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Abstract. Navier-Stokes equations represents a key reference model both in the analysis of nonlinear
partial diffcrcntial systerns, and in non-Newtonian fluid mcchanics. The power-law fluid, one of the most
popular non-Newtonian models, generalizes the Navier-Stokes fluid in the fact that its non-constant
viscosity is a power of the shear rate. A modification of the power-law fluids that consists in multiplying
the power of the shear ratc by the pressure is also considered. Such a model fits to the $\mathrm{c}\mathrm{l}\mathrm{a}$.ss of fluids with
the viscosity depending on the shear rate and on the the pressure. We look at all these models from the
point of view of invariance with respect to suitable scaling, and present some relevant results and open
problems.

Dedicated to Professor $Tai$-Ping $Li\mathrm{u}$ on the occasion of his sixtieth birthday.

1. Power-law fluids

Denoting $\mathrm{v}=(v_{1}, v_{2}, v_{3})$ the velocity and $p$ the mean normal stress (the pressure), we consider an
incompressible homogeneous fluid whose (generalized) viscosity $\nu_{g}$ depends on the pressure and on the
shear rate $|\mathrm{D}(\mathrm{v})|^{2},$ $\mathrm{D}(\mathrm{v})$ representing the symmetric part of the velocity gradient Vv. Unsteady flows
of such fluids, that take place in a three-dimensional container St $\subset \mathbb{R}^{3}$ at a constant temperature, are
described by thc system of partial differcntial equations of the form

$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}=0$ , $\mathrm{v}_{t},+\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{v}\otimes \mathrm{v})=-\nabla p+\mathrm{d}\mathrm{i}\mathrm{v}(2\nu_{g}(p, |\mathrm{D}(\mathrm{v})|^{2})\mathrm{D}(\mathrm{v}))$ . (1.1)

This systcm includes as special subsystems

$\bullet$ Schaeffer’s model, derived in [19] to capturc flows of certain granular materials, with

$\nu_{\mathit{9}}(p, |\mathrm{D}(\mathrm{v})|^{2})=\frac{\alpha \mathrm{p}}{|\mathrm{D}(\mathrm{v})|}$ valid if $|\mathrm{D}(\mathrm{v})|\neq 0$ $(a>0)$ .

$0$ Fluids with pressure dependent viscosity, where $\nu_{\mathit{9}}$ is independent of the shear rate, but depends
on the prcssurc, i.e., $\nu_{\mathit{9}}=\nu_{g}(p)$ . Such models, ffequently considered with an exponential viscosity-
pressure relationship, are very important in elastohydrodynamics and in processes taking place
under high pressures, see for example [2] or [22].. Fluids utzth shear rate dependent viscosity, where $\nu_{g}$ is indepcndent of the pressure, i.e., $\nu_{\mathit{9}}=$

$\nu_{g}(|\mathrm{D}(\mathrm{v})|^{2})$ , including

-Ladyzhenskaya’s fluids with $\nu_{g}(|\mathrm{D}(\mathrm{v})|^{2})=\nu_{0}+\nu_{1}|\mathrm{D}(\mathrm{v})|^{r-2}$ , where $r>2$ is fixed, $\nu_{0}$ and $\nu_{1}$

arc positive numbers. For $r=3$ this system of PDEs is frcqucntly called Smagorinski’s model
of turbulence, see [21]; then $\nu_{0}$ is the molecular viscosity and $\nu_{1}$ is the turbulent viecosity.

-Power-law fiuids with $\nu_{\mathit{9}}(|\mathrm{D}(\mathrm{v})|^{2})=\nu_{1}|\mathrm{D}(\mathrm{v})|^{\mathrm{r}-2}$ where $r\in(1, \infty)$ is fixed and $\nu_{1}$ is a positive
numbcr.

-Navier-Stokes fluids with $\nu_{g}(p, |\mathrm{D}(\mathrm{v})|^{2})=\nu_{0}$ ( $\nu_{0}$ being a positive number).

\dagger The contribution of J. M\’alek to this work is a part of the research project MSM 0021620839 financed by MSMT. The
support of CSF, project GACR 201/05/0164, is also acknowlcdgcd.
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A Ladyzhenskaya’s fluid reduces to the Navicr-Stokes fluid by putting $\nu_{1}=0$ , and to power-law fluids
by setting $\nu_{0}=0$ . Note also that taking $r=2$ in the constitutive equation for the Ladyzhenskaya’s fluid
leads again to the Navicr-Stokes fluid with the constant viscosity $2(\nu_{0}+\nu_{1})$ . Wc refer to [16] and [17] for
more details and views on these models.

As said above, we will primarily deal with three models. Time-dependent flows of fluids with the
viscosity depending linearly on the prcssure and polynornially on the shcar rate arc described by

$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}=0$ , $\mathrm{v}_{t},+\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{v}\copyright \mathrm{v})-2\nu_{1}\mathrm{d}\mathrm{i}\mathrm{v}(p|\mathrm{D}(\mathrm{v})|^{\mathrm{r}-2}\mathrm{D}(\mathrm{v}))=-\nabla p$. (1.2)

Note that setting $r=1$ and $\alpha=2\nu_{1}$ in (1.2) leads to Schaeffer’s model.
Also, if $\nu_{\mathit{9}}$ in (1.2) does not depend on $p$ one obtains the system describing unsteady flows of the

power-law fluids

$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}=0$, $\mathrm{v}_{t},+\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{v}\otimes \mathrm{v})-2\nu_{1}\mathrm{d}\mathrm{i}\mathrm{v}(|\mathrm{D}(\mathrm{v})|^{r-2}\mathrm{D}(\mathrm{v}))=-\nabla p$. (1.3)

Taking $f=2$ in (1.3), this system finaUy reduces to the evolutionary Navier-Stokes system

divv $=0$ , $\mathrm{v}_{t},+\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{v}\otimes \mathrm{v})-\nu_{1}\Delta \mathrm{v}=-\nabla p$ . (1.4)

2. Self-similar scaling

It is known that if $(\mathrm{v},p)$ solves the Navier-Stokes system (1.4) then $(\mathrm{v}^{\lambda},p^{\lambda})$ defined through

$\mathrm{v}^{\lambda}(t, x)=\lambda \mathrm{v}(\lambda^{2}t, \lambda x)$, $p^{\lambda}(t, x)=\lambda^{2}p(\lambda^{2}t.\lambda x)$, $(\lambda>0)$ (2.1)

solve (1.4) too.
Similarly, solutions of the equations for power-law fluids (1.3), considered for $r\in(1,3)$ , are invariant

with respect to the scaling

$\mathrm{v}^{\lambda}(t, x):=\lambda^{\frac{1}{Sr}=}’ \mathrm{v}(\lambda^{\mp_{rt,\lambda X)}},$ $p^{\lambda}(t, x):=\lambda^{2\frac{r-1}{3r}}\mathrm{P}(\lambda\neq_{-\overline{r}t,\lambda X)}$. (2.2)

It means that if $(\mathrm{v},p)$ solves (1.3), then $(\mathrm{v}^{\lambda},p^{\lambda})$ solves (1.3) as well. Note that the scaling (2.1) of the
Navier-Stokes system is also included by setting $r=2$ in (2.2).

Interestingly, looking for $\mathrm{v}\mathrm{u}\mathrm{c},\mathrm{h}$ values of $\alpha,$
$\beta$ and 7 that provide solutions of (1.2) invariant with

respect to the scaling of the form

$\mathrm{v}^{\lambda}(t, x)=\lambda^{\alpha}\mathrm{v}(\lambda^{\beta}t, \lambda x)$, $p^{\lambda}(t, x)=\lambda^{\gamma}p(\lambda^{\beta}t, \lambda x)$ , (2.3)

we come to thc conclusion that this is possible only if

cither $r=1$ (Schacffcr’s modcJ) and $\gamma=2\alpha$ , $\beta=\alpha+1$ , (2.4)

or $\alpha=-1$ $\Rightarrow\beta=0$ and $\gamma=-2$ . (2.5)

If (2.4) happens then we obtain the whole family of selhimilar solutions of (1.2) of the form

$\mathrm{v}^{\lambda}(t, \tau,)=\lambda^{\alpha}\mathrm{v}(\lambda^{\alpha+1}t, \lambda x)$ , $p^{\lambda}(t, x)=\lambda^{2\alpha}p(\lambda^{\alpha+1}t, \lambda x)$ , (2.6)

while in the case (2.5) the self-similar solutions are of the form

$\mathrm{v}^{\lambda}(t, x)=\frac{1}{\lambda}\mathrm{v}(t, \lambda x)$ , $p^{\lambda}(t, x)= \frac{1}{\lambda^{2}}p(t, \lambda x)$ . (2.7)

We use these scaling in two ways. First, in Section 3, studying the behavior of the rate of dissipation
under these scalings, we classify the difficulty of the problems, and we make a relation between such
behavior and the results achieved in dependence on the value of the power-law index $r$ . Then, in Section
4, we come to the task of a construction of singular solutions to the governing systems of PDEs in a
sclf-sirnilar form,
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3. Classification of the difficulty of the problems

We use above scaling to magnify the flow near the point of interest located inside the fluid domain.
Studying the behavior of the averaged rate of dissipation $d(p, \mathrm{v})$ defined through

$d(p, \mathrm{v}):=\int_{-1}^{0}\int_{B_{1}(0)}\nu_{g}(p, |\mathrm{D}(\mathrm{v})|^{2})|\mathrm{D}(\mathrm{v})|^{2}dxdt$ (3.1)

for $d(p^{\lambda}, \mathrm{v}^{\lambda})$ as $\lambdaarrow\infty$ , we can give the following classification of the problem:

if $d(p^{\lambda}, \mathrm{v}^{\lambda})\{$

$arrow 0$

$arrow A\in(0, \infty)$ as $\lambdaarrow\infty$

$arrow\infty$

then the problem is $\{$

supercritical,
critical,
subcritical.

Roughly speaking, we may say that for a subcritical problem the zooming (near a possible singularity) is
penalized by $d(\mathrm{p}^{\lambda}, \mathrm{v}^{\lambda})$ as A– $\infty$ , while for supercritical case the energy dissipated out of the system is
an insensitivc mea.sure of this magnific.ation.

Since for the power-law fluids

$d( \mathrm{v}):=d(p, \mathrm{v})=2\nu_{1}\int_{-1}^{0}\int_{\mathcal{B}_{1}(0)}|\mathrm{D}(\mathrm{v})|^{r}dxdt$ , (3.2)

and consequently
$d( \mathrm{v}^{\lambda})=2\nu_{1}\lambda^{5r-11}\int_{-\lambda^{\mp_{r}}}^{0}\int_{\mathcal{B}_{\lambda}(0)}|\mathrm{D}_{y}(\mathrm{v})\}^{r}dyd\tau$ , (3.3)

we observe that

$d(\mathrm{v}^{\lambda})\{$

$arrow 0$

$arrow A\in(0, \infty)$

$arrow\infty$

as $\lambdaarrow\infty$ if $\{$

$r< \frac{11}{6}$ ,
$r= \frac{11}{5}$ ,
$r> \frac{11}{5}$ ,

implying that problem (1.3) is $\{$

supercritical.
critical.
subcritical.

Here, we discuss what is known on mathematical consistency of the system (1.3). We shall see that the
parameter $r= \frac{11}{5}$ plays an significant bound when formulating available results. Note that the Navier-
Stokes equations in three spatial dimensions falls into the class of supercritical problems. Let us also $\mathrm{r}\mathrm{e}\mathrm{c}$,all

(see [16]) that by mathematical consistency we mean long-time and large-data existence of (suitable) weak
solution\dagger , its uniqueness, regularity and further qualitative properties.

Evolutionary power-law fluid model (1.3) is for $r \geq\frac{11}{5}$ mathematically self-consistent; long-time
existence of weak solution has been proved by Ladyzhenskaya (see [7], [8]), using the monotone operator
theory and Minty’s trick to idcrltify the “ correct” limit of the viscosity term, and the compact embcdding
to obtain the correct limit in quadratic term $\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{v}\otimes \mathrm{v})$ . Regularity and consequently uniqueness for a
smooth initial velocity is addressed in [15]. Note that the non-degenerate case (i.e. the Ladyzhenskaya’s
fluids) has becn trcated before and for $r \geq\frac{11}{5}$ the results on rcgularity and umiqucncss for $r \geq\frac{11}{5}$ and on
existence for $r> \frac{9}{6}$ were put into place by Bellout, Bloom and Ne\v{c}as in [1], M\’alek, Ne\v{c}as and $\mathrm{R}\mathrm{u}’\check{\mathrm{z}}\mathrm{i}\check{\mathrm{c}}\mathrm{k}\mathrm{a}$ in
[13] and by M\’alek, Ne\v{c}as, Rokyta and $\mathrm{R}^{\mathrm{o}}\mathrm{u}\check{\mathrm{z}}\mathrm{i}6\mathrm{k}\mathrm{a}$ in [12], see also [16] for more details.

The long-time and large-data existence of weak solution for $r \leq\frac{11}{5}$ (under more general assumptions
on smoothness of data than in [12] for example) and for $r> \frac{8}{5}$ is achieved by Bul\’i\v{c}ek et al. in [3] for the
spatially periodic and Navicr’s slip boundary value problcms\ddagger . Thc same task to establish long-time and
large-data existence result for the no-slip boundary conditions is non-trivial and it is addressed in the
recent work by Wolf [24].

It is worth noting that thc rcsult in [3] holds also for a ccrtain class of incompressible fluids with
pressure and shear rate dependent viscosity for Navier’s slip boundary conditions, extending thus the

\dagger Since the balance equations of continuum physics are formulated over any measurable sets and such formulations are
tantamount to the weak forms of the balance equations that are formulated pointwise, the notion of (suitable) weak solutions
seems to primary, while the notion of smooth solution is rather secondary. This point of view has been obvious to Oseen,
and corlsequently to Leray [9].

\ddagger This solution is suitablc weak solution in thc scnse of Caffarcli, Kohn and Nircnbcrg, see [4], if $r> \frac{9}{\mathrm{s}}$ .
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thcory developcd in [11] for spatially periodic problem. On the othcr hand, it is not at all clear if the
result by Wolf can be extended to time-dependent flows of fluids with shear rate and pressure dependent
viscosity that are subject to no-slip boundary conditions.

Another question of interest is the long-time and large-data existence for $r< \frac{8}{5}$ . Supported by the
analysis (see [6] and [5]) of steady flows one may conjecture that it may be true for $r \in(\frac{6}{5}, \frac{8}{5}]$ . The main
ncw ingrcdience incorporated by Frehsc ct al. in [6], see also [5], is based on an improvement of properties
regarding Lipschitz truncations of Sobolev functions.

We complete this section by providing a classification of the difficulties of the problen (1.2) according
to the bchavior of $d(p^{\lambda}, \mathrm{v}^{\lambda})$ as $\lambdaarrow\infty$ for $d(p, \mathrm{v})$ defined through (3.1), and $(\mathrm{v}^{\lambda},p^{\lambda})$ solving (1.2) and
fulfilling either (2.6) or (2.7).

Considering first $(\mathrm{v}^{\lambda},p^{\lambda})$ of the form (2.6), we compute $(r=1)$

$d( \mathrm{p}^{\lambda},\mathrm{v}^{\lambda})=2\nu_{1}\int_{-1}^{0}\int_{\mathcal{B}_{1}(0)}p^{\lambda}|\mathrm{D}_{x}(\mathrm{v}^{\lambda})|dxdt=\lambda^{2\alpha-3}2\nu_{1}\int_{-\lambda^{1+\alpha}}^{0}\int_{B_{\lambda}(0)}p|\mathrm{D}_{y}(\mathrm{v})|dy$dr. (3.4)

It implies that $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{a}\epsilon \mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}’ \mathrm{s}$ model can be classified as supcrcritical (for $\alpha<\frac{3}{2}$ ), subc,ritical (for $\alpha>\frac{3}{2}$ ),
or critical (for $\alpha=\frac{3}{2}$ ) in dependence of the considered scaling. Saying differently, despite the fact that
solutions to the time-dependent Schaeffer’s model ((2.1) with $r=1$ ) are invariant with respect to various
changes of scale, this invariance cannot be used to assign to the problem one of the labels: critical,
subcritical, supercritical.

On thc other hand, solutions of the system (1.2) for $r\geq 1$ are invariant with rcspect to the $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{i}\iota$

$(2,7)$ and then

$d(p^{\lambda}, \mathrm{v}^{\lambda})=2\nu_{1}\int_{-1}^{0}\int_{B_{1}(0)}p^{\lambda}|\mathrm{D}_{x}(\mathrm{v}^{\lambda})|^{r}dxdt=\frac{2\nu_{1}}{\lambda^{5}}\int_{-1}^{0}\int_{B_{\lambda}(0)}p|\mathrm{D}_{y}(\mathrm{v})|^{r}dyd\tau$. (3.5)

Since $d(p^{\lambda}, \mathrm{v}^{\lambda})arrow 0\mathrm{a}‘ \mathrm{s}\lambdaarrow\infty$ , the problem is supercritical for all $r>1$ .

4. Singular self-similar solutions

In his article [9], Leray used the property (2.1) and proposed a construction of a self-simlar weak solution
exhibiting a singularity at a critical time $T>0$ . Leray’s program can be easily generalized to power-law
fluids (1.3), which wc will do next.

Assume that $(\mathrm{U},Q)$ represents a nontrivial (weak\dagger ) solution of the system

$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{U}=0$ , $\frac{3-r}{2}y_{k}\frac{\theta \mathrm{U}}{\theta y_{k}}+\frac{r-1}{2}\mathrm{U}+U_{k}\frac{\partial \mathrm{U}}{\partial y_{k}}-\mathrm{d}\mathrm{i}\mathrm{v}(|\mathrm{D}(\mathrm{U})|^{r-2}\mathrm{D}(\mathrm{U}))=-\nabla Q$ . (4.1)

Then

$\mathrm{v}_{*}(t, x)==^{1}(T-t)^{\mathrm{r}-1}\mathrm{U}((T-=^{X}t)^{3-r})$ , $p_{*}(t, x)= \frac{1}{(T-t)^{r-1}}Q(_{(T-t)^{3-r}}=^{X})$ (4.2)

form a weak solution to (1.3) that develops the singularity at $T$ as $tarrow T-$ .
Thus, in this appraoch the construction of singular weak solutions to (1.3) “reduces” to the question

of existcnce of nontrivial solutions to (4.1).
For $r=2$ , Ne\v{c}as et al. in [18] completed the original Leray’s program by showing that if $\mathrm{U}\in L^{3}(\mathrm{R}^{3})^{3}$

is a weak solution of (4.1) (with $r=2$) then $\mathrm{U}\equiv 0$ . The proof relies on the fact that the scalar quantity
$\frac{1}{2}|\mathrm{U}|^{2}+Q+y\cdot \mathrm{U}$ satisfics the maximum principlc. This resltlt wa‘s generalizcd in [23]; a simple proof
under stronger assumption is given in [10].

\dagger We rnay for example assume t,hat $\mathrm{U}\in L^{2}(\mathbb{R}^{3})^{S}\cap W^{1,r}(\mathrm{R}^{3})^{3}$.
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If $r\neq 2$ , one observes from how wcak solutions to (4.1) arc introduced that if $r> \frac{11}{5}$ then $\mathrm{U}\equiv 0$ , For
$r< \frac{11}{5}$ we have

$||\mathrm{v}_{\delta}(t)||_{2}^{2}=(T-t)^{11-5r}||\mathrm{U}||_{2}^{2}arrow 0$ as $tarrow T-$ ,

$|| \nabla \mathrm{v}_{\epsilon}(t)||_{r}^{r}=\frac{||\nabla \mathrm{U}||_{r}^{r}}{(T-t)^{(5r-9)/2}}arrow+\infty$ as $tarrow T-$ for $r> \frac{9}{5}$ ,

$|| \nabla \mathrm{v}_{\mathit{8}}(t)||_{s}^{s}=\frac{||\nabla \mathrm{U}||_{2}^{2}}{(T-t)^{(3\mathrm{r}+2s-9)/2}}arrow+\infty$ as $tarrow T$ –for $s> \frac{9-3r}{2}$ .

The last line just indicates that for $rarrow 1+$ , the higher norms of Vv blow-up.

We end up this section by preliminary results dealing with explicit constructions of nontrivial solutions
to (4.1). We refer to [14] for details.

Set $\Psi(y):=(y_{3}-y_{2})^{2}+(y_{1}-y_{3})^{2}+(y_{2}-y_{1})^{2}$ and consider solutions to (4.1) of the form

$\mathrm{U}(y)=\frac{A}{[\Psi(y)]^{\alpha}}(y\mathrm{s}-y_{2}, y_{1}-y_{3}, y_{2}-y\iota)$ , $P(y)=Q(\Psi(y))$ for $Q$ smooth. (4.3)

As shown in [14], solutions of (4.1) having the structure (4.3) exist if

$1<r< \frac{3}{2}$ and $\alpha=\frac{1}{2-r}$ .

Note that if we consider time-indcpendent flows, singular solutions of thc form (4.3) exist for all $r>1$

and $\alpha=\frac{1}{r-1}$ . This suggestv to look for counterexamples to regularity (as $C^{1,\alpha}$ for example) for the
generalized Stokes-like systems, whereas “ generalized”’ means that $\nu_{g}$ is non-constant, and depends on $p$

or $|\mathrm{D}(\mathrm{v})|$ , etc.

5. Conclusion

The main objectives of this contribution are twofold.
First, we wished to point it out that there are interesting models of non-Newtonian mechanics for

incompressible fluids that deserve the attention of mathematical analysts. Since the pressure is mostly
eliminated from the analysis of the Navier-Stokes equations (despite the fact that the pressure can play a
significant role in understanding of the whole system, see [20] for example), most of the studies of models
for incompressible fluids with thc viscosity depending on the pressurc (and the shear rate) requires to
deal with the pressure since the beginning. Here, we restrict ourselves to a few special models (power-law
fluid, Schaeffer’s fluid and their combinations) of one class of non-Newtonian fluids, namely fluids with
non-constant viscosity, that share the property that their solutions are invariant with respect to a suitable
scaling.

Second, using this scale invariance we show that powcr-law fluids can be classified in dcpendence on
the power-law index $r$ . Interestingly, this standard classification is not applicable to Schaeffer’s model.
We also documented that power-law models are well understood if the power-law index $r$ satisfies the
condition $r \geq\frac{11}{5}$ and the problem is subcritical or critical, whilc there is a lot of open problems if $r< \frac{11}{6}$

(the Navier-Stokes system falls to this range).
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