0o 2 o Jo \v? 0 2

Here ey := C\8 + aveb?, f(z) := pe + %Gm(l — ) and

Ut) = /01 [C’V(O —1-logf)+R(v—-1- logv)] dz

1 2 2
o HUz K0y 2
V(t) .—/0 ( 5 o oz> dz.
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Proof. 1t is easy to see from (1.9) and (1.6)

d [1/1, Yuo, '
—a-i i —2-u +f(fL')’U dz + , ;ux dr = 0 puz dz (24)

and

d 1 1 m
FrA (e+/\z)d$—-/0 (——p+ ;u,) ug dz.

Adding these and integrating over [0,t], we obtain (2.1).
Rewriting (1.9)3 as

eg0; + Opgug = %u,ﬁ + (59,) vy (2.5)

and multiplying this by 8-, we have

d 4 3 __P/Ufa:2 1 6 ¢
% (Cvlog9+Rlogv+3av0)—- 8 +5(nv)z+)\-§z.

Integrating this over (0,1) x (0,t) yields

U(t)+/0tV(T)dT_<_C(1+/01v03d:1:>.

From Hoélder’s inequality

1 1 r/4 1 (4-1)/4
/ vf" dz < (/ v6* dm) (/ vdx) for 0<r<4 (2.6)
0 0 0

and (2.1), (2.2) follows.

Equality (2.3) is easily obtained by integrating (1.9)* over (0,1) x (0,t) and using
(1.6). O

Next lemma concerning the pointwise estimate of z is obtained in the same manner
as Chen [2]. We omit the proof.

Lemma 2 For any (z,t) € Qr
0 < 2(z,t) < 1. ' (2.7)

Kazhikhov and Shelukhin firstly derived the useful representation formula for v. In
the present case, we can obtain the following similar form (see [11]).

Lemma 3 The identity

1
U(.’E,t) = B(m,t)Y(m’t)D(x’ t)

X (v0+ /0 t %9(:1:,T)B(:E,T)Y(x,T)D(:z:,'r) dT) (2.8)

14



holds, where

Blot) = exo | [ (wl) - ule,0) &), Yy =eo (3sex),

D(z,t) := exp <-£ﬁ /:0(:1:,7')4 dr) :

Since (u%) = p(logv),: follows from (1.9)!, integrating (1.9)? over (0, z) x (0, t)

x

yields

l/w(u ug) d€ = logv — log v 1/tpd7'+}-f(x)t
K Jo ° ° K Jo M .

From this one can easily find the lower bound of v:

min_v(x,t) > minvy(z) exp {——l [4Eé/2 + (pe + _Cf) t] } . (2.9)
(z,t)eQT zehl 73 8
This together with (2.6) leads to
1
/ "dz<C for 0<r<A4. ' (2.10)
0
Lemma 4 For anyt € [0,T] and g >0
/OrgaXB(xT dr<C, 0<r<qg+4. (2.11)

Proof. For each t € [0,T], there exists z*(t) € [0, 1] such that

/ fdz,

and therefore, for any r > 0 and (z,t) € Qr we have

o= ([oar)" 41 [ 06070 0 dg
1/2|0 ‘ ’U1/29'/2
C( /0 0120 g2 d“")
Lo 1/2
< vz 2.12
‘C{l-‘_(/{,l-}-vequ) V) ] (2.12)

Since 6" < C(1 + 69+%) holds for 0 < r < g+ 4, we have from (2.10)

L oer 1 .
-/;1+v9qu50/0(v+0)dx$0,

IN
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which yields from (2.12) and (2.2)

t

t
max 0(z,7)"dr < C/ (1 + V(T)) dr<C. O
0

o 0<z<l
Lemma 5 For any (z,t) € Qr
C~! <wv(z,t) <C. (2.13)

Proof. The lower bound of v is already obtained in (2.9). For the upper bound of v we
use representaiton (2.8).
From (2.2) and Jensen’s inequality we have

1 1 c
f fdz — log/ fdr —1< —. (2.14)
0 0 Cy

Then, by applying the mean value theorem there exists a point z**(z,t) € [0,1] for
each fixed ¢ € [0, T] such that

0™ (), 1) — log B(z™(£),8) ~ 1 < -g (2.15)

Here we define ap and G (0 < ap < ) as two positive roots of the equation

~logy— 1=,
y —logy .

which are independent of t. We get from (2.14) and (2.15)

1
a0 < [ 04z < fo a0 <010 < o
0 |

From (2.1) it is easily seen that for any (z,t) € Qr
C-!' < B(z,t) < C.

On the other hand, since

T

6(z,8)? = (z™(£),8)? +2 / B(€, 1)0¢(€, 8) dE,

T (t)

we have
ap? — CV(8)Y2 < 0(z,1)* < Bo® + CV(2)?,
hence
%ag“ _OV(t) < 0(z, 1) < 266* + CV(2). (2.16)



(2.12) with r = 2 implies
C-CV(t) <b(z,t) < C(1+ V().

Let us decompose v(z,t) = vi(,t) + v2(z, t), where

_ vo ()
(z,1) = B(z t)sz t)D(x,t)’
o(z,t) = —/ Bl :fv ;))l';((zj 7;r))O(alc,T) dr.

Using (2.16), we immediately obtain
Ce U@t00)i < 4 (1) < Ce(f@)-HehY)L,

Also (2.16) and (2.17) yields
2(2,t) < C/ =i (F()-3a80*) (0-7) (1 -+—V('r)) dr

< CeCT /0 (1 +V(r)) dr.

Consequently, from (2.18) and (2.20) the upper bound of v follows. O
Lemma 6 Ifq > 2, for any t € [0,7)

t 1
l|vz|? + / / v, 2 dzdr < C.
0 JO
o) = —p — _1
(u—;vz)t— Dz G(:r 2).

Multiplying this by u — %v,, and integrating over [0,1}, we have

d 1 W YuR,
dt/ (u—;vz) dx+/0 —E,’—va dz

Proof. (1.9)? implies

1R 1T/R 4 3 1 7
=/; Fuﬂvzdx—-/o [(;—+§a9 )0x+G(z—§)] ('U:"'Q’)"Uz) dz.

Firstly, we have for any € > 0

1
/ v—lzuﬂvw dz
0

1 1
<e [ Ov2dz+C.max6- | uidz,

17
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where C; is a positive number depending on €. The second term of the right hand side
of (2.22) is estimated as follows.

'TfR 4 , 1 Y
/0[(5—+§a9)9z+G(m——2~>} (u—;vx)d:c
1ﬂ9z2 102(1+03)2 p 2
SC[/O 02 dw+/o — (u—;vx) d:v]

68 1 Bo\2
2 . — —
<C [V(t) +OI§13.%{1 (1 +6°+ T gq) /0 (u vvz) d:v] .

Since

t 98
/ max dr <C
o 0<z<11 469

holds with ¢ > 2, by taking e small, Gronwall’s inequality implies (2.21). O
Lemma 7 For anyt € [0,7)

t
/ |lug|?d7 < C. (2.23)
0

Proof. Integrate (2.4) with respect to ¢ and using Lemma 5 and Cauchy-Schwarz
inequality, we have

¢ ¢ pl
[hirar<o(i+ [ [o+oyasar)
° Ot ’ 1 1
gC[l—i—/ (/ 02d$+max04~/9"‘dm) d’rl.
o \Jo 0<z<l 0

The right hand side is bounded by (2.10) and (2.11). O

Lemma 8 Ifq >4, for anyt € [0,T]

t

/0 lluzll}s(q) dr < C. (2.24)
'Proof. We use a method due to Dafermos and Hsiao [3]. Putting w = f: ud{ and
using (1.10), we get a new system: '

wy = %wm —-p+ f(z) in Qr,

Wm0 = wo(z) := [y uo(€)d¢  for z €0, 1],
’wt,,:o,l = 0 for t e [O,T]

18
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General theory of linear parabolic equations (see for example, [13]) gives

/ Hwa:a:”L:i )dt < C / H —-p+ f )“L"(Q dt + ”wOHWé‘/a(Q))'

Therefore, we have

t t
[ Tualisyar < 0 (1 + [ ol df)
t 1 1
SC[1+/ (/ 93dx+max98~/ 04dx) d'r].
o \Jo 0<z<l 0

If ¢ > 4, the right hand side is bounded. O

As [10] and [9], we introduce the quantities

t 1 . 1
X = / / (1469902 dsdr, V= max [ (1+679)6,2dz
0 Jo

0<t<T Jq

1

Z := max Uz’ dz.
0<t<T /)

Firstly, by Cauchy-Schwarz inequality we have

1@ < ¢ (1 +Y#0). (2.25)

Secondly, it is easily seen that by interpolation
2 1/2
dmax lue|l? < C (1 + Z/2) (2.26)
holds and for any t € [0, 7]
fax U’ < lJuz [ + 2{|uz | ||uoc|
< C(1+2%),

which gives

lu|® < C (14 2%%). (2.27)

In the same manner as in [10] and [9] we introduce the function

K(v,) = /0 8 g

Multiplying (2.5) by K; and integrating it over (0,1) x (0,¢), we have

// e90t+0pguz——ux thxd7'+// —0, Ky dzdr

= fo /; Az K, dz dT. (2.28)



Here

K
K= Eet + Kvuz,

Ky = (i;-ax)t + Kpyvgup + Kyugg + (g) vabs,

|Ky|, K| < C8.
Estimating each term in (2.28), we get the following.
Lemma 9 If4 < ¢ <16 and 0 < § < 13/2, we have

X+Y<C(1+2%). (2.29)

Sketch of proof. At first, note that

t pl K t pl
/ / egl; (—Gt) dzdr > C/ / (1 + 03) (1+6%6,2dzdr
0o Jo v 0o Jo

> CX,

t 1 K K 1 1
/Ofozez(aoz)tdxdf_ifo s, dm——/ dz

>CY - C

Other terms are also estimated from (2.25)-(2.27), Lemmas 4, 6, 7 and 8, for example,

t 1
/ (Opguz - Eu,,?) K9, dsdr
0o Jo v v

1
<eX+ Csiuﬂ(“)/ max (1 + 0)q+1/ (1+0)dzdr

0<z<1
t
+C|14673|© |u_,,|‘°)/ llugl|s® dr
0

<eX+C. (1 + 734 4 Ya“fi%z”/**)
<e(X+Y)+C. (1+2%4),

g
;GxK,,uu dzdr

t
< C|s'/292 0 21/ f V(r)/?ar
0

<C (1 + Yo 71/2)
<eY +C. (1+27%).

Combining these estimates and taking & small, we obtain (2.29). O
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Lemma 10 If4 < ¢ <16 and 0 < 3 < 13/2, we have for any t € [0,T]

ol 161+ el + aal? + [ (18P + ) dr <€, (230)

0

and
luz|©@ + [u]@ + 6@ < C. (2.31)

Proof. The following culculations are formal because the regularity of the solution
is not sufficient. But as usual we can easily derive the rigorous results by using the
arguments of mollifiers and passing to the limit.

Differentiating (1.9)? with respect to ¢, multiplying it by u; and integrating it with
respect to z, we have

d 1 . 1
-—utz dz + / Euzf dz = / (ptuu + uuz uzt) dz,
dt o V 0

hence
t
ful? + [ s dr

O t 2 4

<Ci1+ / + ||uzll e d'r]

[+ [ (1o + )

t 1 :

SC[/ / (1+6°%) 6.2dzdr
00 (0) t 1 t

+ |us?| /‘/szwd7+luxl(°)/ Huxllzam)dfr]
0 JO 0

<C(1+X+2%+ 75)
<C(1+27%) ' (2.32)

by Lemma 9. From (1.9)? again together with the estimate above, it follows for any
te0,T)

|MW<0@ m+m+%%am]
<C [1 + luel? + (1 +6%) 0. dz + (1621 + ua?[”) ||vzu2]
<C (1 +Y#ED +Y + 234 + Z7/3)
<C(1+2).
This means

z<Cc(1+2%).
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Therefore, we conclude that Z is bounded. Then one can see that X, Y, (6], {lu,]|,
|uz|®, ||ue]| and [ luge||? dT are also bounded from Lemma 9, (2.25)-(2.27), and (2.32).
The boundedness of u is easily derived from

< g (o )
ul® < max (Ilullse + ul). O

Lemma 11 For any (z,t) € Qr
6(z,t) > C. (2.33)

1
Proof. By putting © := 7 (2.5) becomes

2 2 2 2
_(k vpe” | 2k0;° w0 vPg 9
€oOs = (vez)z + 4p { ©® T o (um 2u@) +A0%z|

from which by (2.31) there exists a positive constant C; such that
1 /K
0 < =(Ze.) +Cu.
eg v x
Standard comparison arguments imply

1 .
min_ (Cit + max — — >0 O

Lemma 12 For any t € [0, T
t
faol? + Beeel? + lzl? + [ a2 < €. 234
0

Proof. Multiplying (1.9)* by z,, and integrating it over [0, 1], we have
d 11 td ' (2d
A Ezzz d:c+/0‘ ﬁzmz dz =_/0 (v—szzzzzz+¢zzmz> dz.

In a standard manner, we easily obtain the boundedness of ||z,|| and f; ||2.4||? dr,
which implies [} ||2]|2dr < C by (1.9)* again.

Next, we differentiate (1.9)* with respect to ¢, multiply it by z; and integrate over
[0,1]. Then we have

¢ t
”Zt“2 +/ “th”2d7' < C [1+A (”0t|‘2+ “za:”2+ “zt“2) dT:| ’
0
whose right hand side is bounded. From (1.9)* again we obtain
1
l| 225 < C'/ (1 + 2,2 + 2520, +¢2) dz
0

< 5”zzz“2 + Ce,
which completes (2.34). O
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Lemma 13 For any t € [0,T]

ol + lo? + [ ulPdr <. (2.35)

Proof. Differentiating (2.5) with respect to ¢, multiplying it by egf; and integrating
over [0, 1], we have

116:]|% + /Ot |0ze/|2dr < C [1 + fot/ol (va® +60,%) 6> dzdr| .
Then, by virtue of the interpolation inequality
2ax Be(z,1)? < €l|0ael* + Cc[|6e]I?,
we conclude that ||6;]| and fot ||0¢]|® d7 are bounded. Also from (2.5), one can obtain
1162212 < 0/01 ;13 (1+ 6% + up? + us* + 0,20, + 6,%) dz
<C [1 + max 6,2 -/01 (va? + 02%) da:]

0<z<1
< el||?+Ce. O

Let us begin the Holder estimate. From (2.30), (2.34), (2.35) and interpolations we
obtain the bounds of |6,|() and |z,|(®). Therefore, u, 6, z are Lipschitz continuous in z.
Applying Cauchy-Schwarz and interpolation inequalities, we have

1/2

t
lu(z,t) — u(z,t)| < (/ uﬁdr) It —t|/?
tl
¢ 1/2
< [ (bl + 2l ar| =1
tl
x 1/2
|[us(z,t) — us(z’, )] < (/ umzd§> |z — '|'/?,

from which together with (2.30)  is Holder continuous in ¢ with exponent 1/2 and u, is
also Holder continuous in z with exponent 1/2. Thus by a standard interpolation (see
for example, [13], chapter II, Lemma 3.1) one can get u, € C‘zl/f 1/ 5(Qr). We can also
get same Holder estimates for 6, z. Recalling that v; = u, and v|i= = vp € C**(Q),

we deduce v € C;,/ 3 1 ®(Qr). Since it follows from (2.8) that

1 :
vz(z,t) = BV G ODE.D {'uo (z) — A(z, t)vo(z)

+ ./(; %[Oz(m, )+ 0(z, 7) (A(z,T) — A(:E,t))] B(z,7)Y(x,7)D(z,T) d'r} (2.36)
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with 1

Alw,t) = - [uo(a:) —u(z,t) — -g-a /0 0(z,7)%0,(z,7) dr — G (:r - 1) t] ,

we can easily check v, € C;,’f/z(QT) with ¢ := min{e, 1/3}.
Next we consider (1.9)%, (1.9)% and (1.9)* as the linear parabolic equations:
R R

B (o) ue = -2, 4 By, ~ Lap0, — G (- L
e = By + (502) ws = 80 + 00 — 2ab%, G(:u 2),

0= 0= 3 [(5), 0o () o () 0= 5 (B 200)

d 2d
2t — —5 %z + =V ) 2z = —¢
v v

(

—

\

whose coefficients and right hand sides are Holder continuous in z with exponent o
and in t with exponent o/2. By the classical Schauder estimates (see for example, [13]
or [3]) we obtain |u,8, 2|544,1+0/2 < C. This also implies that v, u;,6;, 2; are Lipschitz
continuous in z and Holder in ¢ with exponent 1/2. Going back to (2.36), we obtain
vz € C:,’taﬂ(QT)-
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